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scattering of intermediate-energy pious from the helium isotopes~
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The elastic scattering of intermediate energy pions from 'He and He and the single charge exchange
scattering from 'He are calculated with a theoretical momentum space optical potential including spin,
nucleon recoil, Fermi motion and binding, and a I.orentz invariant angle transformation. Realistic nuclear
form factors and a m N T matrix with a finite range are employed. An examination is made of the n-'He and m-
'He total and differential cross section data of several experimental groups and the possibility of extracting
information on the magnetic moment form factor of 'He is investigated. Comparisons are made with the
procedures and results of several theoretical groups to determine the relevant physical differences and the
areas in need of improvement.

NUCLEAR REACTIONS 'He(m', ~'), 'He(n', ~') elastic, 'He(~-, n')'He; E
:=100-260 MeV; e(8) and o&o~, theoretical calculation, momentum space optical
potential; binding, recoil, Fermi motion, angle transformation; compare data

and other calculations.

I. INTRODUCTION

The elastic scattering of intermediate
energy pions from nuclei has received such
extensive theoretical attention~ ~ that
thexe seems little left to learn from an-
othex papex, even if its theory agrees
well with the data. Indeed, the oft-
quoted successes of so many diverse and
appaxently incompatible theories obscure
rather than illuminate any picture devel-
aped of the m-nucleus interaction, make it
difficult to focus on what are still the
unanswered questions and on which avenues
af investigation may be the most, fruitful
ta follow.

In this p3per we attempt to modify the
above situation; hopefully we succeed by
at least a slight amount. We examine
several data sets on the He isotopes, we
analyze the relevant physical differences
between our calculation and those of other
investigators, and in this way deduce the
theoxetieal and experimental areas in need
of improvement.

Specifically, in Section II we update

our previous construction of the optical
potential~0 in order to examine certain
nucleon binding, Fermi motian and recoil
effects, and in light of recent discussion,
take another look at the "angle trans-
formation. " In Section III we make use of
these improvements to examine the recently
published m -"He data of the CERN group
and the m -~He and m -3He data of the
Dubna-Torino group~2 with the specific aim
of learning new physics. In addition, we
extend oux' calculation and examine the
single charge exchange x'eaction of 3He. In
Section IV we conclude with a summary of
our calculation and a general comparison
with the work of other groups. In a sepa-
rate paper 3 we discuss several questions
of particular importance for low enexgy
(&lQO MeV) pi-nucleus scattering.

II. THEORETICAL OPTICAL POTENTIAL

We calculate pi-nucleus (mq) scattex ing
amplitudes by solving a Lippman-Schwinger
integral equation,

(2.1)

where the complex optical potential U is
nan-local, energy-dependent, and spin-
dependent ~" and E{p)=(m2+p2)&+(mA2+p2)&.
Since U is constructed from elementary pi-
nucleon (mN) amplitudes, a solution of
(2.1) contains all orders of multiple scat-
tering (and multiple spin flip for a spin

nucleus). Since a general description
of the optical potential we use in (2.1)
has been given before, ~ we eoneentrate

on several procedures which are of current
interest.

A. Optimal Factaxed Approximation

in "impulse approximation" the collision
matrix which describes a pion scattering
from a bound nuclean is an operator in only
pion and active nucleon eaardinates. The
first order optical potential in the pion-
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nucleus c.m. is then

g*(PI-q, P2, . . .PA) 0 &k', PI-q(t (~) ~», PI&

A

4(5I, 52, pA)|'() p,. + k) d'pld'pZ. . .d'pA
i=1

(2.2)

Here k and k' are initial and final pian
momenta, g = k'-k, ta is a mN T matrix
appropriate ta the spin-isospin operator 0, ,
and tt/ is a nuclear many body momentum space
wave function. The delta function in (2.2),
insures momentum conservation and, guaran-
tees there are only A-1 independent co-
ordinates for the nucleons, by accounting
for it in aur theory we include c.m. motion
effects'

Since only a single nucleon's coordinate
appears in the T matrix in (2.2), the nu-
cleus can be described by giving the
probability amplitude of finding a nucleon
with momentum P, and the rest of the nu-
cleus (the core) with 5, g(pI, P). Accord-
ingly, the integration in (2.2) remaves
the delta function and U is wx itten in
terms of the wave function (I) for relative
nucleon-core motion

F(q) = (Pl-q ~ P2 ~ ~ ~ PA) tt) (Pl ~ P2 ~ ~ ~ PA)

A

X8() p. +k)d3pld3p2. . .d3pA (2.4)

The same result is obtained by assuming an
independent particle model for the nucleus.

