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The matrix elements which affect the shapes of the P spectra and the P-y angular correlations are calculated

for the ' F-' Na mirror Gamow-Teller decays to the 1634 keV level of ' Ne. The dominant effects are due to
the weak-magnetism and the axial-vector tensor form factors. Matrix elements relevant to the P-a correlations

for other ' Na decays are also evaluated, with similar conclusions.

RADIOACTIVITY F, Ne, Na, calculated p decay form factors, M1, E2 mat-
rix elements; predict P spectrum shape, P-y and P-o, angular correlations.

I. INTRODUCTION

Some of the best tests for the presence of the
second-class' weak interaction involve measure-
ments of certain angular correlations' in nuclear

p decay. The p-y correlations for the mirror
Gamow-Teller decays of the mass-20 system are
particularly interesting in this respect, because
of the relative simplicity of the decay schemes
and the large energies released.

To first order in recoil, the p-y correlation
depends on a linear combination of the weak mag-
netism and the axial-vector tensor form factors.
For &T = 1 decays the form factors are each, in
principle, combinations of first and second class
components. Thus to determine the second class
tensor term it is usually necessary to invoke the
conserved vector current (CVC) theory to deter-
mine the weak magnetism form factor and to com-
bine the p -y correlations of mirror e' and e de-
cays to eliminate the first-class tensor form fac-
tor. To higher order in recoil, other form factors
also contribute and the procedure of isolating
second-class contributions becomes a little more
complicated. In order to assess the importance
of these higher order form factors in the case of
the A = 20 decays, we have evaluated them with
nuclear shell model wave functions.

Our procedure is to utilize the relationships
between the nuclear form factors and matr~ ele-
ments of one-body operators, which are given by
the impulse approximation. ' While the validity of
the impulse approximation can be questioned for
these higher order terms, there is evidence that
the extended shell model is adequate for calculating
the matrix elements. Within the limitations of

this procedure we evaluate the form factors and
their effect on the p -y correlations. In addition,
we calculate the shapes of the p spectra with the
goal of assessing the possibility of determining
the weak magnetism form factor from the spec-
trum shape. Finally, we have attempted to pre-
sent these results for A = 20 in a thoroughly de-
tailed context so that comparable analyses in other
sd shell nuclei can be carried out in a straight-
forward fashion from other nuclear wave functions.

II. DISCUSSION OF DECAY PROCESS

A simplified version of the mass-20 decay
scheme is illustrated in Fig. 1. The decay rate
for unpolarized nuclei for a process in which the

p particle is detected in coincidence with the de-
layed E2 y ray (spins and neutrino unobserved) is
given by the following':

dX=, Fo(Z, E)pE(ED E) dEdQ,do„-
&& (G,(E)+ n, (E)(p&E) «» e

+ -,
'
G,(E)(p/E)'(cos'8 - 3 )].

In the above, P and E are the p momentum and
total energy, respectively, G~ and 8~ are the
vector coupling constant and Cabibbo angle, E, is
the point charge Fermi function, and 8 is the
angle between the p and y particle directions.
The spectral functions Go(E), 4, (E), and G,(E)
for Gamow-Teller decays are given by the follow-
ing:
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FIG. 1. Simplified decay schemes of the 7= 1 states of the A. =20 system. The decays to the 1634 keV level of Ne
are considered in the text as candidates for a test of the CVC theory and for a search for second-class currents.
Radiative widths are taken from Ref. 9, Na ft values from Ref. 13, and Fft value from Ref. 14. The limit for the
~OF ground state branch is taken from Ref. 15.

1m
Go(E)= ci ———ci(c, + d' +bad")+ ——c,(5c, + 2b) —— ' 2ci'+ ci(d' +2b ad") — c,h2M

+ 9 c,c,(11m,'+ 20E E, —20E' —2m, 'E /E), (2)

~ (E)=- ——1-——9 c '.19E 1E
9M 19E (3)

G2(E)= (c, ac,brcid" —c,d')+3 c,c2(Eo —E)M

(+(-', )' ' c,g+3c,f+ ' c,j,) — —c,j, .1,, p Eo —E 3(Eo —2E} . 3 E
(4)

The quantity M is the nuclear mass while c, b, d,
f, g, h, and j,denote the nuclear form factors. The
latter are given in Table I in terms of matrix ele-
ments, as predicted by the impulse approxima-
tion. The matrix elements are defined in Table II.
The dominant form factor is the Gamow-Teller
(c,) term and the terms of next order of impor-
tance are b and d, the weak magnetism and the
tensor form factors, respectively. In the above,
Coulomb nuclear size effects are neglected.

