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Corrections to the Glauber model for intermediate energy proton-a elastic scattering have been calculated at

the lab energies KL = 0.58, 1, and 2.1 GeV using the multiple diffraction expansion formalism. In this

expansion, the Glauber amplitude appears as a leading term in a perturbation series. Leading corrections due

to (i) wave spreading (noneikonal), (ii) internal excitation (recoil), as well as (iii) zero-point motion (different

Galilean frames) effects are obtained in a simple model. Their structures are analyzed and their energy

dependences are examined. The wave-spreading and internal-excitation corrections agree with those obtained

by Wallace. The use of Wallace's relativistic kinematics changes the differential cross section significantly. A

new zero-point motion correction is found to be important. A simple dependence of the results on the sign of

p (=Ref/Imf of the NN scattering amplitude) is pointed out. The relative importance of these corrections

decreases as energy increases, as expected. The significance of our results is briefly discussed.

NUCLEAR REACTIONS He(p, P), Kl =0.58, 1, 2.1 GeV; calculated cr(K» 8);
wave spreading, internal excitation, and zero-point motion corrections to

Glauber theory.

I. INTRODUCTION

In the study of intermediate-energy projectile-
n.ucleus scattering, Glauber's phenomenological
multiple-diffraction (MD) theory' has long provided
both qualitative insights and quantitative descrip-
tions in a surprisingly simple model. ' ' It has also
been recognized that corrections to this phenom-
enological theory must be understood before re-
liable nuclear information can be extracted. These
corrections have been widely studied. They in-
clude noneikonal (i.e. , wave-spreading), ' ' off-
shell and overlapping-potential, internal- excitation
(or recoil), '0 and other inelastic effects. " Most of
these studies suffer from a serious deficiency in
that they lack a consistent formalism in which
Glauber's phenomenology appears in a natural
fashion.

Recently, such a consistent formalism has been
proposed by Wong and Young and by Wallace by
first introducing a projectile-nucleon pseudopoten-
tial. This pseudopotential is defined by the re-
quirement that it gives the empirical projectile-
nucleon scattering amplitude when used with
Qlauber's linearized propagator. In the many-
body, multiple-scattering problem, it permits the
construction of Glauber's MD amplitude as the
leading term of a MD expansion which generates
perturbative corrections in powers of k ', where
k is the projectile-target relative momentum.
Wallace" has also given numerical results for the
leading wave-spreading (WS) and internal-excita-
tion (INT) corrections for P-'He elastic scattering

at the lab energy K~=1 GeV. Corrections due to
zero-point motion (ZPM) and wave-function anti
symmetrization" have not been calculated in the
context of the MD expansion.

In this paper, we study numerically the leading
ZPM as well as the WS and INT corrections for
P-'He elastic scattering at K~=0.58, 1, and 2. 1

GeV. Detailed analysis of the nature and energy
dependence of these corrections will be made.

This paper is organized as follows. The MDE
is reviewed in Sec. II. The model used in the study
of p-4He elastic scattering is described in Sec. III.
Some salient features of the correction terms are
also discussed. Section IV gives results of the
calculations and discussions of various features
that emerge. Section P contains brief concluding
remarks.

II. MULTIPLE DIFFRACTION EXPANSION (MDE)

(2. 1)&o(q) =— e'~' (AB~ [1—e'"' ' ]~AB)d b
2r

for a momentum transfer q=k,. —k&. Here k= ~k,
~

=
~ kz~ is the relative momentum and h is the im-

pact vector on a plane (impact parameter plane)
perpendicular to k„= 2(k;+k&), the average of the
initial and final relative momenta. The vector s
refers collectively to the projections of the pro-
jectile and target internal coordinates x, , x~ onto

We first define our notations by briefly reviewing
the MD expansion"' for the elastic scattering
amplitude between two ions A, B. The first term is
the Glauber's empirical amplitude
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NA NB

x(b;s)=P g x;&(b;~).
& =1 k=1

(2.2)

Here NA, NB are the numbers of elementary scat-
terers in the ions, and X„ is defined in terms of
the scattering amplitude f„(q) between the ele-
mentary scatterers a and b:

exp( )(.,(b)(=1 . f f"(q").d, 'q. (2.3)

In order to derive correction terms to the Glau-
ber amplitude, it is necessary to construct this
amplitude in a logical fashion. This is achieved
by first defining a pseudopotential v' between two

elementary scatterers which will generate the
exact two-body t matrix

t=v'+v'g t

when the Glauber linearized propagator

(2.4)

the impact parameter plane.
Glauber' shows that under conditions appropriate

to high-energy scattering, the total phase shift
function x(b; s) may be approximated by a sum of
elementary phase shift functions g, k between ele-
mentary scatterers i, k from ions A, B, respec-
tively:

in both the potential and the propagator. The ac-
tual potential v reproduces the two-body t matrix
when the actual propagator

jZ k, ~2 p2g=(e —h, +i@) ', e= ", h, = (2.10)

is used. Consequently

v=v' v'(g g,)v.

