High-spin states in ⁹²Nb[†] B. A. Brown* and D. B. Fossan Department of Physics, State University of New York, Stony Brook, New York 11794 (Received 23 February 1977) High-spin states have been investigated with the 88 Sr(7 Li, 3 n) 92 Nb reaction by γ - γ coincidence, γ -ray angular distribution, and pulsed beam- γ timing measurements with Ge(Li) detectors. Decay schemes, level energies, and spin-parity information were obtained for 92 Nb from the data. The positive-parity yrast level sequence was established up to a 13 $^{+}$ state at 3326 keV. An 11 $^{-}$ isomeric level at 2203 keV was found and observed to have a mean lifetime of $\tau = 241 \pm 5$ nsec. The g factor of this isomer was measured to be $g = 0.88 \pm 0.03$. The observed properties of levels in 92 Nb are compared with shell-model calculations. NUCLEAR REACTIONS ⁸⁸Sr(7 Li, 3n), $E_{\text{Li}} = 34$ MeV; measured $\gamma - \gamma$ coin, $\gamma(E, \theta, t)$, spin rotation in B = 11.2 kG; deduced level scheme in 92 Nb, γ multipolarities, $T_{1/2}, J^{\pi}$, g factor. Natural target, Ge(Li) detectors. #### I. INTRODUCTION Reactions with 6 Li and 7 Li on the semimagic nucleus 88 Sr (Z=38, N=50) have been used to investigate high-spin states in the neighboring nuclei, which have simple shell-model configurations. The results and comparisons with theory for 91 Nb, 91 Zr, and 92 Zr have been presented previously. 1,2 In this paper, the results for 92 Nb (Z=41, N=51) studied with the 88 Sr(7 Li, 3n) reaction are presented. Highspin states up to $^{\sim}4$ MeV have been found including an isomeric $J^{7}=11^{-}$ level at 2203 keV for which the lifetime and g factor were measured. A preliminary report on a portion of these results has been made. 3 The study of odd-odd nuclei is most important for determining the effective proton-neutron residual interaction. In the case of $^{92}{\rm Nb}$, the six positive parity and two negative parity levels below 500 keV are interpreted in zeroth order as the $(\pi 1 g_{9/2})(\nu 2 d_{5/2})$ and $(\pi 2 p_{1/2})(\nu 2 d_{5/2})$ multiplets, respectively. These levels should have relatively pure configurations because of the large energy gap above them. The $^{92}{\rm Nb}$ states involving the highspin three-proton configurations, $(\pi 1 g_{9/2})^3$ and $(\pi 1 g_{9/2})^2(\pi 2 p_{1/2})$, of $^{91}{\rm Nb}$ (Ref. 1) coupled to the odd valence neutron $(\nu 2 d_{5/2})$ have not been previously observed; the maximum J^{τ} values allowed are 13^+ and 11^- , respectively. Much experimental information has been obtained for high-spin states in even-even and even-odd nuclei in this mass region, but very little has been previously reported for the yrast levels of odd-odd nuclei. Odd-odd nuclei, which have large level densities, have been difficult to study with lightion reactions because of the complex level population. For heavy-ion reactions, which have a selectivity for populating only yrast states, the situation is different. The number of levels strongly populated in ^{92}Nb by the $^{88}\text{Sr}(^{7}\text{Li},3n)$ reaction was approximately the same as the number by similar reactions in the neighboring odd-even nuclei, ^{91}Nb and $^{91}\text{Zr.}^{1}$ Previous experiments regarding ^{92}Nb prior to 1972 are summarized in Nuclear Data Sheets. 