It is common to express the p -y correlation in
the form

dx= 1+A&„(P/E) cos8+ Bz„(P/E) cos28

whence the correlation coefficients are given by

A~ = o.,(E)/[G (E) ——,
' G,(E)]

and

B „=2G (E)/[G (E) ——G (E)].
The P -& correlations for the "Na decays to un-

bound 2' levels of "Ne have a similar form':

d&= 1+A4 (p/E) cos8+ B4,(p/E)2cos28, (8}

where the main difference is a factor of 2 for the
cos'8 term. There is also a slight change in the
coefficient of cos~

A~~ = n'(E)/[GO(E) —3G~(E)],

Bg. = G,(E)/[G.(E) —kG2(E)],

where
2E

,(E)- „c, .Mv
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TABLE I. The nuclear form factors.

ci= gAMGT

1 1c2- 6' M~+ M»v'10

~= A~geMGv+ gvMI, ~

d =AggM~g,

f=-(-)' MAg M /(kc)

g= —'M'g M~/(Sc)'

gg-———M g~Mg~/(kc)

h=- M g~M»/(hc) —A g~MG~~0

g~ =- 1.23

g~ =4.70

gv= &.00

A = mass number

M = —'(M;+M&) =nuclear mass
2

b. =M; —M~ ——nuclear energy release
22mp
gg = —222

mr

The cos8 correlation arises from a center of
mass to laboratory transformation. The quantity
v* is the speed of the secondary particle (y ray or
n particle) with respect to the recoil "Ne system.
For the p -y correlations the kinematic A coeffi-
cient is very small since v* is the speed of light
but for p-n correlations A is comparable to B.

The shape of the momentum spectrum for un-
polarized nuclei is specified by the spectral func-
tion G,(E). Finite nuclear size and additional
Coulomb effects have been calculated and the
more accurate expression for the spectrum is

given by the following":

4
dA. =

( )~
Gv~ cos~8+ (E,E )

x F(2,E)p'(Eo E)~hi—(E)dp

Here R(E,E,) is a correction for bremsstrahlung,
E(E,E) is the Fermi function calculated for a,

finite size uniformly charged nucleus, and h, (E)
is the spectral function which is similar to G,(E)
except for the Coulomb and finite size correction
terms

h (E)=c ~+I- ,cc( lim ~+20EEO —2m Eo/E —20E ) —c c, —9 nZ ~ 4 o.ZE 22 nZE
e o e o 1 2

+ c,(2b +d'+ d" + c,) —— ac, (c, + d' + d" + b)+ ——c,(5c, + 2b)

] 2

2 'c+ (cd' + 2 +bd") — ' c,h . (i2)

This form for h, (E) is correct if the Behrens-
Janecke Fermi function is used. ' The dependence
of the Gamow-Teller form factor on the momen-
tum transfer q is accounted for by the term c„de-
fined by

c(q') = c,+ q'c, .
To determine the second-class tensor form

factor d", one must combine measurements of
the B correlation coefficient for both e' decays,
so as to cancel the first-class term d'. The dif-
ference of the B coefficients for e' decays, with
the same E, and at the same E, depends on (b
—d") and on the higher order vector terms g and

f. The form factors b, g, and f arise from the
vector interaction and can therefore be determined
from the experimental decay rates for the analog

Matrix
element

MGg

Mtf„2

Mpq

Operator form

&pIIZ~Pgll ~&

&p II Z ~'&~(~i' ll ~&

&pIIZ~llill ~&

&pllgr';if', xi, ll ~&

(
4~ 1/2

& pIIZ~l~ y~&~&&II~&

(
16~ '"

&p II g~;.a, 'c",»'~«yf(~, & II ~&

TABLE II. The nuclear matrix elements.
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y decay by CVC theory. In terms of the isovector
x'RdlRtlve widths I, the important 1elRtlonshlps
Rre

I" s~~= ~~ nE„b /M, (14)

I r='=~nE+ '/(Kc)4 (15)

Here n = 1/137.04 is the fine structure constant,
E„is the y x'ay transition energy, and M+ is the
matrix element of the quadrupole moment opera-
tor, which is related to f and g as given in Table

%'ith the correlation coefficients for both de-
cays determined by measurement and by using
CVC it is thus possible to determine d" in a model
independent way. Unfortunately, the end-point
enexgies for the A. = 20 decays differ considerably,
E( ssF)= 59 MeV and E ("sN )a~11.7 MeV, and this

makes the above cancellation of the first-class
form fRctol s $2 Rnd J3 yroblematlcs This point
will be dealt with below.