Finally, the actual propagator

G = (E —H, + i@) ',
where

(2.11)

(2.12a)

T T + TPPs+ T+si+ TINTS+ RMD

where

(2.13)

@2k2
+ EINT EINT p K HINT pINT

A B ~ 0 AB A B

(2.12b)

conta, ins many-body internal Hamiltonians H,'."
and their eigenvalues E,'", as well as the relative
kinetic energy KAB.

We are now in a position to expand the many-
body T matrix about T~:

'(q)= —2 Sg, f J,(qb))())bdb. ,
0

(2.6)

g =[u (, '(hk (, ( )
—p)+1'g] (2.5)

is used. Here u„=k„(,„)gk„/ii„, ii„being the
reduced mass of the pair a, b, and p is the relative
momentum operator.

We should note that knowledge of t on the energy
shell may not be sufficient to determine a. unique
v' by Eq. (2.4). However, on-shell information
alone can be used to define a unique local (but en-
ergy- dependent) pseudopotential

T~~' = AtMn(V- V')Q~

T"= (Q~ —1)LLH'(OMo —1), i =WS, INT;

AH =KG +Ng AI ~

N~q (P —8k~) (P———Ik;)/2 p, ,

X = 1 —[1—(q'/4k') ]' ',
gH INT g~INT gp'INT

A B

INT HINT EINT
C C C

(2.14)

(2.15)

(2.16)

(2.17)

TMo= V'+ V'G~T~= V'AMn, V'= Q v;'~.
Jk

It differs from the actual T matrix

T=V+VGT, V= g v, ~,
ik

(2.8)

(2.9)

Being local, this pseudopotential has the desirable
property that when used in the ion-ion scattering
problem with the many-body linearized propagator

G, =[u (8'k, P)+i)1] ', (2.7)

where

u = k „hk/ii, p = M„Ms/(M„+ Ms),
it will reproduce the Glauber amplitude (2.1) in the
ion-ion center-of-mass frame.

The corresponding many-body T matrix is the
MD approximation

and R represents the remainder. Succeeding
orders of perturbation involve additional powers
of Q„n —1 or G, . From Eq. (2. 1) we see that this
perturbative series is an expansion in powers of
u'ork'

The correction terms in Eq. (2.13) have different
physical origins. The pseudopotential term T~~'

corrects for the linearization of the two-body prop-
agator g for each elementary potential. It contains
two distinct effects: (i) a wave-spreading correc-
tion T~~("8", and (ii) a zero-point motion correc-
tion T~~™ ~ coming from the fact that the ele-
mentary potential v is momentum dependent. The
terms T" ' and T'N ' are ion-ion wave-spreading
and internal-excitation (or recoil) corrections,
respectively. These corrections to the Glauber
scattering amplitude may be written in the form
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F"=— d'be'~ ('ABte'"" 'f"(b x) ~AB)
2mB

(2.18)

where x denotes the internal coordinates. Explicit
forms of f", exclusive of terms proportional to
A. , have been given in Ref. 12. The internal-exci-
tation term can be simplified further, as shown by
Wallace" in his Appendix B, to show a similarity
with the wave-spreading term.

The X terms appear in both T ~' and T" '. They

are not included because of Wallace's conjecture'
that they may cancel among themselves. Wallace'
has given some indications of this conjectured
cancellation in potential scattering. It is not known

to what extent Wallace's conjecture is valid, es-
pecially in the present many-body context. This
point should be investigated in the future.

We also find, in agreement with Wallace, " that
it is useful to group three of the corrections
[pp(WS), WS, and INT] together. In particular,
one has for projectile-nucleus (ion B) scattering

=fWSI fPD(WS) fxINT/
W

A
p. (- ) (+)

2p pe~ m A ~,
g

e w ()0

(2. 19)

where m is the nucleon mass and M=Am is the
nucleus mass. Also ro bp+zzo is the projectile
coordinate, ro; = ro —r;, and

= x~(b) —xj '(b, s) . (2.20)

[The subscript W in Eq. (2.19}denotes equivalence
with Wallace's result. ] The three terms making

up the coefficient in front of each integral corre-
spond to the three terms on the left-hand side of
Eq. (2.19). The first of these coefficients,
1 —iI/)I, s+ p/M(1 —1/A), vanishes identically so
that there is no correction involving target nu-

cleons singly. Therefore the leading corrections
are many-body effects involving two target nu-

cleons simultaneously. For a nucleon projectile,
the internal excitation part of these many-body ef-

fects is exactly —(A+ 1) ' of the remaining, wave-
spreading correction. Further examination of Eq.
(2.19) shows that these corrections may be char-
acterized as overlapping-potential effects for a
pseudopotential of finite range, since contributions
appear mostly when both nucleons i and j are close
to the projectile. According to Appendix A, a
leading term can be isolated which gives the con-
tribution in the absence of eikonal distortion at any
target nucleon. This leading term is roughly pro-
portional to p,a', where p, is the nucleon density
in the target nucleus. It is roughly independent of
the range of the pseudopotential. This behavior
appears to differ, at least formally, from that as-
sumed by Gurvitz, Alexander, and Rinat, " in
which the force range appears in a more crucial
fashion. We also note that because of the p, de-
pendence, these corrections appear to be volume
effects which are likely to become more important
for the heavier nuclei.