5 More recently ^{92}Nb has been studied with the $(p,n\gamma)$ and $(\alpha,n\gamma)$ reactions. 6 In all of these previous studies, no spin assignment higher than that of the ground state spin of 7 $^+$ was reported, and hence they have little overlap with the present experiment. The experimental techniques used in the present measurements are briefly described in Sec. II; they have been discussed in more detail in Ref. 1. The experimental results for the ⁹²Nb yrast decay are presented in Sec. III, and the comparison with shell-model theory is discussed in Sec. IV. ## II. EXPERIMENTAL TECHNIQUE Levels in 92 Nb were populated via the fusion-evaporation reaction 88 Sr(7 Li, 3n). For most of the measurements, a 3 4-MeV 7 Li(3 +) beam, obtained from the Stony Brook FN tandem Van de Graaff accelerator, was incident on a thick natural Sr metal target (8 2.6% 8 Sr) which stopped the beam. The beam energy was selected on the basis of γ -ray excitation measurements. Deexcitation γ rays were detected using both large volume Ge(Li) detectors for γ rays with $100 \text{ keV} < E_{\gamma} < 3 \text{ MeV}$, and a small planar intrinsic Ge detector for γ rays with $20 \text{ keV} < E_{\gamma} < 200 \text{ keV}$; typical energy resolutions were 2.5-3 keV full width at half maximum (FWHM) at 1332 keV, and 0.5 keV at 122 keV, respectively. Three types of experiments were carried out: (1) γ - γ coincidence, (2) γ -ray angular distribution, and (3) pulsed-beam- γ timing measurements. Because of the complex nature of the γ -ray spectra from these reactions involving several residual nuclei, γ - γ coincidence measurements with a Ge(Li)-Ge(Li) detector combination were required to identify the γ -ray cascades. To obtain information on the spins of the levels and the γ -ray multipolarities as well as the γ -ray intensities I_{γ} , γ -ray angular distributions were measured in singles at seven angles between 0° and 90°. The photopeak areas were extracted and fitted to $W(\theta) = I_{\nu}(1 + A_{2}P_{2})$ $+A_4P_4$), where the P_k are the Legendre polynomials. Spin assignments were obtained from $W(\theta)$, lifetime, and I_{ν} results. Finally, the observation of delayed γ rays with pulsed-beam timing allows the location of isomeric states and the study of their decay modes. Pulsed-beam measurements using the Ge(Li) and planar Ge detectors with overall time resolutions of ~8 nsec FWHM were made with pulse repetition periods of 500 nsec and 1 μsec. #### III. RESULTS The singles γ -ray spectrum from the reactions induced by a 34-MeV 7 Li beam and thick natural Sr metal target is shown in Fig. 2 of Ref. 2. The γ rays belonging to 92 Nb were identified by their excitation function as well as a comparison of the in- TABLE I. Results of $\gamma\text{--}\gamma$ coincidence measurements for $^{92}\mathrm{Nb}~\gamma$ rays. | γ ray in gate
(keV) | Coincident γ rays ^{a,b}
(keV) | | | | |------------------------|--|--|--|--| | 116 | (598), (1066), 2087 | | | | | 123 | 357 | | | | | 142 | 328, 501, (511), 763, 1129(90Zr), (2087) | | | | | 148) | 194.328,471,(511),763,(1066),(1553),2087 | | | | | 150 } | 194, 328, 471, (311), 703, (1000), (1333), 2087 | | | | | 163 | 919, (~1030), ~1082 | | | | | 194 | \sim 603, 1791 (91 Nb) | | | | | 328 | 148, (471), 501, (511), 711, 763, 2087, 2287 | | | | | 471 | 148,317,°328,344,°711,763,777,°934,°