It should be noted that the shape of the p spec-
trum depends on b but is insensitive to d". This
provides the opportunity to determine b, indepen-
dently of d", and thus check CVC, provided the

e,e, terms are not too large. If the latter are
large one can combine the spectra for the e' and
e decays to eliminate these terms (except for the

c,c,~E term}. However, such a procedure also
cancels a possible second-class contribution to 5

and therefore it tests a more restricted form of
CVC.' The strong form of CVC, of course, rules
out a second-class vector current. It was, in

part, for this reason that our calculation of c,/c,
WRS Carried Out,

Before discussing the wave functions and the
calculations, we settl. e some points concerning
the definitions of operators and xeduced matrix
elements. First, the isospin operator v' is such
that rslp&= s IJ') w"ere If ) is the proton state'
Second, the reduced matrix elements of Table D
do not conform to conventional definitions, but are
instead defined for an irreducible tensor operator
O~ of rank k by the expression

«as I «:&'l&.M.&
= t-".',:.".«s II 0.II&.&-

where the subscript HT denotes Holstein and Trei-
man. ~ The matrix elements of Table II are re-
duced in ordinary spin but not isospin. In the
present calculations, however, we work with the
reduced matrix elements of de-Shalit and Talmi'
(dST), which are defined by

&z,bf, lo; IJ.M.&

The relationship between the two definitions of the
reduced matrix elements is

n&Jsllo II& &

Inserting the isospin oyeratox and reducing the
dST matrix element in isospin (denoted by the
triple bar) gives the following useful result for
e decRys:

(- I)'s "~2
«sy'sll«. ll&.1".&HT (2g I)1/2(2T I)1/s r 1., "«sl sill«. Ill&. y'.

&

=~("&'"&2' olllro. lll2' »~. «I"=1«cays&

=+(i'&'"&2' 1lllros Ill
2' »~. (a~»g «cay).

III. DISCUSSION OF THE SHELL-MODEL VfAVE FUNCTIONS

The wave functions utilized in this work are ex-
pansions over the full set of (Od, q, )"&(Is,~,}"'(Od,q,

)"'
basis vectors, n, + n, + n, = 4. No excitations from
the Os and Op orbits ('sO core) or into the Of, Ip,
and higher orbits are RQowed. In this space there
are 56 components for the 4=20, J=2, T=0
wave functions and 66 components for the A. = 20,
J'= 2, T = 1 wave functions. The general conven-
tions for calculations such as have produced the
present wave functions are described in Ref. 6.
Specifically, phase conventions are consistent
with 1+S coupling and with single-particle wave

functions which are positive as they approach the
Ox'lgln

While there exist effective Hamiltonians which
yield qualitatively similar results for the quanti-
ties calculated here, we have chosen to use the
HamQtonian which yieMs the best overall repro-
duction of nuclear observables in the A = 18-25
region. This Hamiltonian (consisting of one- and
two-body terms and with no state or mass depen-
dence} was determined by adjusting the two-body
matrix elements of Kuo's interaction so as to ob-
tain a least-squaxes fit between about 200 experi-
mental binding energies in the A = 18-24 region
and the eigenvalues of the (presumed) correspond-
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ing states. ' The single-particle energies were
chosen to reproduce the experimental spectrum
of single-particle states in "O. This new Hamil-
tonian can be considered as an improved revision
of the Preedom-Wildenthal (PW) interaction. '
For mass 20 the two interactions yield very simi-
lar wave functions.

While the efficacy of the Hamiltonian we have
employed here is to an extent established by the
excellent reproduction of experimental spectra
which it yields, a more definitive test involves
the calculation of other nuclear observables.
Principal among the observables against which
the present wave functions have been tested are
single-nucleon spectroscopic factors, magnetic
dipole moments, and ft values for Gamow-Teller
p decay. Experimental results for these obser-
vables are reproduced very well in general by
using unrenormalized single-particle matrix ele-
ments and one-body transition densities generated
from the wave functions. Experimental values of
electric quadrupole observables are also repro-
duced with these wave functions if the E2 single-
particle matrix elements are chosen to reflect
added charges to the neutron and proton of about
0.4e.

