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We obtain a solution of the Dirac equation in the presence of the electromagnetic field of a
complex nucleus by means of coupled-channel partial wave analysis using a new method in
which the asymptotic solutions of the coupled radial wave equations include all electromagnet-
ic couplings. A computer program employing this method is used to determine the importance
of dispersion effects in the scattering of 250 MeV electrons from 4 Ca and 4Ca. We find the
dispersion effects to be less than 1% for angles below 90' (i.e., considerably less than experi-
mental error over the range investigated experimentally), thus supporting the view that the
difference in the differential cross sections from 4 Ca and 4 Ca arises primarily from a dif-
ference in the ground state charge distributions of the two isotopes.

NUCLEAR REACTIONS Ca(e, e'), Ca(e, e'), E=250 MeV, E= 50 MeV, calcula-
tions; coupled-channel calculation of dispersion effects; energy dependence of dis-

persion effects.

I. INTRODUCTION

There arises, in the course of analyzing high
energy electron-nucleus scattering experiments,
the problem of determining the differential cross
section given a particular charge distribution for
the scattering target. ' Computer codes which per-
form this type of analysis by means of the partial
wave method have been available for many years "
These codes, which are able to handle single-chan-
nel scattering, are adequate to the extent that the
nucleus may be approximated by a static, spheri-
cally symmetric charge distribution. Therefore
they have found their most fruitful applications in
analyses of electron scattering from doubly or
singly magic nuclei in which there are no low-lying
excited states.

As the need arose to analyze data from more
complex nuclei, the distorted wave Born approxi-
mation (DWBA), in which the distortion of the in-
coming plane wave by the Coulomb field surround-
ing the nucleus is correctly accounted for by the
partial wave method, and nuclear distortions,
etc. , are treated as first-order perturbations, was
employed. In some cases, however, the DWBA
treatment is inadequate.

A proper treatment of the higher order effects of
excited states and of higher multipole fields re-
quires a complete coupled-channel partial wave
analysis of the Dirac equation. For bound states,
this problem was first solved by McKinley4 in the
course of determining the eigenvalues of muonic
atoms. The scattering problem is more difficult
because the wave functions extend throughout all
space. We present here a computational solution
to the coupled-channel problem for a Dirac parti-

cle scattering from a complex nucleus. The cou-
pled radial wave equations. are integrated from the
origin to the edge of the nucleus using a standard
multistep integration technique, from which point
they are carried on by analytic continuation with
successive power series expansions to a radius at
which the asymptotic solutions of the coupled ra-
dial wave equations converge sufficiently for an
adequate determination of the partial wave phase
shifts. The asymptotic solutions themselves in-
clude all electromagnetic couplings and thus may
be used at much smaller radii than solutions such
as the standard, relativistic Coulomb wave func-
tions which include only monopole potentials. Qur
solution is embodied in the computer program
ZENITH which is written in IBM FORTRAN IV and
currently runs on IBM System/360 and System/370
equipment. Results obtained with ZENITH have
been published elsewhere. ' ' Recently, Saladin,
Roesel, and Alder' have suggested a method quite
similar to ours for analyzing Coulomb excitation
experiments with the Schrodinger equation.

In Sec. II, we develop the partial wave formalism
and derive an asymptotic solution to the resulting
coupled radial wave equations. In Sec. III, we de-
termine the matrix elements of the electromag-
netic interaction. Section IV deals with several
numerical procedures employed in ZENITH, and
in Sec. V we discuss a number of tests which have
been made to ensure proper operation. In Sec. VI,
the program is applied to determine the importance
of dispersion effects in the scattering of 250 MeV
electrons from 'Ca and ~Ca. We find the disper-
sion effects to be less than lg~ for angles below
90' (i.e., considerably less than experimental
error over the range investigated experimentally),
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thus supporting the view that the difference in the
differential cross sections from ~ Ca and Ca
arises primarily from a difference in the ground
state charge distributions of the two isotopes. '
Section VII is a brief summary and discussion.

This paper is essentially a condensed version of
the author's Ph.D. thesis, "from which additional
details may be obtained in many cases.

II. PARTIAL %AVE FORMALISM

The wave function g(r) for a free Dirac particle
of mass m with total energy E is a four-comyonent
syinor satisfying the &ave equation"

&,@(r)=(-in V+Pm)y(r) =Zy(r).

