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The nuclear giant dipole resonance is discussed using a macroscopic model with two new features. The motion

is treated as a combination of the usual Goldhaber-Teller displacement mode and the Steinwedel-Jensen

acoustic mode, and the restoring forces are all calculated using the droplet model. The A dependence of the

resonance energies is well reproduced without any adjustable parameters, and the actual magnitude of the

energies serves to fix the value of the effective mass rn~ used in the theory. The giant dipole resonance is

found to contain a large component of the Goldhaber-Teller type of motion, with the Steinwedel-Jensen mode

becoming comparable for heavy nuclei. The width I of the giant dipole resonance is estimated on the basis of
an expression for one-body damping.

NUCLEAR REACTIONS Semiclassical theory, nuclear giant dipole resonance,
calculated v g), 1". Droplet model restoring forces. Coupled modes.

INTRODUCTION

The giant electric dipole resonance (GDR) is a
beautiful example, among the vast variety of pos-
sible nuclear excitations, of a manifestly collec-
tive mode that can be understood, to a large ex-
tent, in terms of a macroscopic approach. It cor-
responds to the absorption of electric dipole ra-
diation by the vibration of the neutrons against the
protons and the subsequent damping of this motion
into intrinsic excitation.

The GDR can be observed in every nucleus
throughout the Periodic Table and very little
structure is to be seen in the energy dependence
of the absorption cross section, except for the
lightest nuclei. ' The absorption cross section for
most nuclei follows a I orentz curve whose mean
energy E (see Fig. 2) varies smoothly with mass
number in a manner that shows little or no de-
pendence on nuclear shell effects. '

On the basis of a few early experiments Gold-
haber and Teller (GT) discussed three possible
macroscopic explanations for the A dependence of
the resonance energy. The first postulated an
elastic binding of the neutrons to the protons that
would result in a resonance energy independent of
A. The second proposal, later elaborated by
Steinwedel and Jensen4 (the SJ mode), was that
the resonance might consist of density vibrations
of the neutron and proton fluids against each other
with the surfaces fixed. This kind of motion, which

corresponds to the lowest acoustic mode in a
spherical cavity, would result in a resonance en-
ergy proportional to A '~'. Their third suggestion,
one that they chose to discuss in some detail (the
GT mode), was that the neutrons and protons
might behave like two separate rigid but inter-
penetrating density distributions. The resulting
resonance, consisting of the harmonic displace-
ment of these distributions with respect to each
other, would be expected to have an energy de-
pendence proportional to A ' '.

Because of the crude nature of the model and the
severity of the assumptions needed to justify it,
the GT mode has received relatively little at-
tention over the years. On the other hand, the SJ
mode, which also imposes a harsh and unrealistic
constraint on the motion (that the vibration takes
place in a rigid fixed spherical cavity), has served
as the basis for a vast literature dealing with the
GDR. The SJ mode has been widely applied and
has been extended to deformed nuclei, ' to include
compressibility, ' to include the coupling to surface
vibrations, "and other surface effects. 9'0

Our interest in the GDH was revived when we
realized that the development of the droplet mo-
del" " (which explicitly identifies the energy as-
sociated with displacing the surface of the neu-
tron distribution from that of the proton dis-
tribution) would permit a more realistic calcula-
tion of the restoring force for the GT mode than
the ad hoc procedure that was used in the original

15



DROPLET MODEL OF THE GIANT DIPOLE RESONANCE

work. We also came to realize that a much more
satisfactory macroscopic description of the reso-
nance results if it is considered to be a super-
position of GT and SJ modes (see, also, Ref. 14).
A moment's reflection should serve to convince
the reader than in an SJ type density vibration the
inertia associated with the flow of neutrons and
protons would tend to carry them beyond the loca-
tion of the original surface when they pileup first
on one side of the nucleus and then the other. This
tendency of the neutron and proton boundaries to
undergo a harmonic displacement from each other
is just the QT mode. The participation of this
mode cannot be avoided except by the unrealistic
assumption of an infinitely stiff restoring force
resisting such displacements.

The work that is to be described here contains
these two new features. First, all the restoring
forces are calculated in terms of the droplet mo-
del. . Second, the motion is considered to be a
superposition of QT and SJ modes with the rela-
tive magnitudes of the two modes determined by
the coupling between them and the associated
forces and inertias. We find that the GDH is
mainly a GT mode, but with an essential admix-
ture of the SJ mode which increases for heavier
nuclei. We also find an A dependence for the reso-
nance energy that is intermediate between that of
the GT and SJ modes, in excellent agreement with
the measured trends.

II. DEGREES OF FREEDOM

To describe the motion we choose a spherical
(polar) coordinate system with the z axis, which
is a symmetry axis, aligned along the direction
of the electric field. The equation of motion will
be solved subject to the constraint that the solu-
tion ean be represented by a vector

(2. 1)

GT mode SJ mode

FIG. l. Schematic drawings that serve toillustrate the
the general features of the Goldhaber- Teller (Ref. 3)
(GT} and Steinwedel-Jensen (Ref. 4} (SJ}dipole modes.
For each case, one-half cycle of the vibration is shown
as a function of time. In the GT mode a uniform proton
distribution (the smaller sphere whose motion is indi-
cated by the solid arrow} vibrates against the neutron
distribution. In the SJ mode the neutrons tend to pile
up first on one side of the nucleus and then the other
(density excess is indicated by plus signs and density
reduction by minus signs). The protons (not shown} move
in the opposite direction so the total density remains
uniform.