It is convenient to break calculations of matrix
elements of operators into two steps. In the first
step, the matrix elements of the bare operators
consisting of single-particle annihilation and
creation operators coupled to the appropriate
angular momentum M and isospin ~T are eval-
uated. These are referred to as the one-body
transition densities and are expressed as

(20)

where P& and P; are the multiparticle wave func-
tions of the states involved in the transition of
X= M, &T, and a~ and a,. are, respectively, a
creation operator for a particle in single-particle
orbit j, and an annihilation operator for a particle
in orbit j,.

These transition densities contain all the usable
information about the states in question which
originates from the specific shell-model calcula-
tions employed. That is, given the active orbits
of the model space, any difference in truncation
or Hamiltonian from one calculation to another
shows up finally as a different set of transition
densities. Putting it another way, the shell-model
calculation consists of choosing a set of basis
vectors and then assigning amplitudes to each
basis vector via diagonalization. All of the infor-
mation obtained from the diagonalization procedure
(and contained in the wave functions) which is
relevant to a transition operator of rank X is

TABLE III. Qne-body transition densities between the
first shell model A = 20, J= 2, T = 1(g;) and A = 20, J= 2,
T = 0(|t)~) wave functions:

(~f I jl(a~ x~~&4, II I 0'a) (2DT+1) (2~+ 1) '

21)2 EJ=2, AT =1 DJ=3, 6T =1

5 5
2 2

5 I
22
5 3
2 2

1 5
2 2

1 I
2 2

3
2 2

3 5
2 2

3 1
22
3 3
2 2

+ 0.2763

—0.0765

+ 0.0202

+ 0.1087

—0.1646

-0.0156

+ 0.0310

-0.3176

—0.0250

+ 0.0120

+ 0.2985

-0.0989

-0.1480

+ O.oii. 6

+ 0.0651

-0.2446

+ 0.0034

+ 0.1495

-0.3565

0 ~ 0

0.0

+ 0 ~ 0427

0.0

+ 0.0315

condensed into the transition density elements.
The latter reflect the probability of obtaining the
final state wave function by annihilating a particle
of orbit j, of the initial state and creating a parti-
cle in orbit j, of the final state. The transition
densities between the lowest energy J= 2, T= 1,
and J= 2, T = 0 wave functions in A = 20 for ~T
=1 and M=1, 2, and 3 are given in Table III.

The remaining step in calculating the value of
an observable is to evaluate the matrix elements
(p, j (( O~ j( ( p,') of the operator of interest between the
various single-particle states of the model space.
These single-particle matrix element values are
independent of any particular formulation (i.e. ,
choice of Hamiltonian) of the shell-model calcula-
tion. Their values reflect such aspects as the
properties of free neutrons and protons, proper-
ties of spherical harmonics, and nuclear sizes,
etc. Their values may also reflect assumptions
about proper renormalizations of the free nucleon
properties which may arise from finite basis space
effects and/or mesonic effects. The key point is
that essentially independent assumptions go into
the "shell-model calculation, "which results in
multiparticle- wave-function amplitudes which in
turn lead to the transition densities, and into the
evaluation of the single-particle matrix elements
of an operator which corresponds to some physical
transition process.

We have listed in Table IV the single-particle
matrix elements for sd-shell orbits of all the
operators under discussion. The radial dependence
of the single-particle wave functions is assumed
to have a harmonic oscillator form consistent
with choice of the size parameter b = 1.825 fm. These
values can be used not only with other shell-model
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TABLE IV. Single-particle matrix elements of relevant operators for the Odsg2, is&i2, and

Od3y2 single-particle wave functions. Harmonic oscillator radial dependence with 5 =1.825 fm
has been assumed and the radial integrals are

(Odlr I Od)=(is
I
x'I is)= 7 v '=

, b =-ii.66 fm,
(Odl r

I
is)= (is I ~ I Od)=-MOv '=-~0b =-f063 fm .