In contrast to f„, the ZPM correction involves
target nucleons singly:

p f (((—xm (- x) '))(X;~I*((—xm(- x)'))
2 pab;,

+ [I- exp(-I'X,' ') ])I,' V„X("—~.(X(
' ' «[I - exp(-'X")]]d's (2.21)

where

&;= -&@'rN~ '~op@'iNv (2.22)

is the momentum contributed by the internal wave
function 4,». Because of the momentum depen-
dence of v from which this correction term arises,
we expect it to be sensitive to high momentum
components in the target wave function.

III. PROTON-4 He ELASTIC SCATTERING

The leading correction terms to the Glauber am-
plitude (2.1) are calculated for P-'He elastic scat-
tering using a model3'4 containing the following in-
gredients:
(i} The nucleon-nucleon (NN) scattering amplitude
is a spin-isospin averaged Gaussian function
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f(q) = (1 —ip) exp(- p'q') .
4p

(3.1)

v'(r} = v, exp(- y2r') (3.2)

ls llsed, wl'tll pal'a111etel's (vO, 'r) obtallled by fl't'tlllg

f(q) at q = 0 and q, .
(iii) A product nuclear wave function

Here cr is the total NN cross section, p is the ratio
Ref/Imf and is assumed to be independent of q.
(ii) A Gaussian pseudopotential

4 = ff 4(2,), (3.3)

p(r) = pzo(r) = (a'/II)'" exp(--2'a2r2), (3 4)

is used for ~He in the calculation of correction
terms. Here e'=0.535 fm '.
(iv) Relativistic kinematics is used in caiculating
the momentum k.

Explicit expressions for the correction terms
can now be obtained. Substituting Eqs. (3.2)-(3.4)
into Eqs. (2.18), (2.19), and (2.21), we find

)=1

mith single Gaussian single-particle wave functions

F„= exp(—q'/4A a'}(v,/ffu}'2' )( ,'—v—

+—1-—,(I —4y'I )+ 1+0 1&2
p. g vl A ( a2+r)2lI2 2 a 0(~'+)')' ')

I
F»„=exp(q'/4A a') 6i

Pgg @Q

(3 6)

(3.6)

I, = I (4') JhdbZ=(44 , )a,x( 4)4)4R-4('),'4,
(3.7)

R~ —H00 H20, R2 =H~BH22,

R —H00 H~o, R4 H00 A~~

2
R EpM ~ Hoo H~() + 3H00 H~2 + 6HOO A()j A~~

Qf

+ Hoo H02H10 - 2H00A01 Hlo

+ 2 (HOO H, 2+H~ AOIA, l) .2 0 2 0 (3.9)

The functions H „, A „, H~„'~', A~„'' of b„and
analytic expressions for the integrals I, are given
in the Appendix A. We mouM like to point out here
the following features of the above results. (i)
Each term in R, is a product of four H or A fac-
tors, with each target nucleon contributing one
factor. (ii) The subscript m in H" „orA*„denotes
the number of times that the target nucleon is in-
volved actively in the perturbation responsible for
the correction term. If m =0, the target nucleon
is "passive'*; it then contributes only a wave-dis-
tortion effect through the Qlauber function
exp(i)(). Thus I„ I„and I»„ involve a single
active nucleon, while I, and I, involve two active
nucleons. (iii} The subscript n in H „denotes
whether the effect is longitudinal (n= 0) or trans-
verse (n =2) in the Breit frame (c.m. frame with
2=k„). A „(n=1 always) is always transverse.

The longitudinal (or transverse) effect comes from
a derivative of lI" with respect to z (or b) Thus.
I, and I, are longitudinal, while I, and I4 are trans-
verse. (iv) For proton-nucleus scattering /lip, , 0
= 2A/(A+ 1}, il/m =A/(A+ 1), and il/M = 1/(A+ 1).

Equation (3.5) agrees with the results of Wal-
lace" when tmo minor misprints in his Table I
are corrected, as discussed in the Appendix A.
Also our internal-excitation, or recoil, correction
is called a Fermi-motion effect by Wallace. The
real zero-point (or Fermi) motion correction of
Eq. (3.6) is a new result of this paper.

Finally, the Qlauber scattering amplitude itself
mill be calculated with the nuclear density function
(for 'He)

(r„r„r„r,) = Iq6(r, + r, + r, + r,) Q p, (r,),
jng

(3.10)

p, (r) = exp(- a, 'r')-D exp(- a,'r'), (3.11)

where the function W„(q) is independent of the pa-
rameter p. Its explicit expression is given in Ap-
pendix B.

and N is a normalization constant. The resulting
Glauber amplitude for p-'He elastic scattering is

&o(q) =Q&Io)(q),

(3.12)
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TABLE I. Two nucleon parameters.