A. GT mode

The QT mode, ' illustrated on the left side of Fig.
1, consists of a rigid displacement of the neu-
trons from the protons by an amount

d=a R, (2.2)

times a harmonic time dependen. ce„where the
vector components e, and n, represent the amounts
of the QT and SJ modeq.

which leaves the center of mass fixed.
The dipole moment is given by

NZ
D, =Zed, = a, eR, (2.4)

where e is the unit of electronic charge.
The flow fields for the protons and neutrons in.

the GT mode are given by the velocity vectors
v, „(r,8) and v„(r, 8), where

where R is the mean radius of the nucleus. The
protons and neutrons are displaced from the origin
by the amounts

dg= —d and dq= ——d,
N Z

N Z
v = —v and v = ——v1z g 1 1n ~ 1~

with

vi = Qi R(cos88„—sin8 ee ),

(2.5)

(2.6)
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where e„, e~ are unit vectors in the ~ and 8 di-
rections.

B. SJ mode

the potential energy V by the expressions,

T=& a B a and V=2m C ~ a

A. Inertia matrix 8

(3.2)

N Z
5p, = —p, 5q and Op„= ——p„5q, (2.7)

where

5g = a+j,(kr) cos8,

where

(2.8)

kR = a = 2.081576

In the SJ mode, 4 illustrated on the right side of
Fig. 1, the protons and neutrons vibrate against
each other in a fixed spherical cavity in such a
way that their density variations are given by

The total kinetic energy of the system can be
written

T = 2 m Pg Vlg+ V2g + Pn Vln+ V2n
vol

(3.3)

where the p's are particle number densities and
m is the nucleon mass. If one substitutes from
Eqs. (2.5) and (2.12), performs the indicated in-
tegrals, and then, compares the resulting express-
ion with Eq. (3.2), the components of B are found
to be

K = 2a/j, (a) = 9.93 . (2.10)

ll P

Bl2=B2l=Bp y

B» = ~ (a' —2) B, ,
The expressions jp and j, are spherical Bessel
functions. Equation (2.9) follows from the boundary
condition of zero normal velocity across the
spherical boundary, which requires that the de-
rivative of j, at kR, i.e. , j,'(a), be zero. The
normalizing coefficient K in Eq. (2.8) for the amp-
litude 5g has been chosen so that the expression
for the dipole moment in the SJ mode is

(2.11)

N
V2 = —V2 and V2n=- —V2, (2.12)

where

K j A

v, = n, —j', (kr) cos8 e ——j,(kx) sin8 e~2 2 y 1 ur l

(2.13)

III. EQUATION OF MOTION

in analogy with Eq. (2.4). This normalization is
important since it establishes a scale against which
the relative contributions of GT and SJ modes to
the GDH can bg measured. With our choice of
normalization a GT mode specified by a, and an
SJ mode specified by n2 have the same dipole mo-
ments if e, =a2.

The velocity fields for the protons and neutrons
in the SJ mode are given by

where, if the quantity NZ/A' is set equal to &,
we find that

2 (a —2) = 1.166

is fairly close to unity.

(3 6)

B. Stiffness matrix C

In analogy with the determination of B in the pre-
vious section, the values of the components of the
stiffness matrix C can be determined by calcula-
ting the droplet model potential energy as a func-
tion of n, and a2 and matching the coefficients of
the quadratic terms to the corresponding terms
in Eq. (3.2).

The droplet model expression for the depen-
dence of the potential energy on o. is contained in
the following equation":

V= const+, 1

3 ++p vol

Bp=4 mAR

=-' m~ 'A'"
o

In the last expression we assume that R Rp
=-rpA' ', where xp is the nuclear radius constant
of standard nuclear matter, for which we shall use
the value 1.18 fm. '3

Note that the quantity

The homogeneous equation of motion for har-
monic vibrations of the system is

1
+

4 2 (Hr +2PT5, —G6, ).
p surf

(3.V)

(&o'B —C) ~ a = 0

where B and C are the inertia and stiffness ma-
trices defined in terms of the kinetic energy T and

The quantity w is the distance from the equivalent
sharp surface of the proton distribution to that of
the neutron distribution (i.e. , the neutron skin
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E J= (P'+ GH)/P . (3.9)

It also turns out that in all static applications of the
droplet model the equilibrium distributions of the
neutrons and protons are such that the local neu-
tron skin thickness t is related to the local sur-
face neutron excess 6, by [Eq. (46), p. 198, Ref.
12):

G—= —rp 0

3 J—r0

(3.10)

(3.11)

where

3 JP
2 G

tl/(1 ——— 1 =1 1 e of Eo. (3.9). (3.12)
2 P
3 J

The above combination of coefficients has special
significance in the droplet model. This can be
appreciated by inserting Eq. (3.11) in the surface-
energy integral in Eq. (3.7) which then reduces to

Q)2
4nr~

(3.13)

