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Certain physical mechanisms contributing to the Brueckner pair dispersion energy W2
are reviewed. This W& is found to appear also in the Iwamoto-Yamada cluster expansion if
the same Brueckner state- and momentum-dependent correlation operators are used. It does
not appear in the two-body Iwamoto-Yamada energy, however, but in the three-body energy.
Up to this point, a Brueckner triplet dispersion energy W3 has not yet appeared. This W3
depends on a triplet excitation parameter x3, which is calculated using Jastrow correlation
functions. %e find that K3 is small when K2 is small (~ 0.1), and large when ~2 is large
(~ 0.4). Since K2 = 0.2 in nuclear matter, there is hope that both Brueckner and Iwamoto-
Yamada expansions converge to the same answer at fairly low orders.

NUCLEAR STRUCTURE Fermion fluids, nuclear matter; compared Brueckner
and IY expansions; calculated triplet excitation parameter.

I. INTRODUCTION

For a number of years, attempts' ' have been
made to understand the relationship between vari-
ational theories of fermion fluids and the more
familiar Brueckner theory (BT).' At the lowest
order (Lo), i.e. , independent pair, level, the
Iwamoto- Yamada' (IY) pair energy E, can be re-
lated to the Brueckner pair energy W, if the same
pair (Bethe-Goldstone) correlation operator is
used in both theories. It was then found' that E,
differs from W, in the absence of a repulsive pair
dispersion energy WD2. (This energy is one mani-
festation of a pair dispersion effect, which also
prevents the pair correlation function from be-
coming too long range. ') The result E, = W, —W2D

holds also for realistic potentials in nuclear mat-
ter (NM)."

Although missing in E„W, could appear in the
IY three-body cluster energy E,. This is indeed
the case, but it is there canceled formally and
completely by another part of E, when the state-
independent Jastrow correlation function (cfn) is
used. ' This cancellation gives rise to the belief
that the pair dispersion effect is "spurious. "

We would like to point out in this paper that the
cancellation occurs only because the Jastrow cfn
is state and momentum independent. (Here we
use the term "state dependence" in the broad
sense, or many-body context, to include the ef-
fects of specific time ordering of operators and
specific excitations in the many-body intermediate
states. The two-body partial-wave dependence of
a cfn may be called a "two-body state dependence"
whenever only this type of state dependence is
under consideration. In contrast, the state de-

pendence of a takeo-body potential is necessarily a
two-body state dependence. ) If state- and mo-
mentum-dependent correlation operators are used
in the IY expansion, the cancellation is incom-
plete. Then WD appears, not at the two-body
level, but at the three-body level. At this three-
body level, the IY energy still differs from the
Brueckner energy, because a Brueckner triplet
dispersion energy W, has not yet appeared in the
IY expansion. These results are described in
Sec. II.

The importance of W, depends on a triplet ex-
citation parameter K, for the simultaneous ex-
citation of three fermions ab'ove the Fermi sea.
In Sec. III we calculate K, for a number of
Jastrow cfn's. We find that K, is correlated with
K2' it is very small when K, is small, and large
when K, is large. Using K, as an indicator, we
argue that NM at and below normal density ap-
pears to be a low- to medium-density fermion
fluid. Consequently, the Brueckner expansion
may remain useful.

The last section contains brief concluding re-
marks.

II. DISPERSION ENERGIES

The Brueckner pair dispersion energy W, ap-
pears because there is a change of the interaction
potential energy of a fermion with the surrounding
medium when it is excited out of the Fermi sea.
We write

W', (aU) = ~Us„aU = U, V'„, —

where U~ and U„are average single-pa. rticle (s.p. )
potentials for a particle and a hole, respectively,
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FIG. 1. Third-order bubble insertion diagrams on a
particle line.

jij~v„,~jj-ji) fvj vv.„(v)(j—exp[-2jiv r]j, (2.2)

where kis the relative momentum. Consequently,
the Fock s.p. potential is also momentum de-
pendent. This momentum dependence contributes
to dispersion energies.