Quanti EL,(GeV) 0.58 2.1

k (GeV/c)
o. (fm~)

P
P' [(GeV/c) j
Reference
vo (GeV)

y (fm ')

0.871
3.9
0.43
2.15
15
0.425 —0.014$

—1.748+ 0.346i

1.169
4.4

—0.3
2.725
15, 16
0.437 —0.070i
1.612+ 0.312i

1.761
4 4

-0.35
3.125
17
0.396 —0.102i
1.530+ 0.270i

IV. RESULTS AND DISCUSSION

Calculations are made at three proton laboratory
energies K~ = 0.58, 1, 2. 1 GeV using nonrelativistic
kinematics. Gaussian pseudopotentials v' of Eq.
(3.2) are fitted to Gaussian NN amplitudes f (q) of
Eq. (3.1) at q'=0 and q'=q, '=0.3 (GeV/c)'. This
fitting procedure ensures a good approximation for
q'& 0.4 (GeV/c)', which covers the most important
range for single scattering. Parameters defining

f(q) and v' at different energies are given in Table
I. We note that variations of the matching point

q, give rise to less than 2% variations in the el.as-
tic p-'He differential cross section at the secon-
dary maximum [q' =0.35 (GeV/c)'].

Figure 1 shows the moduli and phases of the cor-
rections to the p-4He elastic scattering amplitudes.
For the moduli, the solid curves denote the total
correction F, = F„+F»M, while the broken curves
give the results F„only. The phases shown are
those of F,. They differ significantly from the
phases in the absence of the ZPM term. (The lat-
ter phases, which are not shown, have the opposite
sign at q'= 0 and pass through zero at the minimum
[q'=0. 1 (GeV/c)'] of the corresponding amplitude
curve. ) We thus see that the ZPM term represents
an important contribution for all q' values.

Two features of Fig. 1 deserve mention. First,
the moduli are roughly energy independent.
Roughly speaking, this is so because F„ is of order
k 'F~ and is therefore roughly proportional to the
total NN cross section a, and o is roughly the same
for all three energies (see Table 1). Secondly, the
phases pass zero near q'= 0.4 (GeV/c)' and are
roughly the same for the cases K~ = 1 and 2. 1 GeV.
It turns out that the phase depends primarily on
the parameter p of the NN scattering amplitude,
and it is an odd function of p. [To see the latter
point, we note that for the Glauber amplitude
(3.12), ReFo is odd in p, while ImFo is even in p.
The correction F, is proportional to Fo' as far
as the p dependence is concerned. Hence ReF,
is even in p, while ImF, is odd. ] Thus the energy
dependence of the phases of F, shown in Fig. 1 is a
direct consequence of the energy dependence of p.

10

0)

2. 1 GeY

(x10~ j

E

10
o

(z)se
G

0.58 GeV

F SG

-210—
1.5

(b)

0

g -0.5
t3

CL

—1.5—
I I I I I I

0 0.4 0.6
z(Gev)z

FIG. l. (a) Moduli of the scattering amplitudes I"
&

(total correction: full curves), S'~ (wave-spreading plus
internal-excitation correction: broken curves), I o
(Glauber amplitude with a single-Gaussian density f'unc-
tion for He: dash-dot curve), and 5'c (the double-
scattering part of Fo . dash-double-dot curve). (b)
Phases of E& at 2.1 GeV (full curve), 1 GeV (broken
curve), and 0.58 GeV (dash-dot curve).

0.2

Al.so plotted in. Fig. 1 are the full Glauber am-
plitude ~Fo ~

and its double scattering part (Fo'" j.
These are calculated at 0.58 GeV with a single Gauss-
ian density'for'He, i.e. , by using Eq. (3.11)with o,'
=n'=0. 535 fm ', and D=O. We see that in the ab-
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10

10

10

The effect of the DG density alone is illustrated
in Fig. 3. We used the DG density of Bassel and
Wilkin' [corresponding to Eq. (8.11) with n, '=0.579
fm ', a,' = 2.459 fm ', and D= 0.858], which gives
a nice fit to the e-4He elastic form factor. We see
that the diffraction pattern is compressed and the
second maximum is raised (by a factor of almost
2), as expected. The effects of the correction
terms appear roughly the same as before. Of
course, the treatment is now somewhat inconsis-
tent, since correction terms are calculated with
a single-Gaussian wave function. We believe that

F~ will not be changed significantly in a better
treatment, but FzpM may be increased owing to the
presence of high-momentum components in the
wave function. The total effect on da/dA will prob-
ably be qualitatively the same. (The fourth set of
curves in Fig. 3 corresponds to p=-0.43. They
will be discussed later. )

Finally, we examine the effect of Wallace's rela-
tivistic kinematics, "which is not a conventional

10
0 0.2 0.4

z(GeV )e

FIG. 2. Differential cross sections for p-4He elastic
scattering at 0.58, 1, and 2.1 GeV calculated with a
single-Gaussian density function for 4He. 10'

sence of the ZPM correction ~E„/E~~'eo
~

has a
complicated q dependence. With its inclusion, we
find ~E,/Eo' ~= 0.1 at 0.58 GeV. It is not clear,
however, if this relationship is not somewhat ac-
cidental, since E, may be more sensitive to the
choice of density function for He than Fo'.