Thus Q has the significance of a stiffness coef-
ficient against the formation of neutron skin t,
when this skin is accompanied, at each point on the
surface, by a local neutron excess 5, related to t
by Eq. (3.11). Note the distinction between this
stiffness Q and the stiffness against the formation
of a neutron skin at constant 5„which is given by
H. The relation between t and 5„given by Eq.
(3.11), is predicted to hold in the droplet model
theory for the equilibrium density distributions

thickness t) in units of ro T. he nuclear asym-
metry 6 (the relative local neutron excess) is de-
fined by

(3.8)

and 6, is the value of 6 at the surface. The coef-
ficient J is the nuclear symmetry energy coef-
ficient and H, P, G are droplet model coefficients
serving to describe the response of the surface
energy to variations of r and &." "

As we shall see, the special structure of the
static droplet model scheme leaves its imprint
also on the theory of the dynamics of the giant
dipole oscillation, and it is necessary to review
briefly the relevant features of the droplet model
before proceeding with the solution of the problem
at hand.

First we note that, as shown on page 200 of
Ref. 12, there is a relation between the coefficients
J,H, P, G, which may be written as

of semi-infinite or finite systems, with or without
Coulomb energy, and for spherical or nonspherical
shapes. We shall refer to it as the "droplet rule"
and we shall see later the relevance of this static
rule for the dynamics of the giant dipole oscillation.

In such an oscillation the amplitude of the neu-
tron skin thickness vibrations at a point specified
by 0 is given by

T.= —Q A cosa1 (3.14)

and the amplitude of the neutron excess vibrations
at point r, 0 is given by

NZ
6 = —2o, , Kj,(kr) cos8, (3.15)

which reduces to

6~ = —2 Q2& Cosg (3.16)

C» = C» = ,' Pa'R'/r ' —= , PAa'—
p 3

C» ———;JA a'(a' —2) —' Ga4R'/r, '

E JA& (u2 2) GA2~&&4
6

(3.17)

Note that C», which is the coefficient describing
the restoring force in the GT mode, is proportion-
al to the droplet model coefficient H rather than.

to J (the volume symmetry energy coefficient) as
was assumed in Ref. 3. The coefficient H de-
scribes the resistance against the formation of a
neutron skin. Another point to note is that the
coefficient C», corresponding to the SJ mode, con-
sists not only of the usual volume term proportion-
al to J, but also of a surface term proportional to
the droplet model coefficient G.

The off-diagonal terms C» and C» provide the
potential energy coupling between GT and SJ modes
because of the joint dependence of the surface en-
ergy on T and 5,. In addition the two modes are
inertially coupled through the terms B]2 and B»
in the inertia matrix.

IV. SOLUTIONS

Equation (3.1) has soiutions only when the deter-
minant of the coefficients vanishes,

det((d'8- C) =0, (4.1)

which leads to the expression

for a point of the surface (we again repla, ced NZ/
A' by 1/4).

The integrals in Eq. (3.7) can be performed after
substituting Eqs. (3.14)—(3.16). The resulting ex-
pression in n, and a, can be compared with Eq.
(3.2) in order to establish that the components of
C are

C„=-,'HR'/~ ' =, —,
' HA"'

0 3 )
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where

De [D' —4det)B) det)C)]'t'I 't'
2 det(B)

(4.2)
TABLE I. Different sets of droplet model coefficients

(in MeV) corresponding to the curves shown in Fig. 2.

Curve

D = B~~C22 —2B~2 C~2+ B22 C11.

The resulting quantized eigenenergies of the
harmonic vibrations of the system are

E~ =S~ .

(4 3)

(4.4)

(a) Upper 20 32.11 16.47 8.50 20.47
(b) Middle 17 3648 14 9.74 31.63
(c) Lower 14 46.52 11.53 12.31 61.36

The energy E is the dipole vibration to be com-
pared with the mean energy E of the GDR. The
energy E, corresponds to a higher-lying oscilla-
tion for which the GT and SJ modes are nearly out
of phase and whose dipole moment nearly vanishes

(see later).
The nature of the eigenvibrations as regards the

relative amounts of the SJ and GT modes is given
by the ratios (n, /a, ), associated with the &u, solu-
tions. They follow from the expression

30 (~,'B C) a =-0, (4 5)

which leads to

25

2
2 + 11 ll (4.6)
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Figure 2 shows a comparison of the calculated
energy hv with experiment. The middle curve is
for a set of nuclear parameters given by a recent
droplet model fit to nuclear masses, fission bar-
riers, and radii (Ref. 13), viz. J=36.8 MeV, Q
= 17 MeV, r, = 1.18 fm. An illustrative value of H
= 14 MeV was assumed. The values of P= 9.74
MeV and G= 31.63 MeV then follow from Eqs. (3.9)
and (3.12). [This is case (b) in Table I]. The upper
and lower curves are for Q=20 MeV and Q=14
MeV, with J adjusted to 32.11 and 46.52 MeV, re-
spectively. This adjustment tends to minimize the
damage done to the fit to nuclear masses by the
departure from the optimum values of J and Q.
The ratio of H: Q for all three curves was main-
tained at 14:17.