To see how this effect contributes to 8', , we

show in Fig. 1 the direct and exchange diagrams
of the third-order bubble insertion process on a
particle line drawn in the Rajaraman convention. "
Down arrows and symbols l, m, n, .. . , label hole
lines, while up arrows and symbols a, b, c, . . . ,
label particle lines. We see that the exchange
diagram differs from the direct diagram not only

in the labeling of the upper external lines, but

also in the exchange TBME, -(bniGinb), which be-
cause of the momentum dependence shown in Eq.
(2.2), differs from the exchange TBME
(-(mni Ginm) ) before the m- b excitation. Since
the relative momentum k,„&k „, -(bniGinb) is
less attractive or more repulsive than -(mniGnjn)

and z, is the pair excitation parameter.
Since K2&0p W'g vanishes only if V'~= U~. In the

simplest picture where U is defined in terms of
pair interactions only, the cancellation occurs if
(i) the effective two-body interaction (the reaction
matrix G or its variational analog f 'v, where f is
the two-body correlation function) is state inde-
pendent, and (ii) the exchange part of the two-
body matrix element (TBME) is neglected. When
G is state independent, the direct TBME and con-
sequently. the Hartree s.p. potential are momen-
tum independent. As a result, there is no con-
tribution to AV. (The Hartree part of AU is often
small even for state-dependent potentials. How-

ever, there are many potentials of interest in
nuclear physics for which the state dependence is
substantial. Examples are interactions acting
only in relative S states. ) The exchange TBME is
momentum dependent, however, as shown explicitly
in the second term of the following simplified ex-
pression for a state-independent interaction v,«(r):

for most potentials. This means that the V~ part
of S', is less attractive or more repulsive than
the V„part. Consequently 5; c 0 obtains. This
exchange effect is absent for Boltzmann particles
and is probably less important for boson fluids.
(Also exchange diagrams for bosons are ring-type
diagrams, which may have to be treated different-
ly ")

There is another contribution to the dispersion
effect involving the middle G matrix of these bub-
ble insertion diagrams in addition to that arising
from the momentum dependence of its exchange,
and in general also its direct, TBME. This con-
cerns the effect of off-the-energy-shell propaga-
tion, "i.e., the fact that the intermediate state for
the middle G matrix contains an additional particle-
hole excitation, thus making its TBME more re-
pulsive. However, it is known" that for the bubble
insertion on a hole line, this 6 matrix can be put
on the energy shell by generalized time ordering.
This cannot be done for the bubble insertion on a
particle line. Consequently, this mechanism con-
tributes to AV'.

The situation is different in the usual variational
calculations. One starts with a state- and momen-
tum-independent Jastrow correlation function

&= .... f; f; =f(~;), - (2 3)

rather than a correlation 0Peratox. This assump-
tion is equivalent to a neglect of the time ordering
of interactions and, in our present context, to the
approximation of (bni Ginb) by (mniGinm). Con-
sequently AU= 0 obtains, and the pair dispersion
energy vanishes.

There is thus no doubt that a pair dispersion en-
ergy should appear when only the third-order bub-
ble insertion processes are included. The situa-
tion is not so clear if other processes are also
included. It is therefore interesting to compare
the theories to higher orders.

A direct comparison between Brueckner and IY
expansions at the next, i.e. , three-body, level is
possible if one uses the same Bethe-Faddeev (BF)
triplet correlation operator (as well as the same
Bethe-Goldstone pair correlation operator) in both
theories. It is then found" that the IY cluster en-
ergy up to three-body terms is

3

P„«,+E",-" + [W, —W, (X~'~)],

where E"," is the three-body hole-hole interaction
energy. The BF-three-body cluster energy 8; in-
cludes the third-order bubble insertion on a par-
ticle line (as well as the third-order ring diagram).
The two terms inside each square bracket are the
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Brueckner components of an IY energy. (A brief
derivation of the second square bracket is repro-
duced in the Appendix for the reader's conven-
ience. ) One of these components is the negative of
the n-body dispersion energy