1239,°1658,°2087 | | | | | 501 | 116, 142, 148, (511), 1444, (1586) | | | | | 711 | 328,471,2287 | | | | | 763 | (142), 148, 328, 471, 501, 2087 | | | | | 1444 | (96), (202), 501 | | | | | 2087 | 116, 148, 328, 471, 763 | | | | | 2287 | 328, 356(⁹¹ Nb), 711, 819(⁹¹ Nb) | | | | ^aThe present experiment was not sensitive to coincident γ rays below about 200 keV for the gated γ rays with $E_{\gamma} \le 194$ keV. tensities of γ rays from the $^7\mathrm{Li}$ and $^6\mathrm{Li}$ reactions on $^{88}\mathrm{Sr}$ at 34 MeV. In the $^6\mathrm{Li} + ^{88}\mathrm{Sr}$ reaction at 34 MeV, it was observed that the cross section was peaked for the evaporation of three neutrons (3n) leading to $^{91}\mathrm{Nb}$, as expected from theoretical estimates, and that the ratio of the 3n to the p2n cross sections was about 3 to 1. It is then estimated that, in the $^7\mathrm{Li} + ^{88}\mathrm{Sr}$ reaction at 34 MeV, the 3n evaporation leading to $^{92}\mathrm{Nb}$ and the 3n to p2n cross-section ratio should have similar characteristics. From these considerations, a coincident set of γ rays which are the strongest γ rays appearing in the $^7\mathrm{Li} + ^{88}\mathrm{Sr}$ reaction are assigned to $^{92}\mathrm{Nb}$. Two new γ rays, as well as the previously known 501- FIG. 1. The decay scheme for 92 Nb high-spin levels from the present work. The tentative levels from the present work at 1309, 1420, and 1472 keV are not included. The non-yrast levels below 501 keV are from Refs. 4-6. $E_{\gamma} \le 194$ keV. Coincident γ rays which are uncertain are put in parentheses. ^cThese γ rays are probably not from ⁹²Nb. TABLE II. Properties of γ rays assigned to transitions in 92 Nb from the 88 Sr(7 Li, $_{3n}$) reaction. | E_{γ} | Intensity (%) | | | Transition assignment | | |------------------|------------------------|-------------------|-----------------------|---|-------------------------------------| | (keV) | (relative to 2087 keV) | A_2 | A_4 | $E_i \text{ (keV)} \rightarrow E_f \text{ (keV)}$ | $J_i \rightarrow J_f$ | | 90.2 ± 0.2 | Doublet | | | 226→ 135 | 2 2+ | | 115.8 ± 0.2 | 18 | 0.28 ± 0.02 | -0.04 ± 0.03 | $2203 \rightarrow 2087$ | 119- | | 122.5 ± 0.2 | Doublet | | | 481 - 358 | 4 ⁺ → 5 ⁺ | | 142.2 ± 0.2 | 3 a, b | | | $2087 \rightarrow 1946$ | 9° 7° | | 148.2 ± 0.2 | 44 ^a) | -0.21 ± 0.02 | 0.02 ± 0.02 | 2235 - 2087 | 10(-) - 9- | | 149.9 ± 0.2 | 22 a } | | | 286 1 35 | 3 ⁺ → 2 ⁺ | | 163.8 ± 0.2 | 20 | -0.17 ± 0.03 | 0.04 ± 0.03 | $390 \rightarrow 226$ | 3 2 - | | 194.4 ± 0.2 | Doublet | | | 481 - 286 | 4 ⁺ → 3 ⁺ | | 254 ± 1 | Weak | | | 390→ 135 | 3 2+ | | 327.7 ± 0.2 | 43 | 0.35 ± 0.01 | -0.10 ± 0.01 | 3326 - 2998 | 13 ⁺ → 11 ⁺ | | 357 ± 1 | Doublet | (0.21 ± 0.03) | -0.04 ± 0.04 | $358 \rightarrow 0$ | $5^{+} \rightarrow 7^{+}$ | | 471 ± 1 | Doublet | | | 3797 - 3326 | $(12, 13) \rightarrow 13^{+}$ | | 501.0 ± 0.3 | 41 | -0.02 ± 0.03 | -0.04 ± 0.03 | 501 → 0 | $6^{+} \rightarrow 7^{+}$ | | 711.1 ± 0.2 | 20 | 0.33 ± 0.04 | -0.11 ± 0.05 | $2998 \rightarrow 2287$ | 11 + → 9 + | | 762.5 ± 0.2 | 36 | -0.20 ± 0.01 | -0.00 ± 0.02 | $2998 \rightarrow 2235$ | 11 ⁺ - 10 ⁽⁻⁾ | | 1444.5 ± 