Even though Eqs. (4.1) and (4.5) are explicit so-
lutions in the closed form of the coupled equations
of motion, their dependence on the nuclear param-
eters J,Q, H, P, G is not transparent. Fortunately
two excellent approximations to the exact solution
are available, which display this dependence in a
simple and illuminating manner.

FIG. 2. The measured values of the mean energy E~
of the GDR are plotted against the mass number A. The
dots are from the Lorentz curve fits of Ref. 2 [slightly
improved values are now availabl. e (Ref. 16)j and the
triangles are from Refs. 1 and 15. The solid curve cor-
responds to the predictions of Eq. (4.4) for a set of drop-
let model coefficients derived from a fit to nuclear
masses [case (b) in Table Il. The upper and lower
curves correspond to cases (a) and (c) in Table I. These
were chosen to illustrate the effect of making substantial
variations in the coefficients (while minimizing the im-
pact on the fit to masses).

A. Supersimple solution

This solution makes use of the fact that the de-
terminant of the inertia matrix is nearly equal to
zero. Thus if the quantity a were exactly 2 (in-
stead of 2.08), making —,'(a' —2) exactly 1, the de-
terminant of Bwould vanish and it is readily verified
that the resulting equations of motion would have
the following simple solution for the dipole mode
of oscillation:
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2 21 mro A'g A'
60 8J 8Q

mR'' (1+u),8J

(4.7)

(4.8)

(o /o ) =(q/3J)A~~~=g ~ (4.9)

In this supersimple approximation the solution
depends only on J and Q.

B. Droplet mode solution

We note that the relation for a,/n, given by Eq.
(4.9) is equivalent to the statement that, for the
oscillation in question, the ratio of the local skin
thickness t to the local neutron excess 5, is given
by

t -r,n, A' 'cos8 3 J
5, —'@24 cos8 2Q

(4.10)

independently of position on the surface. We
recognize this as the universal relation predicted
by the static droplet model for the equilibrium
ratio of the neutron skin thickness to the neutron
excess at the surface. "'" (The droplet rule —see
above. )

Taking this as a hint we may construct an ap-
proximate solution of the coupled equations by im-
posing the restriction t/5, = (3J/2Q)r„ i.e. ,

(4.11)

but without making the approximation a = 2. With
the above restriction the problem is now an oscil-
lation in one degree of freedom, with the single
solution:

,where u stands for (3J/Q)A '~'.
The associated ratio of the SJ to the GT mode is

gp 1.0
O

E
O

I—

O

Fu 0.5
0
E
O
O
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I

l50
I

200 250

Mass number A

FIG. 3. The ratio (a2/e&) of the SJ component to GT
component in the GDR is plotted against mass number
A for three different cases of interest. Curve (a) cor-
responds to the supersimple solution, Eq. (4.9); curve
(b) to the droplet mode, Eq. (4.13); and curve (c) to the
exact solution given by Eq. (4.6). In all these cases the
droplet model coefficients given in row (b) of Table I
were used.

tion and the above two approximations are com-
pared in Fig. 3. We see that the GT mode tends
to dominate for light nuclei and that it contributes
more than the SJ mode for all mass numbers in the
Periodic Table. The amount of the SJ mode in-
creases with A and almost reaches parity for the
heaviest nuclei.

In order to illustrate the nature of the actual
density oscillations we show in Fig. 4 the appear-
ance of the density distributions at the instant of
maximum displacement (the classical turning point
of the quantized oscillation) for '"Pb. The centers
of the neutron and proton spheres are seen dis-

mR() j 1+ g+ 3Q
(4.12)

o.,/a, = (1 —e)u ',
where & is a small quantity, defined by

e = 1 —(4/a')

= 0.0768.

(4.13)

(4.14)

2O8pb
Pn

2P

This solution still depends only on J and Q.
In a typical case (A = 125) the supersimple solu-

tion (4.8) gives an energy Rtu which is accurate to
0.42 MeV, or 3.2~jp. The droplet mode solution
(4.12) gives k~ accurate to 0.04 Me&, or 0.3L
The latter solution in particula, r may be used as
an essentially exact expression for 5~, agreeing
with the plot in Fig. 2 to within the width of the
line in most cases of interest.

The values of a, /a, predicted by the exact solu-

10 8 6 4 2 0 2 4

Rodiol distonce ( fm )

FIG. 4. The neutron and proton density profiles along
the GDR symmetry axis are plotted against distance
from the center of mass for the case of Pb. The
centers of the effective sharp spherical boundaries of the
two density distributions (GT mode) are shown displaced
from each by the maximum distance that is expected to
occur during the vibration (0.268 fm). The corresponding
compressional pileup (SJ mode) of neutrons on one side
and protons on the other is also indicated.
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placed by about 0.27 fm, and there is a consider-
able difference in the values of the local neutron
excess at the left- and right-hand tips of the nu-
cleus.

V. COMPARISON WITH EXPERIMENT

The most noticeable feature of Fig. 2 is the dis-
crepancy of about 15% between the absolute values
of the calculated curves and experiment. As
pointed out above the calculations depend for all
intents and purposes only on J and Q, and no rea-
sonable changes in these coefficients, consistent
with fits to nuclear masses, can bring the curves
into agreement with experiment.