We next calculate do/dQ after adding these cor-
rection terms to the Qlauber amplitude EGG cal-
culated with the single-Gaussian density. The re-
sults are shown in Fig. 2. The Glauber results
are represented by broken curves. The dash-dot
curves include F„, while the solid curves contain
the full correction F,. We see that the corrections
decrease in importance as energy increases, in

agreement with the k ' behavior of the perturbation
expansion for the scattering amplitude. The correc-
tions fillup the first minimum forK~= 1 and2. 1
GeV for which p&0, and deepen the first mini-
mum for K~=0.58 QeV for which p &0. The
precise manner in which the dependence on
the sign of p occurs will be discussed later.
Finally, we note that the ZPM effect is particular-
ly important at the lower energies and for the
larger q' values.

These results cannot be compared with W'al-
lace's" because he uses a double-Gaussian (DG)
density and a special relativistic kinematics.

ce 10
E

b N

10

10
0 0.2 0.4

e (Gev) e

0.6

FIG. 3. Differential cross sections for P-4He elastic
scattering at 0.58, 1, and 2.1 GeV calculated with a
double-Gaussian density function for 4He. The lowest
set of curves are for 0.58 GeV, but calculated with p
=-0.43.
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give in Fig. 5 the results for the Glauber ampli-
tudes Eo with single-Gaussian (SG) or double-
Gaussian (DG) density, the total corrections E,
(nonrelativistic) and E, (relativistic), and Eo+ E,.
Also shown are the components of I,; the sum of
two-body and many-body cont;ributions to WS and
INT corrections and the ZPM correction. We see
that Wallace's relativistic kinematics reduces the
modulus and changes the phase of I'„. Both fea-
tures cause reduction in do/dA.

Figure 5 also illustrates the dependence of the
effect of I', on the sign of p. We first note from
Figs. 3 and 4 'that tile first minimum ls filled in

~ $ 1/I) {F( &FII

)/II F(
M

1/6 {F6K~FI)

-0.02 -0.

p
10

0 04
e(GeV )e

FIG. 4. Same as Fig. 3, but with the inclusion of
Wallace'8 relativistic kinematics.

one. Wallace's prescription is (i) to replace the
reduced masses p,„and p, by the relativistic ana-
logs

IIIT

1 68V~

q =0.22 (GeV/c)~
2 '2

p =-0.3
-0.02 -0.01

I I

ReF {fmI

E --OO2

E- 0,02H

--0.01

tl FLF')
IS

&/eF,
"

g, =E~(m/u s,), e=E~(M/u s),

s, = (m, '+ m'+ 2mE~/c') c',
s = (m, '+ Me+ 2ME~/c')c',

Kl + TPlpC

(4.2)

I0.5S GeVI

q =0.32(6eV/cI

p =0.45

-0.02 - 0.01

—0.01 /

I

0.01

-0.01

0.02 0.05

I
I

and m, is the projectile rest mass, and (ii) to add
to the correction E; a relativistic factor (m, +M)c'/
V s . The major change is in EvR (the superscript
denoting the relativistic result), where the cancel-
lation between %'S and INT terms in the first two
terms of Eq. (3.5) is no longer complete, as pointed
out by%allace. " The resulting cross sections,
shown in. Fig. 4, look significantly different, being
lower than the nonrelativistic results at and be-
yond the first minimum.

The detailed effect of E, on do/dQ depends, of
course, on both their moduli and phases. It is
therefore interesting to show these explicitly. %'e

—-0.02

FIG. 5. Complex vector diagrams for the scattering
amplitudes I' j (total nonxelativistic correction), its
component %8 (wave-spreading), INT (internal-excita-
tion), and ZPM (zero-point Inotion) contributions, E'+&

(total correction with Wallace'8 relativistic kinematics),
and the Qlauber amplitudes E'GG (for a single-Gaussian
density function) aIld EG (fol a double-Qaussla11 density
function) at (a} the first minimum of d'fT/dQ at 0.58 Ge&,
(b) the first minimum at 1 Geg, and (c) the second maxi-
mum at 0.58 GeV.
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when p&0, but deepened when p&0. (The actual
sign of p is not well determined at 0.58 GeV, ac-
cording toGurvitz et a/. '4 We therefore show the
results for p=-0.43 also in Figs. 3 and 4.) Fig-
ure 5(a) shows that at the first minimum for 0.58
GeV, there is destructive interferenee between

Fo (in the second quadrant) and F, (in the fourth
quadrant) when p=0.43 is used. If p changes
sign, BeEG and ImE, change sign, while ImEG
and BeE, are unchanged. Both vectors then move
into the first quadrant, causing constructive in-
terference and a filling in of the minimum in the
cross section. A rather similar constructive in-
terference at the first min. imum for 1 GeV is il-
lustrated in Fig. 4(b). Figure 4(c) describes a
rather interesting situation at (and also beyond) the
secondmaximum, here at 0.58 QeV. Here we see
that although F»u is shorter than F„(WS+INT),
the former has a greater effect on the cross sec-
tion. This is because the latter tends to change
the phase rather than the length of E.

Our results for ~F coo+ F va ~' (dash-dot curves in
Fig. 4) are in rough agreement with those of Wal-
lace."