(x~ "~) =x& "~K„/(n —])! . (2.5)

This energy is proportional to the multiplet ex-
citation parameter

g (~~" Ix». . ..x». . . .I~i
.), (2 6)

f ) ~ ~ ~

for the simultaneous excitation of n fermions out
of the Fermi sea, as described by the multiplet
excitation operator X». . .„. (Nis the number of
fermions in the system. ) It also depends on the
I agrange multiplier' X("), which is introduced
formally via a constraint on the size of K„. It is
ultimately determined by the choice of s.p. poten-
tials, as in BT. {It is also related to the renor-
malization of s.p. occupation probabilities. )
Therefore we may use the Brueckner expression

(2. 'I)

and interpret it as an average change of the s.p.
potential energy when a fermion is excited out of
the Fermi sea. The choice of s.p. potentials Up"

and U„") appropriate for the n-piet excitation is of
course an important dynamical question which
affects both the cfn's and the overall qualitative
picture. However, we are not concerned with
this question in this paper.

On the other hand, the Brueckner energy up to
three-body terms differs from Eq. (2.4) in the ab-
sence of the last term -W~3(X' ), which cancels
the three-body dispersion energy in W, .

We should point out parenthetically that Eq. (2.4)
contains an explicit illustration of that special fea-
ture of Brueckner theory that each s.p. potential
U~(") is chosen for the cancellation of certain terms
in higher orders. The illustration involves W, of
which a V~')z2 part comes originally from W3 in
Eq. (2.4). (We may include the choice of lT~~'~ =0
as a special case of the above. ) We can thus iden-
tify in Eq. (2.4) an original WD energy made up of
this V~' ~, and the -LT„~, terms. This original
W2D is canceled by -W~2(X~'~) of the first square
bracket. This leaves a dispersion energy W~2 in

Thus pair dispersion terms +W, appear 3
times in Eq. (2.4).

The same situation may obtain for 8"„, so that the
energy expression may appear complicated for
general choices of U~("). It is in this context that
the conceptual simplicity of the choice l7~" =0 can
be appreciated, although this choice does not
necessarily give the fastest convergence of the
energy expansion.

To render further analysis more definite, let us
make this simple approximation

p(n) p ~(n) p(n) p (2.8)

which corresponds to the compact-cluster expan-
sion of Brandow" and the recommended procedure
in the exp-S method. " Then the Brueckner and IY
energies both contain the pa~.r dispersion energy
W2 (—U„). They still differ, but now by the triplet
dispersion energy

W, (-U„) —-2 Uqtc, . (2.9)

It would be interesting to see if WD3 will eventually
appear in the four-body energy of the IY expan-
sion.

How serious is the discrepancy W, at this three-
body level? At low densities, we expect a344K2.
Hence there is reason to hope that these theories
agree at relatively low orders. However, as the
density increases, the "break-even" point (z, =2(&,
in the present approximation) may be reached and
passed. The situation then becomes quite compli-
cated.

It is therefore useful to study z3 in order to gain
some insight into 5'~3.

III. TRIPLET EXCITATION PARAMETER

In this section, we calculate z3 and ~2 and study
their relationship. For simplicity, w'e use Jastrow
cfn's (2.3) which often give values of z, in close
agreement with those obtained in Brueckner cal-
culations. " Also great accuracy is not needed in
the present semiquantitative study.

For these cfn's, we find that

X123 X12X13 X12X23 X13X23 X12X13X23

x;; f;,
(3.1)

The following forms of f(r) are used in the calcu-
lation.
(i) BCC form (Ref. 1):

0, for r&c

with the parameters of Chakkalakal, Yang, and
Clark" (their Tables 10a and 12a).
(ii) Pandharipande (PP) form (Ref. 14):

Function f (r) heals smoothly to 1 at and beyond
the cutoff distance d. Typically kf d=2. We use
the analytic approximation of Alexandrov,
Moszkowski, and Wong15:

f(r) = & I1 —exp[ p. ,(r —c-)])II+@exp[ p. ,(r c)]-), -
! for r&c

(3.2)
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'0 for x& c

f(2)= &1 ——,for c~r~d
d —c

&1, for y'&d

with p =2.