Using Eqs. (4.8) or (4.12) we may readily de-
termine the values of J and Q that would be de-
manded by the GDR data. Thus from Eq. (4.8) it
follows that if the quantity 8/(mR, 'u') is plotted
against A ' ' a straight line should result, with
J ' as the intercept on the ordinate axis and 3Q '
as the slope. If the more accurate Eq. (4.12) is
used, such a plot should also conform closely to
a straight line, but with the intercept equal to
about 0.88J ' and slope about 0.97(3Q '). (See
Appendix C.) Figure 5 shows this type of plot.
We see that the data for A ~50 define reasonably

(U 5—
0
E

w 4

C
O

2

.074 A

00 O. I

I I

0.2—I/3
0.3

FIG. 5. The quantity (W/E~o) is plotted against A
for nuclei with A &50. These points are expected to lie
approximately on a straight line given by m*& /8
[0.8772 J +0.9707 (3Q )A ) see Appendix C. For
the values of the droplet model coefficients J=36.8 MeV
and Q= 17 MeV determined from nuclear masses (Ref.
13) [case (b) in Table I] we find that agreement can only
be obtained by assuming an effective mass m+ less than
m. A value of m*=0.69m gives the best agreement with
the experimental data but we have chose~ to round this
off to 0.7m for simplicity. The straight line in the figure
corresponds to this choice for m*.

mr '
A&~3 ]+8J (5.1)

where

Ao—= (3J/Q) = 274. (5.2)

[A similar relation follows approximately from
Eq. (4.12).j Thus, as noted in Ref. 2, the mass
number characterizing the transition region where

well a linear trend. (For A ~ 50 there is more
scatter in the experimental points. ) This confirms
roughly the correctness of the functional form of
the A dependence predicted by the model of coupled
GT and SJ oscillations, but the values of the coef-
ficients J and Q associated with the intercept and
slope of the line in Fig. 5 are (0.7) ' times bigger
than the values J = 36.8 MeV, Q = 17 MeV deter-
mined from the fit to masses. This apparent dis-
crepancy could be an indication that the effective
inertia involved in the oscillations of the neutrons
against the protons was somewhat smaller than the
inertia of the bodily motions of the neutron masses
against the proton masses. The reason might be
that part of the time the neutrons and protons ex-
change character (in virtue of the exchange com-
ponent of the nucleon-nucleon force) without act-
ually undergoing the associated displacements in

space.
(The exchange component of the intera. ction be-

tween nucleons is also known t,o contribute to the
enhancement of the total dipole absorption cross
section over its sum rule value. "") If we repre-
sent this effect by introducing effective inertial
mass densities for the neutron and proton fluids by
p„*,= (m*/m)p„, (this m* is not necessarily the
quantity governing the density of single-particle
levels at the Fermi surfa. ce) we may still use all
the formulas derived so far but with m replaced
everywhere by m .

Figure 6 shows that once an effective mass m~

equal to 0.7m is assumed there is perfect agree-
ment with the droplet model prediction for the
trend of 5~, based on the standard coefficients J
=36.8 MeV, Q=17 MeV.

By contrast it is clear, especially from Fig. 5,
that the trend with A in the observed energies
is inconsistent with either a pure Goldhaber-
Teller or a pure Steinwedel- Jensen model. In the
former case the data points in Fig. 5 should lie
along a line through the origin; in the latter they
should form a horizontal line. The same fact had
been brought out by the extensive analysis in Ref.
2, which demonstrated empirically a transition
from a proportionality of @e to A ' for small A
to a proportionality to A ' ' for large A. The es-
sential agreement with theory in this respect may
be exhibited by rewriting Eq. (4.8) in the form
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neither the GT nor the SJ behavior is appropriate
lies near the end of the Periodic Table. We also
xealize now that one-third of the cube root of this
characteristic mass number is a measure of the
ratio of the symmetry energy J' to the effective
neutron skin stiffness Q. The GDB energies thus
provide an independent estimate of this ratio,
which agrees with the value determined from nu-
clear masses (8:@=36.8:17).

We may also note that if the GDH frequency w

is calculated under the restx'iction of a pure SJ
mode the result has to exceed the value of w ob-
tained without this restriction, . This may be the
reason why in past analyses of the GDR, restricted
artificially to a pure SJ mode, the need for an ef-
fective mass less than m was not apparent, "the
inaccuracy of the restricted solution accidentally
tending to produce agreement with the experimen-
tal resonance energies.

Mass number A

FIG. 6. The measured values of the resonance energy
E~ are plotted against mass number A, as in Fig. 2.
The curve passing through the points corresponds to the
predictions of Eq. (4.12) vrith 4=36,8 MeV, @=17 MeV,
and an effective mass m~=0. vug.