It is interesting to compare our model. with the
multiple- scattering (MS) model of Bleszynski and
Jaroszewicz. ' The l.atter authors assume that the
t matrix is a function of the three momentum trans-
fer. Their model contains no recoil, reseattering,
or ZPM corrections. However, wave-spreading
effects are included exactly, since the (nonrela-
tivistic) propagator is not linearized. (A similar,
but more complete, MS model has been studied
earlier by I.ykasov and Tarasov, "who include also
recoil and charge-exchange corrections. ) We would
like to mention the fol.lowing differences between
these models: (i) There is no correction in the MS
model of Ref. 8 involving only one target nucleon
and corresponding to the first term in Eq. (3.5).
(ii) The MS correction to the double-scattering
Glauber amplitude has roughly the same phase,
but a much greater modulus (=2.5 times greater
for q' at and beyond the first minimum) than the
leading MD correction, i.e. , the second term of
Eq. (3.5). The bigger MS correction again tends
to change the phase rather than the modulus of
the Glauber amplitude, except near the interfer-
ence minima where the situation is more complex.
(iii) The filling in of the minima of the cross sec-
tion at 1 GeV is much greater in the MS model
for the same nonrelativistic kinematics and the
same NN scattering amplitude. This arises from
the bigger MS correction mentioned before. (iv)
The MDE model contains recoil, certain rescat-
tering, and ZPM effects. Of these, the ZPM ef-
fect is a special feature; it originates in a dif-
ference in assumption concerning the NN t matrix.

The above preliminary comparison between these
models suggests that even in the first minimum/
second maximum region there are significant mo-
del-dependent differences which have to be el.ari-
fied. In addition, one should also determine the
extent to which the important relativistic kine-
matical corrections can be made uniquely. A de-
tailed study of these question. s should be reward-
ing.

All the MD correction terms considered here
depend to a certain extent on the assumed model
of NN interaction. The form of this interaction
is dictated more by convenience (so that Glauber's
empirical approximation, is obtained as the leading
term), than by fundamental physical considera-
tions. Nevertheless, we expect the present pro-
cedure to be quite reliable at high energies pro-
vided that the system is not too far off shell. It
is not clear, however, to what extent this ex-
pectation remains valid when the wave function
contains significant high-momentum components.

V. CONCLUDING REMARKS

We have analyzed the leading MDE corrections
to the Glauber MD approximation in a simple mo-
del. of P-'He elastic scattering at energies 0.58, 1,
and 2.1 GeV. Our results may be summarized as
follows.
(i) Our formula for the wave-spreading plus in-
ternal-excitation correction E„agrees with that
of Wallace. '~ Its inclusion causes the first min-
imum in do/dQ to fill up when p (= BeF/Im f of the
NN scattering amplitude) &0, and to deepen when

p&0.
(ii) The use of Wallace's relativistic kinematical
corrections shortens the modulus of E„and changes
its phase. Both changes are such as to reduce the
effect of F„on da/dQ. Thus the choice and in-
clusion of correct rel.ativistic kinematics are im-
portant considerations, even at 0.58 GeV.
(iii) A zero-point motion (ZPM) correction not in

eluded by Wallace is found to have important ef-
fects on do/dQ because of its effectiveness in

changing the modulus of the scattering ampl. itudes.
(iv) The total correction F, = F„+F»„ is roughly
proportional to the Glauber double-scattering am-
plitude EG ' for a range of momentum transfers.
Also

~
F,/F~+'

~

=0.1 at 0.58 GeV. Since F o2' in-
creases roughly linearly with k in the energy range
studied (as a result of the NN total cross section
o being roughly energy independent), we find that
E„which is of order A ' relative to EG', is rough-
ly the same for all these energies. These results
are obtained with an oscillator wave function for
He. If the nuclear wave function contains more

high-momentum components, the resulting E~~'
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is expected to remain roughly the same, while F,
may change because of the momentum dependence
of its ZPM contributions.
(v) ReF, and Im Fo are even in p=

Ref�/'Im

f of the
projectile-nucleon scattering amplitude f, while
Im F, and ReFG are odd in p. This property ac-
counts for the deepening of the first minimum of
do/dQ at 0.58 GeV in p&0, and its being filled in
at 1 and 2.1 QeV at which p&0.

A few words of caution are in order in describ-
ing the effect of the correction terms on do/dQ.
The effect depends on the phase as well as the
modulus of the Qlauber amplitude FG. In a more
realistic calculation, FG should include spin-de-
pendent, ' Coulomb, "and other inelastic "'"con-
tributions also. Consequently, the effect on do/
dQ might change. It is therefore interesting to note
that a recent calculation of p-4He elastic scat-
tering by Auger, Qillespie, and I.ombard" has in-
cluded both spin-dependent and Coulomb contri-
butions in F~ and an approximation to F„. They find
that the effect of the correction term on do/d Q is
roughly the same with or without spin and Coulomb
contributions. In general, it appears more useful
to use F, , rather than its effect on do/dQ, in dis-
cussing the importance of correction terms.