Although (2.3) represents a viable means
of calculating the first order optical
potential, it does not immediately incor-
porate the rapidly varying nuclear form
factars into the theory and in application
would require the wave function (1) to first
fit the experimental form factors — we
thus investigate another form far U. If
the nuclear wave functions were Gaussian,
)(p) = exp(-p2/2a), the form factor with
the c.m. constraint,

0 (p-
A q) 4(p)

&k, p-q-k/Ai t (u) i k, p —k/A&d p ~ (2 ~ 3)
wauld be exp(-[(A-1}/A]2q2/4e). In this
case the F(q) cauld be factored out of the
wave functions in (2.3) leaving

IJ(k Ik) = (A-1) 3 F, (k -k) d'p(C(p)l'0, k', p+p~-q~t, ( )1»,p+p

p = -k/A +( 2A)q (2.6)

This form is illuminating since the impoI-
tant q-dependence describing the nuclear
size is separated off into the nuclear
form factor F (q), which also incorporates

the e.m. constraint; in using explicit
nuclear wave functions to calculate (2.2),
the delta function constraint is difficult
to include.

If the nucleon momentum (g) varia, tion of
the T-matrix is much slower than that of
(t(p)~2 (T and ) scale as the wN and mn

sizes), the T-matrix could be removed from
the integral and evaluated at some optimal
"average" value, of p, (2.6)

U(k'lk) = (A-I)l F (q)&k'. p, -qlt (~)l», p & o .

The same result was deduced previously
in a more intuitive way by a direct exam-
inatian of (2.2}.

In our calculations we assume (2.5-.6)
is a good approximat ian even for non-
Gaussian wave functions; we use experimen-
al nuclear matter and spin form factars
(which include c.m. motion-ef fects) — but
harmonic oscillator relative wave func-
tions for g. This should be an excellent
approximation for light nuclei like

He and C. We also compare the form (2.7)
with the "folded" form (2.5).

9. mN Subenergy
One of the more important ingredients

in constructing the optical potential is
the value chosen for the mN subenergy ~ in
(2.5) or (2.7). The most obvious choice
(called "optimal" in Ref. 10) sets
equal to the Lorentz invariant c.m.
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energy of the m and the ¹

~2 = s. = (Pt'+p~)2
o in m N

= (E„(k) + EN(p+p ))'- (k+p+po)' ,

mhere k is taken to be ko, the on-shell
value of pion momentum, and po is the
"optimal" nucleon momentum (2.7). %e now
call this energy ~o the "two-body" energy,
since two particles are used to define it.
For non-relativistic nucleons, ~Q has the
form

-P2/2(E (k) + mN) (2.9)

Another choice of energy, which Thomas
and Landau shoved is important for low
energy scattering, incorporates the aver-
age potential and kinetic energy of a
bound nucleon into the theory. This is
based on a three body picture of (2.5) in
which a pion (k) interacts with an active
nucleon g + po} outside of a passive core
(~ = -k-p-po), and thus the nucleon 4-
momentum is taken as the 4-momentum of the
nucleus minus the 4-momentum of the core:

an amount one might expect~6 to be ~ 22 MeV.
However, it has been shown in model calcula-
tions by several authors 7 that the inter-
action between the nucleon and the core,
which is ignored in our impulse approxi-
mation calculation, can reduce consider-
ably the downward shift suggested by a
naive interpretation of (2.11). For this
reason ~EE~ was treated as a parameter for
low energy scattering and found to have a
value of ~ 5 MeV. ~3 In the intermediate
energy study presented here we still treat
~EE~ as a parameter in an effort to deter-

mine the need for binding corrections at
these higher energies.