The Dirac matrices o, and P are 4 by 4 matrices
operating on the components of @(r). They are de-
fined by

(0 ~l ff 0&

kv oi ko -fi
where J is the 2 by 2 unit matrix and the compo-
nents of o =(o„o2,g, ) are the Pauli spin matrices.
The total angular momentum operator is the sum
of an orbital part and a spin part:

1 g 0)J = i.+S = - i r x V + —
~to gi

Given eigenstates
~
LM) of L' and L, with eigen-

values L(L +1) and M, respectively, together with
eigenstates

~
—,'M, ) of (—,

' o)', and —,
' g, with eigen-

values —,
' and M„respectively, we construct eigen-

states
~ JLp) of (L+2o)', L', and L, +2o, with

eigenvalues J(J +1), L(L+1), and p, , respectively.
These are the spinor spherical harmonics. We

I JLp) = Q C~'~, p. I LM)
~

—,'M, ) .
Nhf

To each value of J, there correspond two possible
values of L: L, =J——,

' and L, =J +-,'. Consequently,
J and L, may be combined into a single quantum
number X as foQows:

y, jJ,L) =2(L -J)jJ +-,'),
J(x) =

I y. I
--.',

L(y) =J(y) + —,
' sgny.

Hereafter, X and the pair J,J. will be used inter-
changeably without explicitly illustrating the de-
yendence of one upon the other. We will frequently
identify the ket

~ LM) with the syherical harmonic
i~ Y»(8p) = (8p~ LM). This choice of phases is un-
important for monopole scattering but is a great
convenience for more general scattering situations.
The syinor spherical harmonics form an orthonor-

mal basis for the space spanned by the kets

Consider, now, the scattering of a Dirac particle
of mass m and charge ze from an infinitely massive
nucleus of charge ge. Let the Hamiltonian govern-
ing the internal state of the nucleus be H„and let
the interaction between the nucleus and the Dirac
particle be V(r). The wave function @(r) then
satisfies the wave equation

[ff +V(r)+~ jy(r) =@@(r).

In terms of the variable r, Eg. (1) represents a set
of coupled linear partial differential equations.
The partial wave method exploits the invariance
of Eq. (1) under spatial rotations and reflections to
replace it with an infinite collection of sets of cou-
pled ordinary differential equations in the radial
variable x =

~
r ~. We will be interested primarily

in the case where V(r) is the electromagnetic in-
teraction, which we write in the form

V(r) =S(r) +V(r) ~ ~.
Let I and P~ be the angular momentum and parity

operators of the nucleus. We choose as a basis for
the state space of the nucleus, the kets

~ nM), 0 ~n

&/-1, and-I„&M &I„,whicharesimultaneous
eigenstates of &~, I', I„andp~ with eigenvalues

e„,I„(I„+1), M, and p„,respectively The w. ave
function may be written as a series of the form

t, f"(~) I t& i
where the kets

~
t) form a basis for the space

spanned by the kets
~
nM) ~ yp. ). The total angular

momentum operator for Eq. (1) is F = J+I, and

the total parity operator is P =P~P„where P~ is
the parity operator for the Dirac particle. The
kets

~
f) may be chosen to be simultaneous eigen-

states of the operators F', p„andp, when these
operators are restricted to either the upyer or the
lower components of the Dirac spinor. One such
set of eigenstates is

~ fmug n) = Q C~~~„~)(p, ) ~
nM ) (2)

for which p =p„(-1)~.In general, to a pair of
eigenvalues f and p, there correspond several
yossible pairs (y, n). Let N(f, p) be the set of such
yairs and let X(f,p) be its cardinality. It is clear
that if (y, n)HN(f, p) then (-y, n)EN(f, -p). As a
notational convenience, we introduce a single
quantum number, say j, such that as j ranges from
1 to JI(f,p), (y, ,n,.) ranges over all of the pairs in

N(f, p). Ifj is the quantum number corresponding
to the pair (y, n) in N(f, p), let j be that corre-
sponding to the yair (-y, n) in N(f, -p).

We now express @(r) in the form
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Upon substituting this expression into Eq. (1) and

making use of the form we have assumed for V(r),
we obtain, in terms of the dimensionless quan-
tities p =gx, 7 =mE, , and t„=1—q„g ', the dif-ferentiall

equations

yP P + t 7 gfP P S.
k P gfP P V k P fP P

p
~

~ PI

f~I PI

~

nj~

~

fir ~~I ~ f~

~
~

~

~

fi~ ~
~ ~

~
~

~

~

f~ k~

~

t
k (4)

in which

v,~~(p) =(f~qpj I sgn~V(r) gE 'I fm~ Pk ) —.