(3.3)

(iii) CMW form (Ref. 16):

y'(r) = exp(- —e-'~')b
2r (3 4)

with the parameters of Krotscheck and Takahashi. "
The excitation parameter ~3 is then given by the

integral

e

2 3 3 2 2 2 2 2 222 12 2 2 2
p +12 23( X12X23 X12X23X31 X12X23X31 X12X23X31) 1 (I,+ I + I,) + —,I „I I„

V
(3.6)

where

3
l „=l(k32"12) = j,(k1„r„)

A~x„
(3.6)

is the Slater function for the Pauli exchange part
of the pair correlation function, and v is the de-
generacy of the fermion s.p. spatial state (2 for
neutron matter, 4 for NM). We note that if X,.&

is
very short range, then /,.&=1 when X,.&w0. Then
z„ is proportional to v(v —1) (v —n+ 1)/v". Con-
sequently ~„=0for n& v. If y, &

is reasonably long
range, a„ is non-negligible for n& v. We also note
for the sake of completeness that

1 ~I("2=P d'my' r 1 ——l' k~X (3.7)

Figure 2 gives 2v2 (broken curves) and z3 (solid
curves) in neutron matter for CMW cfn's (open
circles) and BCC cfn's (solid circles). The CMW
functions used were originally obtained for the re-
pulsive part of the '8, Reid potential of the "home-
work problem, ""while the BCC functions were
obtained for the standard hard-core potential
(SHCP) in even states and the pure hard core
(c=0.4 fm) in odd states. These two potentials
are rather similar. The resulting z„are very dif-
ferent, however, because the CMW function is
long range (e.g. , f(b) = 0.83 and b = 2 fm). It is not
completely clear to what extent the CMW cfn is
inferior to shorter-range Bethe-Goldstone, BCC,
PP, and other cfn's. The fact that the pair dis-
persion effect cuts down long-range correlation'
is very suggestive in this connection.

Figure 3 shows results in NM for the BCC and
PP functions. - They give comparable results for
the SHCP, except at the higher densities where
the PP parameters are smaller because the cor-
responding cfn's have shorter ranges. (The PP
functions are cut off at r =d, where d= 1.7/k~. )
For the IY potential" with its larger core radius
(c = 0.6 fm), similar values of z„appear at values
of kz smaller than those for the SHCP by =20%.

These results show an interesting correlation
between the values of a2 and e3. We recall that the
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FIG. 2. Multiplet excitation parameters x3 (solid
curves) and 2tc2 (broken curves) for.CIVlW cfn's {Heid
potential) and BCC cfn's (SHCP potential) in neutron
matter.

true (pair) excitation probability is not z„but" "
f, = [(1+4~2)'~' -1]/[(1+4~2)'~'+ 1] . (3.8)

This is approximated by ~2 adequately for small
z2 (C0.1), but differs significantly from the latter
for large 112 (a0.4, which is just below the break-
even point). Traditionally z2 is used as an expan-
sion parameter. We find here that v3 is indeed
very small when ~, is small, and large when z2
is large. Therefore the use of z2 as an expansion
parameter appears quite justified.

Thus for each potential and each correlation
function, we can distinguish a low-density region
of small ~2 and a„where a simple hole-line ex-
pansion appears sensible, a medium-density re-

e

p(fm-~)
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K = K3= 0.3. These values are rather large and
indicate that the comparison between theories
should then be carried to higher orders.

Even at the three-body level, quantitative corn-
parisons between Brueckner results, IY results
for Brueckner (i.e. , state dependent) cfn's and IY
results with Jastrow (i.e., state independent) cfn's
for realistic nuclear potentials are probably of
considerable value.