Entries with asterisk (*}denote that(p'& I 0 I p&, ) has opposite sign relative to (pz. I 0 I p&); for
those with no +, the two are equal:

(p, I II o,(nT =i) II I p, , )ssr.

5 5
2s 2

1
2s 2

5 3
2s 2

1 l
2s 2

I 3
2s 2

3 3
2s 2

MG, T
Mq
Mfy„2 (fm )
MI
MOI.
MgyE=1
K=2
X=3

3.549
-16.72
+41.38

7.099
0

+ 14.95
0

-44.86

0
-14.13

0
0
0
0

+ 23.08*
-43.17

-3.794*
-8.360*
44.24*

1.897*
-9.486

+ 13.99*
+ 34.13
+ 24.42*

+ 2.999
0

+ 34.98
0
0
0
0
0

0
—11.54*

0
0
0

+ 28.26*
+ 28.26

0

—1.897
-12.77
-22.12

5.692
0

—27.98
0

+ 7.477

calculations for A = 20 but also for any other sd-
shell-model calculation in the A = 18-38 region.

The combination of the transition densities and
the single-particle matrix elements leads to the
value of the matrix element of the observable
according to the expression

(PI I Il(&g i )"II I(bg& (21)= 2 &p~ I II Os II I p, & (2~T„),l.(2~„), ~

In Table V we have listed the values obtained
for the operators of interest by combining the
transition densities of Table III and corresponding
values for the second J=2, T=O, and the first
J= 2, T = 1 states of A = 20 with the single-particle
matrix elements of Table IV. The values of the
M and M„, operators can be related to results
of experimental measurements. The calculated
logft value of 4.87 for the 'oF(2') to "Ne(2', 1.63
MeV) transition is in good agreement with the
measured value of 4.97. Measurements of the Ml
decay strength between the lowest 2', T = 1 state
in "Ne(Z„= 10.2 f1 MeV) and the 2', 7= 0 first ex-
cited state (E,= 1.634 MeV) yield an averaged val-

ue of 1"(fjd1)=4.26+0.23 eV.' The theoretical
value of 3.4 eV is again in good agreement with
this experimental number. If instead of single-
particle matrix elements based on the properties
of free neutrons and protons, values obtained by
slightly adjusting these free-nucleon elements to
best fit magnetic moments in the sd shell are
used to calculate this Ml rate, the value changes
to 3.7 eV. The E2 partial width for the (2', 1),- (2', 0), decay is calculated to be 3.3 x 10 ' eV,
assuming a unit isovector charge. This is con-
siderably smaller than the weak experimental E2
partial width, which is quoted, without an assigned
uncertainty, to be 2 x iO"' eV.'0 However, the ma-
trix element associated with this decay is reduced
from the single-particle value by an order of
magnitude. In cases of canceIlation this extreme,
the final answer is quite sensitive to small details
in the wave functions.

The wave functions of the states involved in this
transition can be tested beyond aspects which in-
volve their overlap with each other. Both states
are populated in single-particle transfer reactions
with strengths and mixtures of / values which
are consistent with values calculated from these

TABLE V. Values of the Na- Ne total multiparticle matrix elements for three final
states of Ne such as those of Table I and the single-particle matrix elements of Table II.

MGT
Mq
(fm )

M)3f
(fm2)

M23f

(fm )
M33f

(fm')

2|,Q

22, 0
2+), 1

+ 0.237
-0.495
-0.344

+ 2.76
-5.77
—4.01

+ 0.842
-0.416
+ 0.248

+ 0.835
-0.902

0.0

+ 0.203 + 2.92 -5.32 + 10.6
+ 0.163 -0.084 -1.99 -4.01
+ 2.Q4 + 2.10 0.0 -1.66
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TABLE VI. Form factors for Na transitions to three T =O, J=2 states of 0Ne.