1.0 | 5 ^b | | | 1946 - 501 | $7^- \rightarrow 6^+$ | | 1586.4 ± 1.0 | Weak ^b | | | 2087 - 501 | 9 6 + | | 1945 ± 1 | ≤10 (doublet) | | | $(1946 \rightarrow 0)$ | $7^- \rightarrow 7^+)$ | | 2087.4 ± 0.4 | 100 | 0.083 ± 0.015 | -0.128 ± 0.016 c | 2087 - 0 | 97+ | | 2287.2 ± 1.0 | ~40 (doublet) | $(0.30 \pm 0.02$ | $-0.06 \pm 0.02)^{d}$ | 2287 - 0 | 9 ⁺ 7 ⁺ | ^aIntensities at 90° observed with the intrinsic Ge detector (Fig. 3) relative to the integrated intensity of the 148.2 + 149.9-keV γ rays observed with the Ge(Li) detector. keV γ ray, represent transitions to the ⁹²Nb ground state. With these assignments together with previously established γ -ray transitions to the ground states of other nuclei in this region, the relative population yields determined from ground-state transitions were ⁹²Nb(11), ⁸⁹Y(7), ⁹¹Nb(6), ⁹²Zr(3), ⁹⁰Zr(2), ⁹⁰Y(2), ⁹¹Zr(1), and ⁸⁸Y(1). Our results for ⁹²Zr have been previously reported.² A summary of the properties of γ -ray transitions assigned to 92 Nb is given in Table I and the deduced 92 Nb level scheme is shown in Fig. 1. A list of the γ - γ coincidence results is given in Table II; the coincidence spectra for the principle 92 Nb γ rays are shown in Fig. 2. The prompt decay scheme based on the angular distribution and coincidence measurements is discussed in Sec. III A. The delayed γ -ray measurements established an isomeric 11⁻ level at 2203 keV (τ =241±5 nsec) which decays via an 11⁻ +9⁻ +7⁺ ground state (g.s.) cascade. The delayed γ spectra for low energy γ rays observed with a planar intrinsic Ge detector are shown in Fig. 3. The isomeric decay, including the g-factor measurement for the 11⁻ level, is discussed in Sec. III B. ## A. Prompt decay The dominant decay pattern obtained from the γ - γ coincidence measurements and singles intensities consists of two γ -ray cascades to the 7 $^{+}$ ground state both originating with a 328-keV γ ray (see Fig. 1). The angular distribution coefficients for the γ rays in the 328-711-2287 cascade are all very similar with $A_2 \approx 0.3$ and $A_4 \approx -0.1$, which is the signature of a stretched L=2 cascade. This information together with the prompt lifetimes and regularly decreasing intensities of the cascade γ rays strongly suggest spin assignments of 9 $^{+}$, 11 $^{+}$, and 13 $^{+}$ for the 2287-, 2998-, and 3326-keV levels, respectively. The second cascade to the ground state involves the 328, 763, 148, and 2087 keV γ rays. In order to fit the angular distribution of the 2087 keV γ ray a $P_6(\cos\theta)$ term was needed ($\chi^2=9.2$ without and $\chi^2=1.3$ with this term) which indicates a strong L=3 component in this transition. The only likely possibilities for this prompt ($\tau \leq 10$ nsec) transition are $10^- - 7^+$ or $9^- - 7^+$. The angular distribution can be fitted only with a $9^- - 7^+$ assignment for a mixing ratio $\delta(E3/M2)=11\pm 2$ and a Gaussian width ^bThe branching ratios shown in Fig. 1 involving these transitions were obtained from the delayed intensities at 90° of the 1444-, 1586-, and 2087-keV transitions corrected for the expected angular distributions. $^{{}^{}c}A_{6} = 0.111 \pm 0.019.