Regardless of which prescription for the
subenergy is used, ~o or ~38, the mN T ma-

trix must still be evaluated at an energy
which increases with pi-nucleus scattering
angle (p is q dependent). In addition,
(2.50), (2.7), (2.9) and (2.11) all re-
quire an independent variation of the
momentum variables k and k' from the ener-
gy ~ (which sometimes goes below thresh-
old). Since we calculate the optical
potential in momentum space, and use a
separable model for the off-shell behav-
ior of the mN center-of-mass T matrix:

[~(g)](g)CK)t [g(g)][/)o 0 0 0

~2 (pg + PP p4)2
38 m q c (2.10)

xg (g' )g {~)/g (& ) (2.12)

For on-mass and energy shell scattering
and ~o mould of course be identical,

yet for historical reasons me now take the
total energy of the nucleus and core as a
mass plus binding energy (eigenvalue of
kinetic plus potential energy). In the
non-relativistic nucleon limit, ~38 then
has the familiar form, ~5

E (k) + mN + k2/2Am~ — p2/2(A-1)mN

— P /2(E (k) + m ) — ~E
'lt' N 8 (2.11)

i.e. the energy of the pion, plus the rest
energy of a free nucleon, plus the kinetic
energy of the nuclear c.m. , minus the
kinetic energy of the core, minus the
kinetic energy of the c.m. motion of the
mN pair, and minus the effective binding
energy of the active nucleon (nucleus-core
binding energy).

The essential difference between ~o and
after substituting for 1, lies in a

p2/2p term, a q2/Sp term Ip ~ = (E +m )
m N

+ ( (A-l)m ) j and the binding energy
N

term. All three terms shift ~38 down to
a lower energy the first by ~ 16 MeV, the
second by an amount which increases with
momentum transfer, and the binding energy, by

these requirements are straightforward to
include. However, for these reasons, and
others, it would be extremely difficult
for a coordinate space optical potential
to accurately describe the important
physics contained in (2.5), (2.6}, (2.11),
(2.12) and (2.13). As we indicate in
Section III, the r-space potentials do not
provide as good agreement with data.

The on-shell amplitudes in (2.12) are
calculated from the Salomon fit to the mN

phases (T & 160 MeV} and the Almahed-

Lovelace tabulation. ~~ In the present
calculation we use the Landau-Tabakin po-
tentials in (2. 12), but would obtain very
nearly identical results with the Londergan-
Moniz-McVoy potentials. Although the de-
tails of the separable potentials are
irrelevant for the intermediate energy
elastic scattering study presented here,
at lower energies, when the mN amplitude
must frequently be determined for energies
~38 below threshold, there is significant
sensitivity to the low momentum behavior
of the g (p), or to the phase shifts used
to calcu ate the g's. "

C. Relations Between Reference Frames
To proceed further in evaluating the

optical potential U(k'~k}, it is necessary
and important" to relate the off-shell mN

T matrix which appears in (2.5} or (2.7)
to the off-shell & ~'~t~~ & eva. luated in
the mN c.m. , (2.12). Our procedure is
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s = (k'"+p"-q") = (E (K')+EN(K'))

This use of a different "s" for the initial
and final states is an invariant, consist-
ent procedure, even for energy-nonconserv-
ing collisions ((2.13) nowhere assumes
energy is conserved). The two s's deter-
mine the same magnitude for. the 7lN c.m. ;
this is equivalent to the prescription
given in the relativistic potential
theories described by Aaron et al. and
Heller et al. , and does not depend on
any approximations in the theory.

The scattering angles in mN .".nd pi-
nucleus c.m. frames, 6 ,, and 6 respect-

7l' N 7l' Q

ively, are assumed related by the Lorentz
invariant t = (k'-k ) = (K —K ) , for all
values of k and k'. This gives

E (K)E (K ' ) — E (k)E (k' )
COS 67TN KK~

kk'
+ ---, cos 6

KK 77 Q
(2.14)

The amplitudes in the two frames are as-
sumed related by the multiplicative factor
which insures Lorentz invariance of prob-
ability for on-shell scattering:

0 0
- E (K)E (K' )E (K)E (K' )

( ) ( ')E( )N( -q)

(2.15)
l.
2

These last two relations, (2.14) and
(2.15), are correct only if energy is
conserved in the pi-nucleus and 77N scatter-
ing processes, as then the same single
Lorentz transformation relates the initial
states in different reference frames as
relates the final states. (The special
choice of nucleon momentum p , (2.6),
guarantees that energy-conserving pi-
nucleus collisions (k' = k) produces
energy-conserving pi-nucleon collisions
since ~p -q~ = p for k' = k. l0 0

The use of (2.14) and (2.15) for of f-
shell scat tering, (sin P sout ), is an

assumption which we had hoped would be a
good approximation. This hope was based
on an examination of the optical potential,
(2.5), in which it is argued that in gen-
eral the rapid fall off of the nuclear,
elastic form factor for k P k' means that

given by Eqs. (2.14)-(2.19) of Ref. 4.
The Lorentz invariant (but not conserved)
total momentum "s" is evaluated before
and after the collision in order to deter-
mine K and

(2.13)
(k +p") = (E (K)+EN(K))

pi-nucleus elastic scattering is dominated
by k = k' (though not necessarily = k )0
terms, i.e. diagonal collisions in which
s. = s in (2.13).in out

We have verified this assumption by also
calculating pi-nucleus scattering using
the invariant, angle transformation proce-
dure of Aaron, Amado and Young, which is
valid for off-sh 11 transitions. The pi-
helium phase shifts so calculated differ
from our previous results by less than 1%
at 50 or 180 MeV, whereas the total nuclear
cross sections differ by less than 0. 1~&o!