Form factor T =O, J'=2( T=O, 4=2&

c~ =g~MGv

c2 = -gg M~„o+~ M(~

5 =A(gg Mop+ g~ML)

d =g~A M~&
I

f= {-) MQ gy Mq j(hc)

g=--M gyMq/(hc)

j, =- ' M'g~M„/'(ac)'
3

j3 =--M g&M»/(A'c)
3

M AM(~l(hc) -A g~MGT
=2- 2 2 2

0

+ 0.292

+ 0.755 fm

+ 20,5
-0.469 "F
+ 0.932 ~ONa

2.41 x 103

+ 3.89 && 104

-7.75 x 10'

+ 7.43 x 10

-54.9
—22 ~ 2

+ 0.380

-1.94 x 103

+ 1.45& 10

+ 2.93 & 104

-4.34 x 104

0.686 fm'

0 ' 0

+ 2.48

2.42 x 104

0 ~ 0

4.51x104

wave functions. Their electric quadrupole mo-
ments and electric quadrupole transition rates in
which they participate are reasonably well pro-
duced by the present wave functions if protons
and neutrons in the model space are assumed to
carry 0.4e added charge each. The partial transi-
tion width of the decay of the "Ne(2', T= I) state
to the (O', T = 0) ground state is calculated to be
0.046 eV, which compares to the experimental
value of 0.028+0,008 eV.' Finally, the calculated
magnetic moments of "Ne(2;, T = 0) and ' F(2', g.s.)
and ' Na(2', g.s.) are, respectively, + 1.02'„,
+ 2.06p,„and + 0.48p~, assuming free-nucleon
single-particle matrix elements. The corr'espond-
ing experimental values are + 1.08@.~, + 2.09 '.„,
and 6 0.37pg.

%e conclude from the preceding paragraphs that
matrix elements inferred from directly measured
experimental quantities relating to the 2', T = 1
and 2', T=O states of 4=20 are reproduced to
within - 20Vo by our shell-model calculations ex-
cept in the case of highly canceling overlaps. It
is on this basis that we hope to get meaningful
estimates of the matrix elements of the various
operators affecting the details of weak interaction
processes.

with experiment we summarize the b and c form
factors for the decay to the 1634 keV level in
Table VII. Note that, relative to the theoretical
predictions, the experimental value of b is on the
high side while that for c is on the low side. As
a result, the experimental ratio h/Ac is 25/o

larger than the theoretical prediction. This ratio
is the relevant combination of form factors for the
p-y correlation and for the spectrum shape factor
and in the following we choose to use the experi-
mental value for the predicted effects. That is,
we regard 5 as given by CVC in terms of the ex-
perimental radiative width and c as given by the
experimental ff value; the shell-model calcula-
tions are used merely to determine the remaining
form factors.

One more point concerning the ratio h/Ac may
be worth noting. According to the expressions
in Table I this ratio should be

b M~ gy
(22

Ac~
'

MGT g~

In many other decays h/Ac is close to 4, which
indicates that M~ is smaller than, or comparable
to, MGT. ' However, for the A= 20 decays to the
1634 keV level„M« is somewhat small while

IV. DISCUSSION OF RESULTS

The matrix elements computed for the "Na(e')
decays are given in Table V. Except for a common
sign change, the "F matrix elements for the ana-
log decays are identical. Note that for the super-
allowed Na decay to the T= 1 level of Ne the
mat. rix elements M,L, and M,„are zero. This is as
expected from charge symmetry arguments. '

The form factors derived from the matrix ele-
ments are given in Table VI. For comparison

TABLE VII. Comparison of form factors for the tran-
sition to the 1634 keV level.

Experiment 43.4+1.2 0.256 +0.006 8.48 +0.30
Theory 39.1 0.292 6.70

~The signs are not obtained from the experimental de-
cay rates. They are assumed to be the same as the theo-
retical predictions.
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2i I I I I I

o 0
Kl

~1

I

I

I

I Tp(e )

———B(b)——B(b,d')
B(all terms, d =0)—

Ta (e')

M~, apparently, is not. The above, in fact, im-
plies hl~/MoT = 5.6. The result is an enhancement
of b relative to c and therefore an enhancement of
the influence of b on the p -y cancellation and the
spectrum shape factors by more than a factor of
2 compared to normal decays.

We now calculate the p-y correlation parameters
for the decays to the 1634 keV levels assuming no
second-class tensor form factor, d =0. Substi-II

tuting the experimental values of b and c and the
theoretical predictions for the other form factors
into Eq. (f) and expanding to order E' gives

B~„(e ) —= + 0.001 36E + 0.000 13E', (23)

Bq„(e') =——0.003 14E + 0.000 15E2 . (24)

Here E is the total energy in MeV. The correla-
tion parameters calculated with the complete ex-
pression of Eq. (7) I which differ slightly from Eqs.
(23) and (24)] are plotted in Pig. 2 as a function of
the kinetic energy. It should be noted that a signi-
ficant quadratic effect is expected, particularly
for the "Na decay. Along with the complete cor-
relation we also illustrate the contributions of
selected form factors: (1) weak magnetism only
and (2) weak magnetism and first-class tensor
d' Note that the influence of the first-class d'
term is significant; at 5 MeV B is lowered by
0.6% due to d'. When the higher order terms are
included B is raised again but not enough to com-
pensate for the d' term.

