⁵⁰V half-life limit

A. Pape, S. M. Refaei, and J. C. Sens

Centre de Recherches Nucléaires et Université Louis Pasteur, 67037 Strasbourg-Cédex, France

(Received 28 October 1976)

Half-life limits $T_{1/2}(\beta^-) > 7.0 \times 10^{17}$ yr and $T_{1/2}(\text{EC}) > 8.8 \times 10^{17}$ yr have been deduced for ⁵⁰V from Ge(Li) spectra.

RADIOACTIVITY ⁵⁰V, deduced β , EC half-life limits, Ge(Li) detector.

According to nuclear systematics for isobars, $^{50}\mathrm{V}$ is expected to be unstable against β decay. So far this decay has not been observed. The probable decay modes of the $J^{\pi} = 6^{+}$ ground state of ${}^{50}V$ (Fig. 1) are by negatron emission and electron capture to the first excited states of ⁵⁰Cr and ⁵⁰Ti, respectively, with ($\Delta l = 4$, no) transitions. The ⁵⁰Cr and ⁵⁰Ti states then promptly decay by γ -ray emission thus making feasible the search for the ⁵⁰V β radioactivity via γ radiations of daughter nuclei. Several attempts have been made to detect these γ rays with NaI spectrometers.^{1,2} The usual method has been to obtain ⁵⁰V activity limits (or values in earlier papers) by subtracting a background spectrum from the ⁵⁰V spectrum. However, the difficulties in obtaining a background spectrum which corresponds exactly to ⁵⁰V counting conditions, and the presence of unresolved activities from ⁴⁰K and heavy radioactive nuclei, have made spectral interpretation a delicate problem. From extrapolated $\log ft$ values, it appeared possible that the ⁵⁰V daughter radiations could be detected in Ge(Li) measurements. Although the Ge(Li) detector is much less efficient than NaI, considerable simplicity is gained in its use. Accordingly we have made measurements on a large sample of natural vanadium, which contains 50 V, with a well-shielded Ge(Li) detector.

4 kg of high purity natural vanadium in the form of metallic chips were counted for a total of 1173 h with a 70 cm³ Ge(Li) spectrometer. To reduce the background radiation, the detector and cryostat were placed inside a counting cave having 12 cm thick iron walls on all sides. The vanadium was placed in a plastic container which fitted over the detector head. An additional shielding composed of a thickness of 3 cm of mercury was placed around the vanadium on all sides except that facing the cryostat. The integrated background activity for $E_{\gamma} \leq 2$ MeV was reduced a factor ≈ 60 by the iron and mercury.

It was apparent that γ rays from naturally occurring heavy nuclides, fallout, and ⁴⁰K were still present in the spectra. Some of these interfere with the measurements in that they appear at or near the energies of the 50 V daughter radiations sought. Most or all of the contamination was not contained in the vanadium sample used, since the strength of the contamination peaks observed in a 276 h background count corresponded to those in the vanadium count. (Preliminary measurements of kg quantities of other vanadium samples showed levels of contamination, which though extremely low, were enough to render this experiment impossible.)

Repeated counts of 23 h duration were taken. Between each measurement, the system gains were checked and occasionally adjusted as necessary. For short measurements with a source, the spectrometer resolution was 2.6 keV for ⁶⁰Co. The resolution of the 23 h spectra was ≈ 4 keV for the energy region 500–1500 keV. The spectrum obtained by summing all the individual measurements showed a 5 keV resolution.

The relative efficiency calibration for γ rays of $245 \le E \le 1408$ keV was made by later counting a solution of ¹⁵²Eu in the chamber used for the vanadium. The absolute efficiency calibration was made with a solution of KCl of known concentration for which the ⁴⁰K activity was known. No correction was applied for the difference of less than 10% in the γ -ray self-absorption between the calibra-

1937

15

tion measurements and the measurement on the vanadium.

The accuracy of the catalogued³ energies of the first excited states in ⁵⁰Cr and ⁵⁰Ti, 783 and 1554 keV, respectively, was checked by proton inelastic scattering on targets enriched in these nuclei.

 $E_{\gamma} = 1554 \ keV$. This energy region of the summed spectrum is shown in an insert of Fig. 2. For $1545 \le E_{\gamma} \le 1565$, γ rays from 234 Pa^m ($E_{\gamma} = 1554$ keV, 15 ± 1 counts), ²²⁸Ac ($E_{\gamma} = 1557$ keV, 16 ± 3 counts), and possibly ⁵⁰V are present. The number of counts due to the heavy isotopes was deduced from isolated peaks occurring in other parts of the spectrum, the diode efficiency, and with the aid of energy and branching ratio compilations.³⁻⁵ Fits with Gaussian-shaped peaks on a linear background were made over a restricted energy range. In the smooth curve shown in the insert of Fig. 2 activities of 13 ± 7 and 17 ± 7 counts were calculated for the ²³⁴Pa^m and ²²⁸Ac peaks, respectively. The normalized χ^2 depended somewhat on the limits taken for the fit, but generally the best fits (obtained with reasonable full width at half maximum and proper energies) were those having approximately the number of counts given above for 234 Pa^{*m*} and 228 Ac. The result is that any activity due to ${}^{50}V$ is less than about 20 counts. With a 50 V abundance of 0.25% (Ref. 5), this corresponds to $T_{1/2}(EC) > 8.8 \times 10^{17}$ yr for decay for the first excited level of ⁵⁰Ti.