Although these relativistic off-shell gen-
eralizations may appear to be of slight
importance for our calculations, it should
be emphasized that the use of a reasonable
"angle transformation" is still impo"tant,
the cos 6

N
= cos 6 approximation of

vrN 77 T)

Ref. 1, e.g. , produces quite different
results.

III. DATA COMPARISON AND DISCUSSION

We now compare the cross sections comput-
ed with our theoretical optical potential
to the new 7l+-— He; and 77-+ — "He data of
the Dubna-Torino and CERN groups. We
concentrate on the importance of binding
corrections by examining the different
choices of energy ~ and ~3B, (2.8) and

(F 11), on the likelihood of these ex-
periments measuring the spin distribution
in 3He, and the importance of averaging
over nucleon motion (2.5) vs. (2.7). In
evaluating the Fermi motion integral in
(2.5) only the energy dependence of the
77N T matrix is varied, the momenta varia-
bles are evaluated for p = 0. This pro-
cedure is excellent for 7T-deuteron scatter-
ing —, and within the model calculation of
Siciliano and Walker , gives results simi-
lar to the exact form (2.3).

In order to calculate charge exchange
reactions (via Eq. (3.7)) and "pure" nu-
clear total cross sections, the Coulomb
interaction is included via a simple ampli-
tude addition. For the intermediate ener-
gies and light nuclei considered here, we
have verified that the results differ only
slightly from the exact2 procedure.

A. 7l — 4He Scattering
Spin form factors do not enter into the

lowest order optical potential for 4He,
and in lieu of evidence to the contrary,
we take neutron and proton matter distri-
butions as both equal to the nuclear charge
density " with finite proton size remov-
ed; the only needed form factor is thus

F(q) = ( 1—(a q ) ]exp t
b2q2 ] (1+q2/x)

2a=0. 316 .fm, b=0. 681 fm, x=18.2 fm

(3.1)
In Figs. la and b we present a comparison
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FIG. 1 (a) and (b), m -"He elastic scat-
tering differential cross sectians calcu-
lated at different pion lab kinetic energies.
The 3-body AN subenergy ~ , includes, nu-

clear binding effects (solid curves), the

2-body subenexgy does not (dashed curves}.
The data are from the CERN group, Ref. 11.
For T„& 180 MeV a value EB = -5 MeV is
used, for T & 180 MeV a value of 0 is used.

of the data from the CERN group and our
theory (2.1), (2.5), using the 3-body
enex'gy iiii3 ox' the 2-body enex'gy v . As

found earlier for the more sensitive
scattering af low energy pions~a, the
3-body choice of subenergy (which includes
binding effects) pravides a better fit to
data thaa the 2-bady choice. The only
parameter in all these calculations is the
magnitude of EB — and it hardly varies at
all, from a value af ~ 5 MeV for energies
below resonance, ta a value of ~ 0 MeV
above resonance. In Fig. 2 we see the
relatively law sensitivity at these ener-
gies to the exact value of the "binding
enexgy" and for comparison, the somewhat
greater sensitivity~ to the inclusion af
internal nucleon mation.

These results once more indicate that the
present state of experiment and theory
definitely require account of nucleon bind-
ing, recail, and internal motion, "
and that a three body approach is a wark-
able way to include them. In addition,
the small value for the effective binding
energy E compared to what might be expect-
ed on the basis of an independent paxtiele
shell madel, indicates the need for highex'
order corrections (active core) which de-
crease the binding af an interacting
nucleon.