Note that because of the difference in end-point
energies the contribution of the higher order terms

I I I I I I I I

2 3 4 5 6 7 8 9 10 11 12

KINETIC ENERGY (MeV)

FIG. 2. Theoretical P-y correlation coefficients for
the F- Na mirror decays to the 1634 keV level of Ne.20

The solid line is computed assuming no second-class
terms and with all first-class form factors to order
E /M . The correlation parameters calculated with only
the weak magnetism (b) and first class tensor (d) form
factors are also shown. The experimental point is that
of Boehm, Soergel, and Stech (Ref. 16).

S(e ) = 0.9980+ 0.0119E—0.000 34E' —0.0020/E,

(25)

1.06—
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FIG. 3. Theoretical spectrum shape factors for the
F- Na decays to the 1634 keV level of Ne. The large

linear effect is due to the weak magnetism form factor,
as determined by CVC from the M1 radiative width of
the analog decay of Ne. A small quadratic effect is
expected from the q2 dependence of the Gamow- Teller
form factor.

g and j, are not symmetric for both decays. The

g term can be obtained by CVC from the radiative
width I'~, when an experimental value for this is
available, but there is no way to determine j, ex-
cept from a calculation. The j, term does con-
tribute to the quadratic energy dependence of the
correlation parameter but the main quadratic
effect is due to j,. A measurement of the quad-
ratic effect, therefore, does not help to fix j, ex-
cept perhaps by confirming the calculation of j„
and indirectly that of j,. As an indication that the
uncertainty in j, is not a serious problem note
that the difference of the correlation parameters,
B(e ) —B(e'), at 5 MeV is expected to be 2.5% due
to b. The contribution to this difference due to j,
is only 0.08% and therefore it is probably safe to
trust the calculation. However, if the calculation
of j, is too small by a factor of 10, then its con-
tribution to the difference of the correlation
parameters is 3 that of the weak magnetism term
and this could be misinterpreted as a contribution
from d". Thus caution must be exercised in
setting a limit on d" from the correlation param-
eters.

Next we compute the spectral shape factor h, (E)
for the same transitions to the 1634 keV level.
Again, using the experimental values for b and c
and the computed values for the other form fac-
tors and normalizing to h, (E = mc') we obtain
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Bs,(e') = —0.002 86E —0.000 06E'. (2V)

This correlation has been measured by Oakey ana
Macfarlane" with the result E(E= 3.3 MeV)
= —0.083+ 0.013. According to Eq. (2V) we would

S (e') = 1.000V —0.005 2VE —0.000 32E'+ 0.0010/E.

(26)
The results are plotted in Fig. 3. It may be noted
that the deviation from the allowed shape (S= 1) is
very sizable. The deviation is mainly a linear
effect due to the weak magnetism form factor but
there is also a noticeable quadratic curvature
which comes about from the q' dependence of the
Gamow-Teller form factor (c,).

Finally, we compute the p - correlation cor-
responding to the 'ONa decay to the 742I keg level
of 2ONe. Using Eg. (10) and the computed form
factors of Table VI we obtain

expect B= —0.010 which is in poor agreement with
this experimental result. The higher order E'
term has very little effect in this case, contrary
to the speculation of Oakey and Macfarlane. For
the kinematic correlation parameter, Oakey and
Macfarlane obtain 4,„,= —0.026 ~ 0.001 while the
prediction given by Eq. (9) is A= —0.0086. Thus,
the agreement between experiment and theory is
poor for both correlation parameters. A recent
measurement of the B correlation parameter made
by Freedman and Gagliardi" yields a value much
smaller than the Oakey-Macfarlane value and in
reasonable agreement with the prediction. Thus
the discrepancy is very likely associated with
experimental difficulties. %'e have not attempted
here to make further detailed comparisons with
the fresh data being accumulated"'" "on the
A = 20 decays by several groups since the majority
of these are not yet in the open literature.
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