 $E_{\gamma} = 783 \, keV$. This region of the summed spec-

trum is likewise shown in Fig. 2. Six contaminant γ rays are present within a few keV of the energy of the ⁵⁰Cr γ ray, the strongest being from ²³⁴Pa^m $(E_{\gamma} = 786 \text{ keV}, 193 \pm 11 \text{ counts}), ^{214}\text{Bi} (E_{\gamma} = 787 \text{ keV},$ 147 ±16 counts), and ²¹²Bi ($E_{\gamma} = 785$ keV, 178 ±25 counts) as deduced by the procedure outlined in the last paragraph. By taking the number of counts deduced for each of the contaminant peaks over the restricted range $777 \leq E_{\gamma} \leq 792$, and folding in the detector resolution, the shape of the spectrum was calculated. Best fits between the data and this shape superimposed on an adjustable flat background were made. The evolution of the fits was then studied as a function of the number of counts in an additional peak centered around 783 keV. In some cases, fits could be improved with a small contribution around 783 keV, but evaluation of the ⁵⁰Cr activity by this procedure is not reliable because this activity can also be due to statistical fluctuations in known spectral components. If such an analysis cannot be used to assign a definite activity to ⁵⁰Cr, one can give an approximate upper limit. Thus it appears that fewer than about 50 counts are attributable to ⁵⁰V. This leads to $T_{1/2}(\beta^{-}) > 7.0 \times 10^{17}$ yr for decay to the first excited level of ⁵⁰Cr.

The observed bump at 780 keV is evidently due to statistical fluctuations, as it does not match any reasonable assignment. The intensities of the peaks at 768 and 772 keV agree within statistical errors with intensities deduced for 234 Pa^m, 214 Bi,

FIG. 2. Ge(Li) γ -ray spectrum of 4 kg of metallic vanadium for a total counting time of 1173 h. The insert in the lefthand part of the figure shows an expanded view of the region around the 783 keV γ ray of the ⁵⁰Cr daughter. The smooth curve is the fit of the spectral form calculated from deduced contaminant activities added to a flat background, with no activity included for ⁵⁰Cr. The insert at the right is the expanded view of the region around the 1554 keV γ ray of the ⁵⁰Ti daughter. The smooth curve is the result of a fit with two Gaussian shaped peaks and a linear background.

and 228 Ac from other peaks in the spectrum. The 228 Ac peak at 795 keV agrees well with its deduced activity.

In the final analysis we give ⁵⁰V half-lives of $>8.8 \times 10^{17}$ and $>7.0 \times 10^{17}$ yr for EC and β^- decay, respectively. These limits are 10 times longer than those obtained from low background NaI measurements.¹ A better half-life determination would seem to be a major undertaking, involving especially the elimination of heavy element contaminations.

Values of $\log f_0 t(\beta^-) > 24.2$ and $\log f_0 t(\text{EC}) > 24.2$ can be deduced for ⁵⁰V (Ref. 6). On the basis of

- ¹C. Sonntag and K. O. Münnich, Z. Phys. <u>197</u>, 300 (1966).
 ²D. E. Watt and R. L. G. Keith, Nucl. Phys. <u>29</u>, 648 (1962).
- ³W. W. Bowman and K. W. MacMurdo, At. Data Nucl. Data Tables 13, 93 (1974).

single particle shell model $f_{7/2}$ to $f_{7/2}$ calculations, Morita's group⁷ finds $T_{1/2}(\beta^-)=1.50\times10^{18}$ yr, or about twice the present limit. They are preparing calculations using more complex models which should have the effect of lengthening the calculated half-lives.

We wish to thank Johnson Matthey Chemicals Ltd., London, for the loan of the "Puratronic" vanadium used in the long count, and the Compagnie pour l'Etude et la Réalisation de Combustibles Atomiques, Bonneuil sur Marne, for the loan of the vanadium used in the preliminary runs.

revised by F. Adams and R. Dams.

⁷M. Morita, Osaka University, Toyonaka, Osaka, 560 Japan, private communication.

⁴C. E. Crouthamel, Applied Gamma-Ray Spectrometry (Pergamon, New York, 1970), 2nd ed., pp. 469ff,

⁵C. M. Lederer, J. M. Hollander, and I. Perlman, *Table of Isotopes* (Wiley, New York, 1967), 6th ed.

⁶N. B. Gove and M. J. Martin, Nucl. Data <u>A10</u>, 205 (1971).