The covariant calculation of Celenza
et al. a, which produces comparable agree-
ment with data, displays sensitivity to
internal nucleon motion with the same
charactexistics as shown in Fig. 2, but of
slightly greater magnitude. This small
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E = 0 MeV. The dashed curve is calculated
with EB = 0 MeV and no Fermi averaging.
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difference i probably due to different
nuclear wave functions or details in the
folding procedure, and is consistent with
the model calculations of Siciliano and
Walkers. It is also interesting to note,
in examining Figs. 1A and B, that Ref. 5
indicates that better agreement at back
angles for the higher energies could be
obtained by including intermediate nuclear
excitation into the bound T matrix, i.e.
as core excitation.

The Dubna-Torino group has measured
both m+ and m -4He scattering, a rather
courageous task since the final results
must be self-consistent (calculations
indicate that at these energies da/dQ for
71+ and m differ only at small angles).
As we see in Fig. 3, the error bars do
overlap at most angles and the theory,
particularly with ~3B, provides rather good
agreement with the combined data (as much
as can be expected with these error bars).
The precise level of agreement for m-4He
is relevant for three reasons: first, the
actual values of these differential cross
sections in the minimum region has been
questioned recently; 6 second, this same
Dubna-Torino group also measured the very
interesting m+- elastic scattering from 3He,
where the m+ and vr data cannot be combined
(I P 0) to compare with an even more com-
plicated theory; and third, agreement for

FIG. 3 Same meaning of curves as in
Fig. 1. The data are now the combined
Tr+-4He and m -4He results of the Dubna-
Torino group, Ref. 12.
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FIG. 4 m-4He total and elastic cross
sections calculated with the 3-body sub-
energy including binding (solid curves)
and the 2-body subenergy without binding
(dashed curve). The data, e ), +, and ~ ,
are from Refs. 11, 12, and 27, respectively.
There are no adjustable parameters used
in these calculations.
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To apply the optical potential to scat-
tering from 3He we need to know the form
factors for the matter and spin distribu-
tion of both neutrons and protons within
the nucleus. Our previous analysis, 10
based on the extensive work of Schiff and
Gibson, 29 indicates that it is a good
approximation to express these four func-
tions in terms of the charge (F } ande
magnetic (F } foxm factors of 3He and 3H:

m

-2.0—

FIG. 5 The real part of the m-4He strong
interaction scattering amplitude compared
with the data of Ref. 11. Same meaning of
curves as in Figs. 1 and 4.

~- He is important since it provides a test
of the reaction theory which can then be
used to investigate 3He. In section B we
examine m-3He data.

In Fig. 4 we compare the total and elas-
tic cross sections predicted by the opticak
model (2.5) with the data of Wilkin et al.2,
Binon et al. 11 and Shcherbakov et al. 12
In Fig. 5 we compare the theory with the
real part of the strong interaction forward
scattering amplitude as deduced by Binon
et al. There are no adjustable parameters
in our calculation, the same value of EB
in Eq. (2.11) was used as for the differ-
ential cross sections.

We see in these figures that the 3-body
choice of energy which provides better
fits to thy differential ex'oss sections,
appears to shift the enexgy downward by
too great an amount when used in the total
cross section calculation {i.e. the peaks
shift upward). This same conclusion has
been reached independently by Celenza et
al. a although they do not exhibit the
total cross sections. The agreement with
the deduced Ref(0 ) is not quite as good
as obtained with C and 0". At present,
the reason for these discrepancies in
aTOT and Ref(0 ) is not known. Although

this does seem to indicate the importance
of corrections to the impulse approxi-
mation, there are several effects, such as
nucleon-core interactions, Pauli suppress-
ion, true zion absorption, different nu-
clear wave functions, off-shell effects
and higher order scattering processess, ~

all of which can affect the calculated
total cross sections by the amount needed
for agreement without any dramatic in-
fluence on da/dQ;. one must perform complete
calculations with realistic models before
significance is ascribed to detailed fits
to total cross sections. In particular,
the low energy (& 100 MeV) values for a

and Ref{0 ) are sensitive to the input mN

F (q) = F (3He)/fP

P (q) = F (3H}/fP

R (1.95+. llfm}&R (1.88+.05}

&R (1.70+.05} = R (1.70+.05) (3.5)

The "large" magnetic size of He differs
from the value 1.74 + .10 fm measured ear-
lier by Collaxd et al. 30, and from the
simple model of 3He as two protons with
their spins paired off to zero and a more
bound unpaired neutron. 29~1o Although the
simple model is suxely not complete, a de-
tailed wave function analysis31, which is

He Heconsistent with R & Rc , also predicts
R & RH H which is not consistent wi. th

m e
the best values. In either case then,
there are uncex tainties which are prob-
ably related to the difficulties in mak-
ing and extrapolating the electron scatter-
ing measurement near q = 0, and using pions