We should also note that although the ratio F,/
FG' appears reassuringly small even after the
second maximum in do/dQ, we have no informa-
tion on the behavior of higher-order corrections
in the MDE. Consequently, the expected conver-
gence of the MDE in this range of q2 values has
not actually been demonstrated. A particularly in-
teresting question in this connection concerns the
extent to which the partial cancellation between
wave- spreading and internal- excitation effects
might be destroyed in higher orders, thus leading

to significant corrections, especially at the larger
momentum transfers.

Finally, it should be emphasized that the ques-
tion of the uncertainty in off-shell extrapolation
cannot be studied in the present 1VIDE, which rep-
resents one particular off- shell extrapolation pro-
cedure. Recent studies of related questions in
different formalisms can be found in Ref. 22.

Thus there are still some unanswered questions
which may affect the reliability of nuclear infor-
mation extracted from differential cross sections
for elastic scattering. The present study does
show that the leading corrections to the Qlauber
theory can be calculated relatively easily and that
these corrections decrease in importance as en-
ergy increases. These results suggest that the
MD expansion considered here is a useful forma-
lism for the analysis of projectile-nucleus scat-
tering over an important range of momentum
transfers.

We thank Professor S. J. Wallace for a conver-
sation which clarifies the structure of the inter-
nal- excitation correction.

APPENDIX A. EXPLICIT FORMULAS FOR CORRECTION
TERMS

We give here certain calculational details and
the final formulas for the correction terms to the
Qlauber amplitude for p-4He scattering. The cal-
culation employs the Gaussian pseudopotential (3.2)
and the oscillator wave function (3.4). For the
scattering amplitude F„of Eq. (2.19), integration
over target nucleon coordinates yields aproduct of
functionsH or A „, one for each target nucleon.
Here

H „= Z, (i2n'bb, ) exp[- o.'b'+ iy(b) my'b'] b" bdb,
0

while A „(n= 1 only) is given by the same formula, but with the Bessel function J, instead of J,. The
phase shift function

e'"'"=1—o e" ~ o = ' (d'=(4P') 'o(I —i )
l r l 8+p2

(Al)

(A2)

is that due to a single target nucleon. The b, integration i~ Eq. (3.7) can now be performed. The results
are

( o,dao(')" [a~ A„-exp(-A„q2)-o, d, n„exp(—d„q')],
n»-0

A-I

1,=-,' e' '* E )(—,d q')"(,'A„[144, A (1 —A„q')]e~(—A„q')
n=O

o,d, '6„[1+4d, a'6„(1—&„q'))exp(-&„q')},
A 2 A-2

)( )," ' (- d, )"(- qd, ) qD„„eqqp( D„„q ), -
m=0 n=

(A3a)

(A3b)

(A3c)
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A2 AP,

—,
' a' '" g g a", " ' )(-c,d,a')"(-o,d, ') D „'(1—D„„q')exp[-D „q'] .

no=0 n=o

(A3d)

5a4(e 2/a2)A 2

x exp[-q'/4(A —2)X,]/(A —2)'x, '
are obtained. Substitution of Eq. (A5) into Eq.
(3.5) then yields (for.4=4)

F„(q') =P„(q'= 0)(1-q'/4~, )

(A6)

Since

', = ——,iw 'i'(I —ip)o ~
(n+ 1)' (A.V)

a =(n'+my') ' d =(n'+my'+(d'} '

X =my'n'(n'+my') ',
6„=a'(my'+ (d')(a'+ my'+ {{)')',
A„=-,' (~,+nb, )-', ~„=-,' (5, +nb, }-',
D „=c [nb„+mb|+(A —2 —m)X, ]

We note that setting 0', =0 in I; gives a Born ap-
proximation with no distortion at any target nu-
cleon, according to Eq. (A2). The sum in I, then
collapses to a single term (m=0, n=0). For ex-
ample,

I, = 2 '(a, /n')" 'exp[-q'/4(A —2)X,]/(A —2)X, ,

a'=(g w)'I'wp, , (A8)

where p, is the average nucleon density in 'He
(= 0.11 fm '), we may write

-Z/2

F„(0)=C ' 1+ ~

(Alo)

is a dimensionless complex constant. Since iC i

is of order unity (actually
i
C

i
= 0.957, 1.015„

and 1.08 at 0.58, 1, and 2.1 GeV, respectively), we
see from Eq. (A9) and Table I that E„(q' = 0) = 0.1
fm, This is in rough agreement with the exact re-
sults shown in Fig. 1.

Our results for E„agree withWallace's when
the following misprints (or approximations) are
corrected. In Wallace's Eq. (34), the factor
[2w(B+ P)] 'i' should read [2w(B+y)] 'i'. In his
Table 1, the constant y, involves a factor (P
+ y/2) ', not (P+ 2y) ', while the constant c, is
proportional to y ', not yi '.