The situation emerging from the above analysis
is something like this: In 1948 Goldhaber and
Teller pointed the way towards an interpretation of
the giant dipole resonance in terms of a simple
oscillation of rigid neutron and proton spheres.
This was largely replaced in 1950 by the more
sophist, 1cated Ste1nwedel- Jensen model of an acous-
tical resonance. Due to the accumulation of ex-
cellent experimental data, especiaQy by the I iver-
more and Saclay groups, it eventually became
clear that neither the GT nor the SJ idealization
was quantitatively satisfactory. The theory pre-
sented here, according to which the oscillating
system is allowed to decide for itself the relative
amounts of the GT and SJ modes, leads indeed to a
situation where neither mode is expected to be
dominant~nd certainly not the SJ mode, which
would not dominate until A»274. {See Ref. 21 for
a microscopic treatment leading to similar con-
clusions. ) On the contrary, the mixture appears
to be close to a special combination, the dx'oplet
mode which, for any value of A, is just such as
to make the local neutron excess at any point on
the sux face and at any instant follow the local
neutron skin thickness according to the droplet
rule. The result is that even for lighter nuclei,
with A «274, when the A dependence of the reso-
nance energy tends towards the Goldhaber- Teller
A ' ' law„ the actual value of the fx'equency is pre-
dicted to be governed by the effective neutron skin
stiffness Q and noI; by the stiffness H, which would
be appropriate for a pure GT mode [see Eq. (4.8)].
Thus nowhere in the Periodic Table is one justified
in relying on an idealization of a pure GT or a
pure SJ model.

What is the physical significance of the choice by
the oscillating system of the droplet mode& Math-
ematically this is the result of the near vanishing
of the determinant of the inertia matrix B. As is
readily verified the kinematic meaning of this near
vanishing is the similarity of the flow patterns in
the GT and SJ modes of oscillation. . In general, if
two modes of motion have essentially the same
flow patterns {and are regarded as separate modes
only because the potential energy is different for
them) then the off-diagonal (cross) term in the
kinetic energy, involving the product of the time
derivatives of the two modes, is no different (apart.
from normalization) from the diagonal terms which
involve the squares of the time derivatives of each
mode separately. The inertia matrix can then be
brought to the form
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for which the determinant is clearly zero. It is
apparently because the GT and SJ flow patterns are
(somewhat surprisingly) quite similar, at least in an

integral sense, that it is left largely for the po-
tential energy to decide on the optimum mixture
of the two modes, with the result that the mix-
ture conforms closely to the static droplet rule.

One aspect of the similarity of the GT and SJ
flow patterns is that they are by and large not too
far from parallelism, i.e. , that also in the SJ
rhode the oscillation is largely a to-and-fro mo-
tion of the nucleons parallel to the direction of
the electric field. The recognition of this feature
may be relevant for the microscopic interpreta-
tions of the GDB. Insofar as the gross motions
induced by the electric field are parallel dis-
placements, one might expect the nodal structure
of the individual particle wave functions not to
change very much. Consequently, the inertia of the
oscillations, as calculated microscopically for
the quantized nucleons, might be expected to be
much closer to the hydrodynamical value than if
drastic rearrangements of the nodal structures
were involved (Ref. 22). This feature would be
even more in evidence for nuclear potentials (such
as a harmonic oscillator well) for which the mo-
tion along the axis of the field is separable from
the transverse directions. This should help to
explain why the macroscopic hydrodynamic model
appears to work reasonably well even as regards
absolute values of the resonance frequency, in

particular why there is no evidence at all in the
data for inertias exceeding the hydrodynamical
values. Altogether if one remembers that through-
out the Periodic Table the major part of the oscil-
lation is in the form of rigid displacements of the
QT type, and that the remainder is also, in an

integral sense, not too different from such a
simple motion, one realizes that the proper role
of a microscopic treatment of the QDR is to dis-
cuss the finer details of the motions, the overall
behavior being quite well reproduced, for a good
reason, in a macroscopic approach. After all, in

describing center-of-mass displacements of a
system, little is to be gained by starting with a
microscopic many-body wave function of the A

interacting particles constituting the system in
question.

Concerning the subject of microscopic treatments
of the GDR we should add one remark. Such treat-
ments are more fundamental and contain, in

principle, all the physics of a macroscopic treat-
ment and, in addition, all the subtleties, refine-
ments, and peculiarities associated with the re-
tention of the particle degrees of freedom. How-

ever, if a microscopic treatment is to be relevant
in its quantitative predictions it must, in practice,

VII. ESTIMATE OF WIDTH

We shall present a tentative estimate of the width
of the QDR based on the recently formulated one-
body damping expression. "" The rate of energy
dissipation E is written as

E = pV n'da,
surf

(7.1)

where p is now the mass density and V the average
particle speed of a long mean-free-path gas in a
container whose mall elements do are moving with
normal speeds ~ with respect to the bulk of the
gas (i.e. , with respect to its center of mass). In
our case there are two gases, the neutrons and
the protons, and the average particle speed is &

of the Fermi velocity v~. The container is the
potential well felt by the neutrons or protons. We
shall assume that the surface of this well remains
stationary because it is determined principally by
the total density, whose boundary does not move
very much as the neutrons and protons oscillate
against each other. The relevant relative velocity
components, for the protons, say, is then just
minus the velocity of the center of mass of the pro-
tons, projected onto the normal of a surface ele-
ment do. Since the dipole moments D„D, given
by Eqs. (2.4) and (2.11) are simply related to the
center-of-mass locations of the protons and neu-
trons we readily find

n, = ——(a, + n, )R cos9,

n„= —(h, + h, )R cos8.
(7.2)