,. — [F ('He}- 3F (3He)+& F (3H)]g1

(3.3}
4u

p I'p (3He)+ p p (3He) p p (3H)](spin m "n e 3"n

(3 4)

where & = pn/2(p + 2pn)fc, 1p
p

proton or neutron static magnetic moment,
2'5

and f is the proton charge form factox'.
For 3He we use the charge and magnetic
form factors determined by McCarthy et al. ,3O

and for 3H we use the actual data points
of Collard et al. 30

At present there is some uncertainty in
the relationship of the magnetic and
charge radii fox the trinucleon system
which makes an investigation of these nu-
clei with a pion probe of high value.
Specifically, the best fit rms radii. obey
the relation
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FIG. 6 m elastic scattering from an
unpolarized He nucleus. The spin flip
(short dashed) and non-flip (long dashed)
cantributions and their sum (solid curve)
are shown separately. The spin flip can-
tribution is sensitive to the nuclear spin
form factor. The data are from Ref. 12.
Spin flip is less important fox 7t+- He
scattering.

to help extend or confirm our knowledge of
these form factors is of value.

We have calculated m — and m -3He scatter-
ing for most enexgies measured by the Dubna-
Torino group. Although the m+ cross sec-
tions differ considerably from the ~ ones
for this isospin nonzero nucleus , we can-
centrate on the m cross sections since
the interesting spin effects are largest
here (the m can have a resonant inter-
action with the unpaired neutron}.

As in the 4He case, we find that the
3-body choice of energy ~ , with the same

binding energy as for "He, provides better
ovex'all agreement with these intermediate
energy data than ~ (no binding).

In Fig. 6 we see m -3He scattering at 120
MeV using ~EB~ = 5 MeV. The deep minimum

in the non-spin-flip scattering is filled
in rather completely by the spin-flip
scattering. The amount of "fill" is deter-
mined predominately by the size of the
neutron distribution Fn . (q), which insp 3.n
turn is directly related to the magnetic
form factor of 3He, (3.4) . Thus vr — He
scattering provides a means of determining
some properties of this important magnetic
moment form factor.

Gibson3 ~ has indicated the need for cau-
tion in using pions, as opposed to elec-
trons, to learn about single particle
properties of nuclei, in particular by
filling of minima. lions, however, have a
good deal in their favor for this px'oblem:
(1) The small values of momentum transfer
at which pions investigate the magnetic
form factor are not readily accessible to
electrons. (2) Since ~ ~ of the nucleons

3
in 3He contribute to the spin flip scatter-
ing which is present with exactly the same
behavior in the dominant single scattering
term, it is not a small second order effect
of the same size as many other small
effects. (In fact, at these energies our
calculations have shown the spin flip
scattering to be much larger than cox'rect-
ions to the theory of second order in
nuclear density. ) (3) The technique to
investigate the spin distribution is some-
what self-consistent, if good agreement
with the vr-4He data is obtained (as it
seems to be), and if the theary agrees
with the m-3He data in the angular region
where spin effects are small, then one
could isolate the spin contribution.

In Figs. 7a and b is a comparison of the
Dubna-Tax ino vr — He data with the theory.
The solid curves employ the electron
scattering best fit parameters to the 3II'e

magnetic form factor (R = 1.95 fm} andHe
m

the dashed curves employ a smaller size
consistent with the electron data
(R = 1.84 fm}. The larger size calcu-He

m
lations generally lie on the other side of
the best fit calculation. At 98 MeV
(Fig. 7a) the smaller size for the distri-
bution provides a somewhat better fit, at
120 MeV both sizes appear to provide
equally good fits, at the higher energies
the best electron scattering fit seems
preferred. Of course the error baxs are
rather large (the corresponding 4He data
agreed fairly well only ai'ter combining
m and m results), the precise depths of
the minima have been questioned 6, and one
should question the reliability of the
first order optical potential, even with
binding corrections, fax as detailed a
comparison as is required here. Yet, these
comparisons do show the high level of sen-
sitivity to 0. 1 fm changes in spin distri-
butions, and appear promising for better
tests in the future.

In Fig. 8 we show the m-+-3He total and
elastic cross sections calculated with
the three body energy and the data of the
Dubna-Torino group. Although on the basis
cf the "He calculation we expect the cal-
culated peak position to be at too high an
energy, up to T = 160 MeV the agreement is
(fortuitously') rather good.