$ ^dThe angular distribution coefficients here are for the sum of the 2287-keV 92 Nb and 2291-keV 91 Nb γ rays. However, the fact that the line shape for these two γ rays remains the same at all angles indicates that these coefficients are valid for both γ rays. for the population parameters of the initial state¹ $\sigma = 2.35 \pm 0.20$. This value of σ is consistent with the value $\sigma \approx 2.8$ needed for the angular distributions of the pure E1 and E2 transitions. The 763- and 148-keV γ rays, which form a cascade between the 2998-keV 11* and 2087-keV 9° levels via an intermediate level at 2235 keV, have stretched dipole angular distributions, $A_4 \approx -0.2$ and $A_4 \approx 0$. This leads to a spin assignment of J=10 for the 2235-keV level. A negative parity for this level is suggested by the fact that the competition between the $11^+ + 9^+$ and $11^+ + 10^-$ branches is consistent with typical E2 enhancements compared to E1 hindrances in the mass-90 region; $\Gamma(E2)/\Gamma(E1) = CE_7^{-5}(E2)/E_7^{-3}(E1)$ has empirical values of $C=1-100~{\rm MeV^{-2}}$ compared with the Weisskopf estimate of $C=1.4\times 10^{-5}~{\rm MeV^{-2}}$. A 10^+ assignment would require that both the M1 and E2 components of a $11^+ \rightarrow 10^+$ transition be hindered, however, the positive parity assignment cannot be ruled out on this basis. A weak 471-keV γ ray is in coincidence with the γ rays in the strong cascades discussed above and hence most probably represents feeding of the 3362-keV level by a non-yrast level at 3797 keV. The 471-keV γ -ray peak must be a doublet since it is in coincidence with other γ rays which cannot be in 92 Nb as they also appear in the 88 Sr + 6 Li data (the dominant 92 Nb γ rays do not appear with any significant intensity in the 88 Sr + 6 Li reaction). FIG. 2. γ - γ coincidence spectra for selected ⁹²Nb γ rays. See Table I for a complete listing of the coincidence results. Since angular distribution information for the 471-keV γ ray cannot be attributed entirely to ⁹²Nb, a tentative spin assignment of J=(12,13) is made on the basis of its weak non-yrast character. All of the γ rays which have been previously reported for the low lying multiplets with $J^{\tau}=2^+-7^+$ and 2^--3^- were observed in the γ ray singles spectrum. Most of these are observed in the planar Ge spectrum shown in Fig. 3. Some of these γ rays appear as doublets with known transitions in other residual nuclei of the Sr + 7 Li reaction: 90 keV (91 Zr), 122 keV (90 Nb), 194 keV (91 Nb), and 357 keV (91 Nb). None of the 92 Nb γ rays which originate from non-yrast levels are in strong coincidence with the high-spin cascades discussed above. The γ rays with energies of 919, 1030, and 1082 keV in coincidence with the 163-keV 3⁻+2⁻ transition suggest levels in ⁹²Nb at about 1309, 1420, and 1472 keV with spins of 3⁻, 4⁻, or 5⁻. However, due to the complexity of the γ spectra these levels cannot be entirely justified unless additional information from their γ decay or observation in particle reactions can be obtained. The transitions from the 1309- and 1420-keV levels to the 389-keV level were also recently observed in $(p,n\gamma)$ and $(\alpha,n\gamma)$. Several weak γ rays are in coincidence with the FIG. 3. Prompt and delayed planar Ge spectra from the Sr+7Li reactions. FIG. 4. Time spectrum for the ^{92}Nb 115.8-keV γ ray observed with the planar Ge detector. The delayed spectrum of the Compton background for a region near the photopeak has been subtracted. The solid line is the fitted exponential decay. 