Finally, we can visualize higher n-piet disper-
sion energies involving n-piet excitation param-
eters. The results of this section suggest that ~„
will decrease rapidly with n when the density and

~, are small. Then W„becomes progressively
less important. On the other hand, if both density
and v, are large, I(.„and 5'„may remain large.
Under the worst of circumstances, the difference
between Brueckner and IY truncation points may
remain substantial to any finite order of perturba-
tion. When this occurs, special techniques will
be needed to sum the perturbation series.

1,0 2.0
k, (fm-&)

30

FIG. 3. Multiplet excitation parameters x3 (solid
curves) and 2~2 (broken curves) for BCC cfn. 's (SHCP
potential), PP cfns (SHCP potential) and BCC cfn.s (IY
potential) in nuclear matter.

gion, and a high-density region of large z, and z3
where many-body correlations become significant
and the Fermi liquid features become manifest.

If the above qualitative picture is valid, know-
ledge of z, is quite valuable. For example, con-
sider NM at or below normal density (p, = 0.15
fm '). From Brueckner calculations we obtain
K2 %0.2 for the IY potential, and z, &0.13 for the
SHCP (in even states plus the hard core in odd
states). The results are quite insensitive to the
choice of ) ~'& (Ref. 2). For these potentials, the
density of NM does not appear high.

The situation is more complicated for realistic
nuclear potentials because of tensor forces. It is
quite likely that the same qualitative relation holds
between ~, and z„since x3 is made up of succes-
sive pair excitations, and a major effect of tensor
forces is already included in z,. We find that for
p ~ p„z, ranges from 0.07 (UG3 potential) to 0.19
(HJ potential) in a "standard" Brueckner calcula-
tion with V'&—- 0." The situation is then rather
similar to that for simple potentials.

Realistic potentials do differ from simple poten-
tials in at least one respect: ~, is sensitive to the
choice of /7~. For example, a lowering of /7~ by
50 MeV causes z, to increase by 0.1 at p, for the
HJ potential, "leading to higher estimates of

IV. CONCLUDING REMARKS

The Brueckner theory identifies explicit mech-
anisms which can contribute to the dispersion en-
ergies W~, both at the two-body level and at the
three-body level. To the extent that their con-
tributions are significant, the resulting dispersion
effects can be considered to be physically mean-
ingful. It can also happen, especially at high den-
sities, that there are so many important higher-
order contributions that the isolation of one class
of effects for special treatment is not useful.
Even so, the fact remains that the effects are
present and can be calculated.

A pair dispersion energy W, also appears in the
IY expansion if the same state- and momentum-
dependent Brueckner cfn's are used. Then the IY
expansion appears to differ from the Brueckner
expansion only in the truncation point. For ex-
ample, W, appears only at the three-body level,
but W, has not yet appeared.

In contrast, dispersion energies are entirely
absent when state-independent Jastrow cfn's are
used. ' This is a simple consequence of the state
independence of these simple trial functions.

We cannot rule out the possibility that simple
state-independent Jastrow cfn's are actually better
than Brueckner cfn's, perhaps for certain poten-
tials at certain densities. However, if they are
better, we ought to understand why they are bet-
ter in spite of the many state- and momentum-de-
pendent effects which appear so readily. Similar-
ly, the rejection of the pair dispersion energy
should have an explicit, dynamical justification.
No such justification has been given in the litera-
ture.
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There is a related problem in the comparison
between Brueckner and variational energies.
Being variational in character, Jastrow functions
do not have to be very realistic to be useful for
estimating energy upper bounds. Since calculated
variational energies" "are already much lower
than the results of LOST, significant attractive
contributions should appear in higher-order
Brueckner calculations if the calculated variational
energies are indeed upper bounds. This possibility
does not necessarily imply that dispersion effects
are spurious.

There is no doubt that we need reliable energy
comparisons between theories. The present work
suggests that qualitative comparisons between
Brueckner and IY expansions will also help if con-
tinued to the four-body level, at least for rela-
tively low-density fermion flmds such as nuclear
matter at or below normal density.

The author would like to thank Professor S. A.
Moszkowski and Dr. B. H. Brandow and Dr. K. F.
Liu for reading and commenting on a draft of this
paper.