In Fig. 9 we show some calculated polar-
izations of the recoiling nucleus in m--3He
elastic scattering which indicate the sen-
sitivity to the magnetic form factox of

He and to the inclusion of binding effects.
The polarizations peak at ~80 , and only
at higher energies where diffxactive struc-



IMPROVED OPTICAL-POTENTIAL CALCULATION. . .

vr ~He Spin Distribution Sensitivity
I

I
t

I
I

I
I

I
I

lt Flt
~He)

vr ~He Spin Distribution Sensitivity
30

I
'

I

dy Energy
est e Fit
0%er Limit Flt

&r
to F~AG ( He)

lO,— ino bna -Torino

MeV

I}—
lO

E

l56 MeV

IQ

(a)
Q l

I l ) l ) I ) I ) I

QO 60O l20 l80 60
I i I s

l2 0 l80o

c.m.
FIG. 7 (a) and (b), Differential cross

sections calculated with ~3B for elastic
pion scattering from an unpolarized 3He
nucleus. The solid cuxves are obtai. ned
with the best fit electron scattering 3He

c.m ~

magnetic form factor (R = 1.95fm) and
the dashed curves with the lower limit
electron fit (R = 1.84fm). No adjustable

m
parameters are used here. The dat a are
from Ref. 12.

500

200—

}00—

E

Kf,

O
~ 300—

1

3
He Total Cross Sections

I I I } I I I I } I I I I } I I

3 3-Bpd y E ))erg y
H

~O
l I » l I

C. m — 3He Single Charge Exchange
Ne calculate single charge exchange

scattering to an analog state by observing
that in the absence of the Coulomb force,
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scattering has the fox'm:

T = T + T0 1 (3.6)

ture begins to enter, do they show moderate
sensitivity to these size and off-shell
effects.
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By taking matri. x elements between different
charge states of the nucleus and pion we
obtain the simple relation among scatter-
ing amplitudes:

T(~ +3He ~ ~ + 3H) = [T{~ +3He ~ ~ +3He)o + +

FIG. 8 m -3He total and elastic cross
sections calculated with ~3B and the data
of Ref. 12. The m- cross sections differ
for a non-zero isospin nucleus.

— T(l +3He & +3He)]//g (3.7)
This relation ignores Coulomb distortion
and multiple charge exchange scattering,
effects which Spencex and Miller, and Hess
and Eisenberg32 show to be quite sma j. for
carbon, yet which Franco32 indicates may
be impox'tant at lowex energies. It thus
should be consistent in validity with the
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first order optical potential used for
elastic scattering.

In Fig. 10 we show differential cross
sections for the isospin flip reaction,

He(m , vr ) H or ~H(m , ~~) He. Again we
exhibit the sensitivity to uncertainty in
magnetic form factor (solid vs. dotted
curves) and to the inclusion of binding
(solid vs. dashed curve). Although these
reaction' do display significant variation
(a factor of ~3 at 120 for the higher
energies) the spin flip contribution masks
the diffraction-like structures of the
non-flip scattering. There, consequently,
is required rather precise data over a
sizeable angular region to determine these
structure or reaction effects (a conclu-
sion also reached by Hess and Gibson ).

In Fig. 11 we present the total cross
section for the single charge exchange re-
action calculated with the 3-body energy.
The cross section is rather flat and is
not very sensitive (& 10%) to the energy
choice or nuclear size variation. The
small maximum is caused by the spin flip
contribution filling in the non-flip mini-
mum due to a resonance in the elastic
channel. 6

FIG. 10 Differential cross sections for
the charge exchange reaction He(~ , ~ ) H

calculated with an improved theoretical
optical potential. The solid and dotted
curves are calculated with the mN subenergy

(binding) and, respectively, with the
best fit and lower limit fit to the 3He
magnetic moment form factor. The dashed
curve is calculated with the best electron
magnetic moment fit and with ~ (no bind-
ing). 0

IV. Summary and Conclusions

We have presented many calculated curves
and comparisons with data: vr -"He elastic
scattering and the data of the CERN group,
sr+--"He and TI — He elastic scattering and
the data of the Dubna group, and da/d. ". and
OTOT for the He(m , m ) H reaction. Our

aim is to provide some perspective on these
intermediate energy reactions from which
to judge if we understand the basic physics
and if so, to determine the avenues to pro-
ceed along towards more complete theories
and towards more extensive or accurate ex-
periments. To this end it is of value to
compare the results of our theoretical
calculation, which has provided rather good
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but nat excellent agreement with much of
the data, ta the work of others.