The mdex ~ m the equations above distinguishes among the X(f,p) independent regular solutions whose be-
havior near the origin is given by

lim [f&~(p) p-I yl] =6,» lim [g&~(p) p-Ix;I] =0, y,. &0;

lim [fP,(p) p I ~I] =0, lim [g~'(p) p;I] =6,, , g,. (0.

Asymptotically,

Ls~() g P ~' ~d
X.= o

L
vf (p) ~ QPf kp X'

in which o&~, and C, are independent of p. In particular, n~&0~ =-y6» and P~o~ =0, where y =zZe'. When all
of the constants o~~ and p,.„arezero for &~ 1, Eqs. (4) decouple asymptotically into X(f,P) pairs of relativ-
istic Coulomb wave equations which may be solved easily. When some of the constants n~~ and P~~ are non-
zero for X~ 1, Eqs. (4) do not decouple asymptotically. In place of the relativistic Coulomb wave equa-
tions, we are faced with the differential equations

( Fgp P + t„—7 G~p P = P Q~k Gfp P — gkFyp P
X=O

(
L

G&p p — t„+vFfp p = — p 'sgnX, Xk n,. k
F'" p +p. k

G' p
X=O

(6)

These equations have a nasty singularity at the origin and the analytic methods which are successful in the
Coulomb case avail us nothing here.

It is possible, however, to obtain an expansion for the solutions of Eqs. (6) which is valid as p tends to
infinity. In obtaining this expansion we drop the indices f and P. We write

F"(p) = g [sin(k, p+ yt, k; ' ln2k;p - L,v/2) s',.",. '+ cos(k,.p+ y t,k, ' ln2k, p —L,. /v2) t'„']p",

G"(p) = g [sin(k;p+ yt, k, ' ln2k, .p —L,. v2/)u ~& c+os(k;p+ yt~k, ' ln2k;p —L,v/2)v', .
&

']p ", .
m=O

where the dimensionless wave number k, equals (t,' —v')' '. (Note that k, t, and L depend on the first
superscript associated with F and G, which is the one enumerating sets of independent solutions. ) If we
introduce these expansions into Eqs. (6) and equate the coefficients of sin(. . .)p- and cos(. . .)p-" in the
resulting expressions to zero, we obtain recursion relations for the unknown constants s'„.', t~, ', u',-& ',
and v)~ '. I,et
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X3+ m —1 ytiki

-ytiki X3+ m —1

y X3+m ~ 1

-ytiki '
ytiki ~

~Xj+m ~ 1

g(X)
jk

A)-sgnXypta

-sgnXk( 3 k
(X)

sg—nX yPgp

-sgnxkn 3 k
(il)

sgnx ju»O.)

0

nX„P(X)

0

sgnx3 O.jk
(a)

-sgnXp,o )

Then if

$)m)

we have

t(m)tj

V(m)ij

pf we multiply both sides of Eq. (7) on the left by

B,.j then we have

I
(k 2 k 2)$(m) g M(m)$(m 1)+ ~ fl g(X)$(m X-1)

3 ij ij ij ij ~ ij jk ik
k

(8)

When k,.ek&, we can divide Eq. (8) by (k, '-k~') to
obtain the desired recursion relation. " %hen k;
= k, , we can replace m in Eq. (8) by m +1 and add
the resulting equation to Eq. (7) to obtain

Let

X «) =I( )S( -»+ ~ C(')S(.-'-').ij ij ij ij ik
al

(7) (A +8 M'""')$' 'ij ij ij ij

I
M(m)$(m4) + + (g(X)$(m-jl, -l) g g(X)$(m-X))

jk ik i3 jk ik

B.j=

0
If we write k, =kj=k, t, =tj=t, and t+v=t„ then
after considerable algebra one may verify that

(A +~ M(m+») -) —(4k am) -) -k(m -1-X,)

t,(m+ 1+X~)

-vyt, k '

Ty -vyt k'

~yt, k-' -Ty

t.(m+ 1+X,) —k(m —1+X,)

k(m —1 —X,) -t (m+1 —Xt) vyt k-'

-t (m+1 —Xt)

k(m —1+X,)

Thus Eq. (9) yields a usable recursion relation
whenever A,j is singular and m WO.