501-keV 6* \rightarrow g.s. 7* transition. The 1586-keV γ ray represents the 2087-keV 9° \rightarrow 501-keV 6* transition. The 142- and 1444-keV γ rays represent another weak cascade of the 9° level to the 6* level via an intermediate level at 1945 keV. The tentative spin and parity assignment for this state is 7°. The branching ratios for the 2087-keV 9° level shown in Fig. 1 were obtained from the relative intensities of the delayed components of the 1444-, 1586-, and 2087-keV γ rays. The delayed components originate from the feeding of the 9° level by the 11° iso- meric level which will be discussed in the next section. #### B. 11 isomeric level The 116- and 2087-keV γ rays appear strongly in the pulsed-beam- γ delayed spectra with the same lifetime slope; the averaged mean lifetime extracted is $\tau = 241 \pm 5$ nsec. The decay curve for the 116-keV γ ray obtained with the planar Ge detector is shown in Fig. 4. The 2087-keV γ ray had an additional prompt component whereas the 116-keV γ ray did not have a prompt component, which establishes the isomeric level at 2203 keV. The angular distribution of the 116-keV γ ray determines this as a stretched E2 transition which gives an assignment of $J^{\tau} = 11^{-}$ for the 2203-keV level. Using the theoretical value of $\alpha = 0.690$ for the internal conversion coefficient, 8 a $B(E2) = 98 \pm 3$ e^2 fm 4 is obtained for the $11^- + 9^-$ transition. The g factor of the 11° level was measured with the time-differential perturbed-angular distribution technique. The planar Ge detector was placed at 45° relative to the beam and an external field of $11.20~\rm kG$ was applied. The perturbed decay curve was fitted to the functional form $$N(t) = Ne^{-t/\tau} [1 + b e^{-t/\tau_R} \cos(2\omega_T t)],$$ where τ = 241 ± 5 nsec is the lifetime of the isomeric level, τ_R is the relaxation time due to fluctuating hyperfine fields, and ω_L is the Larmor precession frequency. The data together with the fit are shown after dividing by the factor $Ne^{-t/\tau}$ in Fig. 5. The results of the fit were ω_L = 0.0472 ± 0.0014 nsec⁻¹ and τ_R = 360 ± 100 nsec. The resulting uncorrected g factor for the 2203-keV level is 0.88 ± 0.03. The combined diagmagnetic and Knight-shift correction is estimated to be negligible [~(0±1)%]. FIG. 5. Perturbed time spectra for the 92 Nb 115.8-keV γ ray with the target in an external magnetic field, after dividing by the exponential decay Ne^{-t/ τ}, where τ =241 nsec. The solid line is the fit to the function $[1+be^{-t/\tau_R}\cos(2\omega_L t)]$, where τ_R is the relaxation time and ω_L is the Larmor precision frequency. #### IV. DISCUSSION Most of the levels in 92Nb below about 4 MeV should be accounted for by three protons distributed in the $1g_{9/2}$ and $2p_{1/2}$ orbitals and one neutron in the $2d_{5/2}$, $3s_{1/2}$, $2d_{3/2}$, $1h_{11/2}$, or $1g_{7/2}$ orbit outside a ⁸⁸Sr closed core. In particular, the highspin states arise from the multiplets found from coupling the three-proton yrast levels in 91Nb (Ref. 1) to the neutron in