APPENDIX: THREE-BODY DISPERSION
FORMULA

The structure of the first bracket in Eq. (2.4) is
well known and was first derived in Ref. 2. The
thi.ee-body terms have been analyzed in Refs. 4
and 5. Of these terms, the part of greatest im-
portance in the present discussion is the second
square bracket. Although its structure has been
derived before, 4' we believe that the reader will
find it convenient to have summarized below in
this Appendix the major steps involved in the
analysis. Vfe follow the derivation of Ref. 4.

The IY cluster energy in question is

C, = g [(ijk]Q~»,(t», + v», —t, —t~ —t„)Q.», (ijk)e —36» (tj)Q~t, (t»+ v» —t; —t&)Q»)ij)e] .3.' N, ,~
(A1)

Here

t„=t(1) + t(2),

t», ——t(1) + t(2) + t(2),
(A2)

123 ~ X12 X13 X23 X123 (A3)

is the triplet Bethe-Faddeev (BF) wave operator.
The latter is defined by the three-body equation

Xx23 = 123
~123~123 &

eX23
(A4)

5123 5y2 + V23+ V3g

are kinetic-energy and potential operators,
0» = 1+X„ is the usual Bethe-Goldstone pair cor-
relation operator, and

where Q», is the Pauli operator for the simul-
taneous excitation of three fermions out of the
Fermi sea. The energy denominator

81.23 ~&23 + UX23 (A5)

is defined in terms of the s.p. potential operator

U„,= U(1)+ U(2)+ U(3) (A6)

and the s.p. energies t,. and c,. =t,. + U,. of the nor-
mally occupied s.p. state i. (For simplicity of
notation, we shall not distinguish between the s.p.
potentials UI'~ and plain U, ) The symbol 5 labels
the s.p. state of particle 3 in the antisymmetrized
set 8(ijk)

Part of the first term in Eq. (Al) is

where

Z (~jklX123(U, + +j+ Up +y23)Q|$3iijk&e
ijk

(3) (AV)

The crucial step leading to line 2 requires an application of the wave Eq. (A4).
The remainder of Eq. (A1) can be simplified by separately examining its kinetic- and potential-energy

contributions. The former,

g [&ijk)(1+y~, + gt, + yt )(t„,—t; —t~ —t,)Q„,[ijk&e —26,1—, &ji(Q~, (t„—t; —t )Q„[ij&~]=
id'

(A8)
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vanishes because the first term in Eq. (A8) cancels the second. The remaining, potential-energy term is

g [&&j~l(1+xt. + xt3+ x3t ) Tl~j&&e —3f»» (~jl~lit. Gi l~j&e]
ifk

where we have used the definitions

(A9)

G12 ~12 12 & ~123~123 ~1 + ~2+ ~3 (A10)

for the two- and three-body reaction matrices. The component T matrix I', is that part of T in which par-
ticle i is not involved in the last G interaction. " We may write

T = G, »+ G,~+ G~2+ [(T~ —G23) + (T, —G~,) + (T~ —G,»)]

and note that the contributions from the G,.
&

parts of T to the first term of Eq. (A9) exactly cancel its
second term. This leaves

(A11)

R', = ijk 3X» T, —G„+ T, —G„+ T, —G„ ijko, .
ifk

(A12)

The last term of this equation vanishes, because
the third particle is already excited out of the
Fermi sea in (T, —G»)lijk)e Th.e remaining two
terms contribute equally. Using the definition

(A13)

where Z, is the BF operator introduced by Bethe,"
we obtain finally the familiar expression

(A14)

of Bethe." Thus the form

C3= W3- W, (A15)

is obtained for the second square bracket in Eq.
(2.4)

The result (A14) was first. obtained by
da Providencia and Shakin. ' In repeating their
derivation, we hope to have made particularly
clear how the "two-sided" IY energy expression
(with its two 0 operators) is reduced to the "one-
sided, " model expression of the Brueckner theory,
i.e., through the fact that 0123 satisfies the wave
Eq. (A4).
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