Finally, when m =0, Eq. (7) gives us the follow-
1ng condltlon on Si3 ~

If A, 3 is nonsingular, this simply states that S',03'

=0, but when A. i3 is- singular there are nontrivial
choices of S',-,-' which can be made. In fact, there
are two linearly independent solutions which may
be taken as the first two columns of B,j. Altoge-
therther, e are 20l'(f, p) sets of independent solu-
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tions to Eqs. (6). We distinguish among them ac-
cording to their asymptotic behavior as follows:

G„'(p) ~ sin(k, .p+ ytik; 'ln2k, .p —L,)T/2.)5,,,

Eg(p) ~ k;(t;+r) 'cos(k, p+yt, k, 'ln2k, .p

—L;v/2)5, i

GI'i(p) ~ cos(k, p+ yt;k; ' ln2k, p —L,v/2)5, i,

t'fr~i (P)) ~ Iti2 f+yp, s(p) i l)o /Fyp, i(p))
(+f2(p)) iGfP, R(p)) (~fPII(p) )

or equivalently,

gq'i, (p) ~ Aq2 sin(ki p+yt;k, 'ln2k; p -Lii)/2+5qp~),

fg, (p) ~ ki(ti+v) 'Ay i c(koisp+yt, ki 'In2ki p

L,v/2+6—t'ai)

with partial wave amplitudes and pha, se shifts
given by

(10)

~iJ —[(GiJ)2 ~ (Bid)2] 1l2

5,",= tan '(C,",/ftj'} .
We must now choose the coefficients a& ~ in Eq.

(3) to satisfy some set of boundary conditions. In
jmgP

particular, we wish to have 4 (r) represent the
scattering of a plane wave incident along the nega-
tive z-axis. Although in the vicinity of the nucleus
it is quite complicated, at great distances from
the nucleus, 4'(r) must comprise a spherically
outgoing scattered wave together with the incident
plane wave. A plane wave itself may be written as
the superposition of a spherically incoming wave
a.nd spherically outgoing wave. The appropriate
boundary conditions therefore are that, asymptot-
ically, the spherically incoming portion of 4 (r) be

Fi'(p) ~ -k;(t;+7') 'sin(k;p+yt, k, 'ln2k, p

—Lp/2)5„..

Because these functions play a role in the general
theory analogous to that played by the relativistic
Coulomb wave functions in the single-state mono-
pole theory, we have used the subscripts R and I
indicating regular and irregular as is customary
there. These subscripts do not, of course, imply
anything about the behavior of these functions at
the origin.

Eiluations (4) and (6) have the same asymptotic
behavior. Therefore, we can find constants Bf'~~

and Cf~ such that

identical with the spherically incoming portion of
a plane wave incident in the proper direction.

The wave function for a plane wave Dirac parti-
cle incident along the negative z axis may be writ-
ten as

1t+7"
o *"(o) ~''o(=o,

~

2~o~ I!~,)loM),
to+ 7

where m, is the spin projection of the Dirac par-
ticle along the z axis and M is that of the nucleus.
We may expand C ' (p) in spherical harmonics as
follows:

c""(p) = Q I:4 (»+1)]""j (k.p)I'. (&e)

1

xl ' 'I 2)21 k I-2'm. &IOM&
( t + ~) 1/2

Lo' i (, ;,')
in which ji(k, p) is the regular spherical Bessel
function. Asymptotically then, the spherically in-
coming part of 4 2"(p) is

C 2"(p) = —p [47)(2K+1)]'t2
X. =p 2iko p

z/2

& exp[-t(k, p —x7)/2)]
to+ 7'

2to

x I»& ll i2i. & IOM& .
(For simplicity, we have written only the upper
components of the Dirac spinor. ) Because of the
long range of the Coulomb potential, it is neces-
sary to replace Eil. (11) by

C'Pn c (p) = —Z [4&(»+1)l"
X=0 2ik, p

x exp[—t(k, p+ytok, 'ln2k, p —Xw/2)]

(12)

when y is not zero.
From Eil. (10), it is clear that the spherically

incoming portion of gt2i(p) is given asymptotically
by

4

g&2i;„(p)'~ —2~2 exp[-t(ki p+ytiki 'ln2k, . p
P ~)oo

-I,,m/2+6~i2i)] .

Thus, we must choose the coefficients a& ~ sofmyP

that
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Am N fP
C'in, c (p) ~ njmj& 2tpfmfP

ij
xexp[-(kj p+ytjk, 'ln2kj p

-LI7i/2+5jpj)]
I fmjPj ) .