the $2d_{5/2}$ or $1h_{11/2}$ orbital. The stretched configurations for $^{91}\text{Nb} \times 2d_{5/2}$ give rise to level spacings in 92 Nb which are remarkably similar to the spacings in 91 Nb. The following levels from the nuclear pair [91 Nb-92 Nb] can thus be associated: $[0 \text{ keV } \frac{9}{2}^+ - 0 \text{ keV } 7^+], [1791 \text{ keV } \frac{9}{2}^- - 0 \text{ keV } 7^+]$ 1945 keV (7⁻)], [1985 keV $\frac{13}{2}$ -2087 keV 9⁻], [2035 keV $\frac{17}{2}$ -2203 keV 11⁻], [2291 keV $\frac{13}{2}$ +-2287 keV 9⁺], [3310 keV $\frac{17}{2}$ -2998 keV 11⁺], and [3467 keV $\frac{21}{2}$ -3326 keV 13⁺]. This weak coupling appearance was also found in the comparison of even-even N = 50 nuclei to even-odd N=51 nuclei (see Fig. 10 in Ref. 1). Finally, the 2235-keV 10⁽⁻⁾ level can be associated with the stretched [91 Nb(g.s.) $\times 1h_{11/2}$] $J = J_{\text{max}}$ configuration or the $[{}^{91}\text{Nb}(\frac{17}{2}) \times 2d_{5/2}]J = J_{\text{max}} - 1$ configuration which have unperturbed energies of 2170 and 2035 keV, respectively. Recent shell-model calculations for 92Nb have been carried out by Gloeckner.9, 10 For this calculation, the proton-proton interaction matrix elements within the $g_{9/2}$ - $p_{1/2}$ model space were taken from the seniority conserving interaction needed to fit the energy levels of N = 50 nuclei. The protonneutron matrix elements involving neutrons in the $d_{5/2}$ - $s_{1/2}$ model space were determined by a fit to levels of N=51 nuclei (see column 3 of Table 2 in Ref. 9). The resulting theoretical 92Nb energy levels¹⁰ are compared with experiment in Fig. 6. The weak coupling appearance discussed above is also seen in the theoretical energy levels; despite this, the wave functions have large amplitudes of other components representing nonstretched configurations, which have a large effect on some of the electromagnetic properties as will be discussed below. The calculated energies of the 9-, 10-, and 11 levels are not in very good agreement with experiment which may be due to the fact that the $1h_{11/2}$ neutron orbital was not included in the calculation. The electromagnetic properties give a further test of the nuclear wave functions. The measured g factor of the 2203-keV 11 level can be compared with that expected for the stretched 91 Nb($^{17}_{2}$ -) \times $2d_{5/2}$ configuration which is the only configuration possible within Gloeckner's model space. The additivity property for the effective magnetic moment operator implies that, $$\mu$$ [92Nb(11-)] = μ [91 Nb($\frac{17}{2}$ -)]+ μ [2 $d_{5/2}$]. Using the 91 Zr ground state moment for the $2d_{5/2}$ neutron orbital, 12 $\mu[^{91}$ Zr($^{5+}_2)]=-1.303\,\mu_N$, and a recently measured value for the 91 Nb moment, 13 $\mu[^{91}$ Nb($^{17-}_2)]=(10.84\pm0.14)\,\mu_N$, the additivity relation gives $\mu[^{92}$ Nb(11-)]=(9.54±0.14) μ_N or $g=0.867\pm0.013$ in agreement with the 92 Nb experimental FIG. 6. Comparison of the experimental and theoretical energy levels for 92 Nb. The experimental information is from the present work and other γ -ray studies in Refs. 4–6. [The tentative levels from the present work at 1309, 1420, and 1472 keV and information from the very recent work of Davidson *et al.