The calculation of the zero-point motion (ZPM)
term is much more complicated because the a,
integration cannot be done analytically. Integra-
tion over the target wave function yields Eq. (3.6)
in. which the integral I »M depends on, the target-
nucleon functions

HPtQ
'j

mn

P b)
Jo(i2a bbo) exp[-a'b'+iy, (b}-my'b'] b" bdb (All)

and A~(o ', which differ from Eq. (All) only in the replace of J', by 8,. The functions P and Q are defined by

)'(e) = e f e»e{-»» *)[e»e*(-{){l")-e&(-&){"))~»

{)(e) »f * e»e(-»*'*=)[e»e(- »)')-ee&(-'Xl ') e'(»e(-&X")»[ ' —e»)»(-»){l ')){")]»*,

XI')-( I)" "
exp( y'b2)(i~erfyz).

@8 2y

The z integration for P, Q cannot be done analytically unless one can expand exp[ iy I')] = 1- iyI", in which
case

v, Ww, , 1 1 Q(b)P(b) = i —' exp(-y'b') (A14)
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This approximation is not valid for the intermediate energy range under study. Hovrever, an extremely
good approximation can be found using the above approximation as a guide.

We find that the approximations

I {h)=i ' e~(-y'&') —,[1-Z,e~(-4»] *
t Wn 2

Ru y ~2 .
y'

Q(f)) = 2i —' exp(-y'f)') ~ [1-0.5Z, exp{-&,'f)')+Z, exp(-t, 'f)')],
84

(A15)

work to a few percent. Here Z„Z„)„and $, are complex constants. The values used are Z, = 0.8394
+ 1.0119i (0.8219- 1.3589i; 0.5443 —1.42VOi), Z2= 0.1447 (0.2031;0.17V1), (~' = 2.1796- 3.0820i (2.1126
+2.9096i;2.1434+2.4294i), and (,'=5.2 (5.85, 6.043) for K~ = 0.58 {1,2.1) GeV.

With these approximations, the calculation can again be done analytically, The result fox I»„of Eqs.
(3.7) and (3.9) is

(,,„= (u, /su)(l )'"y 'I~ (r, z,(,') ~ (, z, (-', 2(), z-, (',)--
+ 3+16~ I2 —Z~ 3+8~ I2+16 ~ Z

+ 6+16y I, Z, 6+8 y I,+ley Z (A16)

Three new types of integrals (I, „,) appear here. We list them for the sake of completeness:

I,= Zo qbo exp -4e2bo~ HO02AO, A„bod&0

A 2
=--',a""g ) (-v,d, Q')" {a(,a,A„)*(l—))„q*)exp(-A„q*)

ffs 0

+ (-o;d~2)(a2A„,~)'(1 —A„,~q2)exp(-A„, ~q )

+ (-o,d, ')(o.A.)'(1—A.q')exp( &.q')-
+ (-o,~.')(-o,d, ')&!., (1 —&...q')exp{- A...q')], (A3e)

4, qb, exp -4~'b, ' H„'H„H„b,db,

= —,'(a,~a,A,[1+4a,(r~A, (1 —A,q') ]exp(- A,q')

+ (- do,) 'na, [A{ a,2d+,) 4+( a,2' d+,') n'A, (1 A,q') ]exp( A,q')

(-+&, f,)'(a,oA, [(a, 2d+,) 4(+a,' 2 f+,')(n'A, (1- A,q')]exp( A,q')

+ (-a,dJ'(f,a,A, [1+4d,n'A, (1 A,q')]exp( A,q')

+ 4 similar terms corresponding to the replacements n, --o,(f„A„-Aj,

I~= J' qb exp-4mb H A 2H bdb
0

,' o(' g e„[a,A„—'—(1—A„q')exp(- A„q') + (-o', (f,)A„'(1 —A„q') exp(- Ch „q')], (A3g)

where

Co = Co, C~ = (-(7~do)CO (Qo+ Mo), C2 = (-0'~(fo) (-0'~(fo )00(280+ do), C~ = (-(F~do)( 0~do )- (A1V)

We also need I', and I{' These differ fr.om the I, of Eqs. (A3) only in the replacement of the constants
(a„d„X„6„A„,&„) by their primed and double-primed analogs. The latter are defined by E(l. (A4) with
the replacement of 2y by 2y + $,2 or by 2y'+ g,2, respectively.



15 CORRECTIONS TO THK GLAUBKR MODEL. . .

APPENDIX B. GLAUBER AMPLITUDE WITH DOUBLE4 AUSSIAN DENSITY

The function W„(q) which defines the Glauber MD amplitude (3.12) for the double-Gaussian nuclear den-
sity Eq. (3.11) is

W (q( N(4m=('~'(
) Q Q( ) ( )(—()"

(
'
)

p 1 1
4o.'2 4a 2 4e'1 2 1

p 1 1
1+4~ 2P2 1+4& 2P2 1+4& 2P2

P(n) A n3 lf fl3m

~A-n, 1+~ ~n, m,

The normalization constant N, vrhich also appears in Eq. (3.10), is given by

(3/2)A A=4 g - -1
X=(4v)"'~ (y3(A 3()( DO( 3)Illa' ) 3/3

0 CR
2

1 2 tn=0

These formulas reduce to the well-known results for a single-Gaussian density by setting D = 0 (and a, = o():

1 1+4n2p2 q2 1+4o.2p2 1
W (q) =-

0 exp 4@2 n A.
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