The rate of energy dissipation follows as:

where

D = mARv(NZ/A')

(7.3)

(7.4)

contain the physical features that are associated
with the two principal restoring forces of the GDR,
namely the symmetry energy J and the effective
neutron skin stiffness Q. This implies that the ef-
fective nuclear interaction used in a microscopic
treatment must be chosen so that it could repro-
duce the experimental values of 4 and Q. Also the
techniques employed in the solution (e.g. , the
parametrization of the potential well and the
amount of configuration mixing allowed) should be
adequate to describe accurately bodily displace-
ments of the neutrons and protons. Only then can
one usefully relate the difference between the
results of microscopic and macroscopic treatments
to the refinements associated with the retention of
the particle degrees of freedom.
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and

Q = Q~+ Q2. (7.5)

In the supersimple approximation the kinetic en-
ergy may be written as

1T= ~ B~2
7

where

B= mAR'(NZ/A') .

(7.6)

(7 7)

In the same approximation the potential energy
(not needed for an estimate of the width} is

V=~ C~2

where

C = 3 QA' 'u j(1+u} .

The equation of motion for n is then

Ba.+Dh +Ca =0.

(7 8)

(7.9)

(7.10)

The predicted width of the resonance is given by
the delightfully simpl. e expression

(7.11)

The widths given by Eq. (7.11) are predicted to
vary as A ' '. The cal.culation is compared with
experiment in Fig. 7 and there is no order-of-
magnitude disagreement between the experimental
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FIG. 7. The measured width I of the GDR (obtained
from the Lorentz curve fits of Ref. 2j is plotted against
the mass number A. The dots correspond to single
Lorentz curve fits to (presumablyj spherical nuclei,
while the triangles correspond to mean values for de-
formed nuclei calculated from the expression
I'=(I &I"2 ), where I'& and I'2 are the measured widths
of the two components of the resonance. The solid curve
corresponds to the predictions of Eq. (6.11) which is
based on the concept of one-body damping (Ref. 23).

values and the theory. Note that the theory has no
adjustable parameters since the one-body dissipa-
tion formula has no adjustable viscosity coef-
ficient. (This may be contrasted to ordinary hydro-
dynamic treatments of nuclear dynamics, or with
theories that postulate frictional forces between
interpenetrating density distributions in relative
motion. ""Also the effective mass m which,
to a certain extent, was a parameter in the fit to
the resonance energies, cancels out in the ex-
pression for the width. It will be interesting to
continue testing the macroscopic nuclear dynamics
predicted by the one-body dissipation theory in a
variety of situations, such as the GDR, where
microscopic features appear to play a secondary
role.

VIII. SUMMARY

The principal results of this study are as fol-
lows:
(1) The application of the droplet model to the GDR
leads to a simple algebraic theory.
(2) The relative amounts of the Goldhaber-Teller
and Steinwedel- Jensen modes of oscillation are
found to be such that in general neither dominates.
The mixture conforms closely to the static droplet
model rule.
(3} This is the result of the (unexpected} finding
that the flow pattern for the SJ mode of oscillation
is very similar, in an integral sense, to the GT
motion (a to-and-fro oscillation parallel to the
electric field).
(4) A comparison of the resonance energies with
experiment shows a firm discrepancy of 15% in ab-
solute magnitudes, which may be evidence that the
effective inertial mass in the dipole vibration is
less than the inertial mass associated with bodily
displacements of the neutrons and protons.
(5) With an effective mass m~ = 0.7m inserted in
the theory the agreement with the experimental
A dependence of the GDR energy is excellent.
(6} The observed transition from a proportionality
pf h~ tp A-x/6 tp a prppprtipnality tp A- /s j.s cpr
rectly reproduced, and the GDR data may be used
to give an independent estimate of the ratio of the
effective neutron skin stiffness coefficient Q to the
symmetry energy coefficient J. The result is in
agreement with the value deduced from a droplet
model fit to masses, (Q:j=17:36.8).
(7) An estimate of the width of the GDR, based on
the one-body dissipation formula of Refs. 23-26,
is not in qualitative disagreement with the data.

The authors wish to acknowledge a number of
important discussions with B. L. Berman, and
useful comments from G. F. Bertsch, A. Z.
Mekjian, and K. Takahashi.
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APPENDIX A. DEPENDENCE OF SOLUTIONS ON%

detC ~H[A'~' —3J(1/H 1/Q)] .

Thus, for a given (positive) value of H, detC is
positive (and the system is stable) if A is large
enough. The determinant changes sign, however,
and the system acquires one degree of instability,
if A decreases below A„«, where

(A1)

A, =3J ———ii3&&«H Q
(A2)

Thus if H&Q all (positive) values of A correspond
to stable systems, but if H were less than Q then
light nuclei with A &A„«would be unstable and
any solutions of the associated equations of mo-
tion would involve at least one unstable mode.