The essential ingredients of our theory
are: (i} A first order, momentum space,
optical potential used in a relativistic
wave equation. This provides all orders
of multiple scattering in which the nucleus
remains in its ground state, but excludes
virtual, excited intermediate states and
nucleon-nuclean correlations. (ii) A ~N
T matx'ix whose on-shell properties are
detexmined by up-to-date phase shifts and
whose off-shell behavior incorporates the
finite size of the TrN interaction.
(iii) A careful treatment of the relation
between the vrN amplitude in the mN c.m.
frame and in the pi-nucleus c.m. frame,
incorporating momentum conservation, on-
shell Lorentz invaxianee and the "angle-
transformation". (iv} A choice of the mN

subenergy variable (3-body picture) which
incoxporates nucleon recoil, internal
motion and in an average way, binding.
(v) Realistic nuclear and nucleon form
factors consistent with those measured by
electron scattering.

The extensive, illuminating, and inde-
pendent calculations of Mach6, and
Shcherbakov et al. ~ produce cxoss sec-
tions and conclusions concerning trends
and sensitivities which are similar to
ours, but the general level of agreement
with data, is not quite as good. This
appears to be due to their calculations be-
ing performed in coordinate space with
Kisslinger-type and Laplacian potentials
which, a priori, do not include: the fi-
nite size of the mN interaction, i.e.
physical aff-shell behavior (ii), the full
effect of the amplitude transformation
(iii), the average over internal nuclean
motion, and the binding of the active nu-
cleon (iv). It appears that all these
effects, and possibly the difference in the
on-shell amplitudes, are important for de-
tailed agreement.

The Glauber approximation ealculatians
af Sparrow an Tr-3He and 3He{m-, m )3H
scattex'ing indicate the importance af spin
flip in both the differential and total
cross sections. Although this conclusion
ean also be deduced from earlier work on
elastic scattering, our more realistic
calculation does confirm this conclu'sion
and, as might be hoped, agrees better with
the data.

Gibson et al. 7 have applied Gibb's multi-
ple scattering theory ta the vr-"He elastic

scat tering at energies & 100 MeV and have
verified the importance of points (iii)
and (iv}. In a similar calculation by Hess
and Gibson7, this theory is also applied
to the single charge exchange reaction on

He. The physical content of the 3He cal-
culation is similar to ours in its inclu-
sion af: all orders of multiple scatter-
ing (i), a finite size for the mN inter-
action (ii), and an effective, an-shell,
"angle transformation" which should approx-
imately include some of the important
effects (iii). The main difference is in
its use of a separate coupled channel for
the charge-exchange state, a fixed nucleon
type of appxoximation which does nat im-
plicitly include nucleon internal motion,
recoil or binding (iv), the use af simpler,
and presumably less realistic nuclear form
factors (v), and its use of less recent
phase shift tabulation.

Both groups' results for m -3He elastic
scattering at 100 and 154 MeV are quite
similar. The results fox' the charge ex-
change d0/dQ are similar in shape at all
energies, yet except for the 98 MeV cross
seetians, ours tend to tall more rapidly
with angle (by nearly an order of magni-
tude at 140o). The reasons for this dif-
ference axe not clear; it may be the dif-
ferent scattering theories, or the differ-
ent procedure for calculating charge ex-
change. The nuclear form factors used in
both calculations howevex', do not differ
enough at these energies to produce an
order of magnitude effect. Both groups'
results for the total charge exchange cross
sections are also sj.milar in shape {i.e,
hardly any) but samewhat different in mag-
nitude; this I suspect is due to the sub-
tractians (3.7} necessary to abtain these
cross sections which make them sensitive
to our use of recent mN phase shifts, our
inclusion of energy averaging and Ref. 7's
use of a coupled channel mechanism.

Finally, the cavariant calculation of
-~He scattering in the resonance region

by Celenza et al. a, as mentianed in pxev-
iaus sections, appears to include the same
essential physical ingredients as oux" cal-
culation and produces comparably good but
not excellent agreement with the data.
The message appears clear: it is time to
use those theoretical tools which work well
and incarporate additional higher order
physics into our calculations in a con-
sistent reliable manner. In particular,
if we want to obtain significant, detailed
fits to total cross sections or to differ-
ential cross sections at low energies, cal-
culations which include points (ii) to (iv)
above and the new physics are necessary.
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