*, Ref. 6 are not included.] The theoretical energy levels were calculated by Gloeckner (Refs. 9 and 10) and are discussed in Sec. IV of the text. value $g_{\rm exp}=0.88\pm0.03$. This comparison supports the ⁹¹ Nb($\frac{17}{2}$)× $d_{5/2}$ configuration for the 11⁻ isomeric state. The B(E2) value for the 92 Nb $11^- + 9^-$ transition and its comparison with B(E2) values for other N=51 nuclei have been discussed in Ref. 1. Here we remark on the weak coupling nature of the E2 matrix element. Assuming that the 11^- and 9^- states have the pure configurations 91 Nb $(\frac{17}{2}^-) \times d_{5/2}$ and 91 Nb $(\frac{13}{2}^-) \times d_{5/2}$, respectively, the B(E2) values for the 92 Nb $11^- + 9^-$ and 91 Nb $\frac{17}{2}^- + \frac{13}{2}^-$ transitions should be equal. However, experimentally the $B(E2)[^{92}$ Nb $11^- + 9^-] = 98 \pm 3$ e^2 fm⁴ and the $B(E2)[^{91}$ Nb $\frac{17}{2}^- + \frac{13}{2}^-] = 32.0 \pm 1.9$ e^2 fm⁴. This dif- ference can be partly accounted for by the fact that the shell-model wave function for the 92 Nb 9 state has a large $\left[^{91}$ Nb($\frac{17}{2}$ -) × $d_{5/2}\right]J=J_{\rm max}-2$ component which contributes coherently to the E2 matrix elements; Gloeckner obtains $(B(E2)_{\rm th})^{1/2}=3.61e_p+3.03e_n$ compared with the pure configuration value of $(B(E2)_{\rm th})^{1/2}=4.06e_p$. Using Gloeckner's matrix element and an experimental proton effective charge of $e_p=1.39$ from the 91 Nb $^{17}_{2}$ - $^{13}_{2}$ - transition, the 92 Nb $^{11}_{2}$ - 9 - 12 B(12) value requires a neutron effective charge of $e_n=1.61\pm0.06$ which is still large compared with the average for other N=51 nuclei of $e_n\approx1.0$. This difference is not understood at present. 832 (1967). [†]Work supported in part by the National Science Foundation. ^{*}Present address: Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824. ¹B. A. Brown, P. M. S. Lesser, and D. B. Fossan, Phys. Rev. C 13, 1900 (1976). ²B. A. Brown, D. B. Fossan, P. M. S. Lesser, and A. R. Poletti, Phys. Rev. C 14, 602 (1976). ³B. A. Brown, P. M. S. Lesser, and D. B. Fossan, Bull. Am. Phys. Soc. 19, 1003 (1974). ⁴S. Cochavi and D. B. Fossan, Phys. Rev. C <u>3</u>, 275 (1971). ⁵D. C. Kocher and D. J. Horen, Nucl. Data Sheets <u>B7</u>, 229 (1972). ⁶I. Kumabe, S. Matsuki, S. Nakamura, M. Hyakutake, M. Matoba, and T. Sato, Nucl. Phys. <u>A218</u>, 201 (1974); J. J. Kent and S. L. Blatt, *ibid*. <u>A255</u>, 296 (1975); J. M. Davidson, D. M. Sheppard, P. W. Green, and J. A. Kuehner, Phys. Rev. C <u>15</u>, 104 (1977). ⁷J. O. Newton, in *Nuclear Spectroscopy and Reactions*, Part C, edited by J. Cerny (Academic, New York, 1974), pp. 185-227; J. R. Grover, Phys. Rev. 157, R. S. Hager and E. C. Seltzer, Nucl. Data <u>A4</u>, 1 (1968). D. H. Gloeckner, Nucl. Phys. A253, 301 (1975). ¹⁰D. H. Gloeckner (private communication). ¹¹D. H. Gloeckner and F. J. D. Serduke, Nucl. Phys. A220, 477 (1974). ¹²V. S. Shirley, in Hyperfine Interactions in Excited Nuclei, edited by G. Goldring and R. Kalish (Gordon and Breach, New York, 1971), Vol. 4, p. 1255. ¹³O. Häusser, I. S. Towner, T. Faestermann, H. R. Andrews, J. R. Beene, D. Horn, D. Ward, and C. Broude, contribution to The IV International Conference on Hyperfine Interactions, Madison, 1977 (unpublished).