In the case J= 46.52 MeV, Q = 14 MeV, H = 11.53
MeV, used as an illustration for the lower curve
in Fig. 2, Eq. (A2) gives A„«= 9.74. This is an
estimate of the point where the lower curve in
Fig. 2 abruptly dives down to zero, the estimate
being based on the approximation where E is as-

The exact solution of the coupled equations de-
pends on the four coefficients J,H, P, G, but since
there is one relation between them [Eq. (3.9)]
there are only three independent parameters,
which may be taken as J, Q, and'H. As discussed
above, the main dependence of the dipole frequency
is on J and Q. The dependence on H is relative to
the finiteness of &, since if & were zero the re-
sulting solution for the dipole frequency, Eq. (4.8),
would be strictly independent of H. However,
even in the limit of &-0, the nature of the solu-
tions as regards their stability, is directly re-
lated to H. This may be seen by examining the
determinant of the stiffness matrix C. We find
that in the limit & = 0 this determinant is pro-
portional to HA' ' —2P which, in virtue of Eq.
(3.12), may be written as

sumed to vanish. It may be shown that in this
approximation the dive to zero is exactly vertical,
the smooth increase of ~ as A decreases towards
A„«being reversed, without warning, in a sharp
cusp at A„«. This upward-pointing cusp is in fact
the bottom part of a pair of intersecting curves,
one of which is the smoothly rising curve con-
tinued into the region below A„«, and the other a
vertical line coming down from infinity. The ef-
fect of a finite e is to break this level crossing (a
pathological type of level crossing, where one
"leveV' is a vertical line). This leads to two some-
what rounded cusps, the lower one corresponding
to the solution co illustrated in Fig. 2. The upper
cusp corresponds to &, , a higher-frequency mode
whose properties will be sketched out in the Ap-
pendix B.

APPENDIX B. "ANTIDIPOLE" RESONANCE

The frequency &, in the previous section, when

plotted against A, has the appearance of a slightly
rounded downward-pointing cusp. The right- hand

part of the cusp rises abruptly to very high values
(tending to infinity as e tends to zero). Its left-
hand part rapidly acquires the characteristics of
the monotonic increase typical of the main part
of the curves in Fig. 2. This part is associated
with an oscillation of a system that has lost sta-.

bility and is therefore of little physical interest.
The right-hand part is a higher-frequency mode
with practically zero dipole moment, where the GT
and SJ modes are out of phase. It is, in principle,
an interesting mode of oscillation. Its properties
may be studied by solving Eq. (4.2) and (4.6) using
the positive sign of the square root. A particularly
simple way to illustrate the general nature of the
solution is to consider the case when H = Q (and
therefore P=G=0). The two frequencies are then
readily found to be given by

(d, '=, —$(1+u) + Eu —t'+ [(1+u)'+ (2u' —6u)e+ (u' —2u —2)E'+ 6ue'+ e ]' '),mRo' e(1 —e) u
(Bl)

where u=(3J/Q)A '~' as before. For values of e
sufficiently small so that the square root may be
expanded this reduces to

1+u
(2ue)&~ & (B4)

mR
&u, '= 0 e+ higher powers of e, (B2)1+u

mR (1+u)+ higher powers of e. (B3)

The formula for v ' is the same to this order in
e as Eq. (4.8), and the ratio of &u, to &u is

For a value of A equal to 125, when u = 1.299, this
would give &u, /u& =5.15. Since h&o is about 15
MeV, the higher-frequency mode would in this
case be about 77 MeV. The actual predicted en-
ergy would vary with H (which, it will be recalled,
was in the present example taken to be equal to
Q) and it might also be more sensitive to the de-
tails of the theory than the dipole mode 5& . It
would be of interest to pursue the question of the
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existence, width, and possible ways of exciting
this "antidipole" resonance which, formally at
least, seems to follow from the well-established
GDB by a reversal of the relative phases of the
GT and SJ components.

plus small terms of order (u —1.2988)'c and higher.
If an effective mass m is assumed we may write

8„,, = 0.8772(m'/Z)+ 0.9707(2m*/q)~-'".

APPENDIX C. GRAPHICAL DETERMINATION OF J AND Q

Even though Eq. (4.12) for ~ ', unlike Eq. (4.8),
is no longer linear in u (i.e. , in A '~') it is almost
linear, since & is small. By expanding the function
of u appearing in Eq. (4.12) about u„a point cor-
responding approximately to A = 125, the function,

may be linearized in the interval of A values of in-
terest and the plot in Fig. 4 may still be used to ex-
extract the values of 4 and Q. Thus for uo we take
(SZ/Q)(125) ~~3 which, with the nominal values of
8=36.8 MeV and Q =17 MeV, leads to u, =1.2988.
The droplet mode expression fox 1/&' then be-
comes, to a good approximation,

1 mR02
(0.8772+ 0.9707u)

In Fig. 5 the quantity plotted against A x~3 is
actually c'/8 times the above, in order to make
the ordinate dimensionless. The straight line
through the points corresponds to a choice 4=36.8
MeV, /=17 MeV, m*/m =0.7.

We have also tried a slight modification of the
plot in Fig. 5 which takes into account approxi-
mately the slight deviations of nuclear radar;i from
the simple law R =1.1L4'~s fm. (The light nuclei
have radii a few percent smaller than this. ") The
net result on a plot of the type of Fig. 5 to move
the upper points, corresponding to small values
of A, a little to the right, without affecting ap-
preciably any of the conclusions arrived at when
this effect is neglected.
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