Multiplying this on the left by (fmj pj I, and using
E(l. (2) we find

+7 x/2

Q e~ eS}eex}t(—(e}',}=(4e(2I, + (}]'.'S, '('
CJ/IJf C Lj 4lj

ms&mf Pm s Pn

Considered as an X(f,p) xX(f,P) matrix,
Aj~ exP(-ibjjj) cannot be singular because the solu-
tions gjj„fji, are independent. Let kj~j be its in-
verse. Then

l/2

aj ~= Q [4II(2Lj+1)]'j'ko '
fmfp

p

&hs' CJ, s&f CfP m, ,Zmf pmsms pn ~

Inserting this into E(I. (3) and making use of Eq.
(10), we have

t +& x/2

@(p) ~ c'"'"(p)+p '

These scattering amplitudes are not all indepen-
dent. One can verify that

f -ms-N-MI Ns(g(t}) —p P s(ML@( l)Io ir MI,

X fmsNNIMs (gP)

An additional simplification is possible when the
mass of the scattering projecti1. e is zero. Let

fji~j, (p, r) andgji, (p, T) be the solutions of E(l. (4)
and let fj~(p, ~) a-ndgj~(p, -v) be the solutions of
E(I. (4) when v is replaced there by -T. Then one
may establish that

gjI:I (» -7') =fji ( p 'r) sgnxI

and hence that

Ajj-~(-~) =k, (t, +T) 'Aj~j(~),

&j'p(-~) = t}jjj,(~) .
In the limit that r tends to zero, the ratio kj/
(tj + v) approaches one, and we have Ajj-~(0)
=Aj&~(0) and t}jij~(0)=5j~~(0). Thus, in the zero
mass limit, we need only solve Eq. (4) for one
value of P. The result can then be used to deter-
mine the phase shifts and amplitudes for both val-
ues of P. One can show that under these conditions

f'""' '(tj4) = e*'tan(-'~)f '"""(~~)
which is physically a consequence of helicity con-
servation.

exp[i(k„p+yt„k„'ln2k„p)]
Ns N~ t&+ v

III. THE ELECTROMAGNETIC INTERACTION

&&f sMNIN (gy) IL}M ) IrM ) (14)

where the scattering amplitudes fps"„"IMs(8$)are
given by

fmsNNINs(e y)
—P M I}( (2L + I)l/sCIjlpf CLj eIjp~r fW m Jjfmf pms msfP s

jA

X CJ»~f C~&2J& y (gW
NIMImj MLNsMI LsML'

In terms of the electromagnetic scalar and vec-
tor potentials, P(r) and A(r), the matrix elements
sjjj (r) and vsjj (r) are given by

sjj (r) =Be(fmf Pj I it}(r) I fmjpj ') (16)

vjji (r) =re(fmjpj I sgnx'A(r) ~ o
I fmj -pj'),

with

M jjj,„=— iI}'j'kp 'kji'Ajj, exP(i5ji)5p„.t}„„s,a

(15) where ze is the charge on the Dirac particle. %e
define the transition multipole potentials (t}~"(r)
and A,""„(r)by ,t.he expansions

(nM I A(r) In'M'
&

= g (-1)"Ci„."'» I'" (2f + I) "
X.p

x K" (r) I » (~e) (18)

In terms of these amplitudes, the differential
cross section when averaged over initial sepins

and summed over final spins is

dQ p „22Ip+ 1 t„+T tpk'p m gg

NI Ns

(nMIA(r)In'M') = Q (-1)"c„"qMz" (2I+1) 'j'
jX.p

»jx(r)&j}i(~4) (19)

If these expressions are substituted into E(ls. (16)
and (17), then, after some algebra, we have"
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s~~, (r) =ze(-l)~'~ *[(2I.+1)(2L'+1)(2J+1)(2J'+1)]' '
f'L A. L' I' J' f J'L' 2

x Q ( 1)(l,+x L'-)/
2l s""'(r)
&000 JI ~ I J~ (2o)

v;~~(r) =ze(-1) +'"~'~ '*[6(2J+1)(2J'+1)(2L+1)(2L'+1)]'i'

Il Jl fxg ( 1)"& +~-~'-&~2
l(00 0)

2

v,"~'(r) .
11

(21)

with

sz" (r) = [(2A, + 1)j(4m)] ' 'p"" (r) (22)

Since A(r) is transverse, we may write A(r)
= A (r)+VxM(r) with

(nMIA'(r)ln'M'& = Q(-1)"Cls"', si'(»+ 1) "
Xp

v& z(r) = [(2j+ 1)(2A. + 1)/(4v)] ' 'A&"„(r). (23) x 4"„"(r)X~„(ey) (28)

F(r)= Jc(r)+Vxy. (r) . (24)

The charge, current, and magnetization densities
may be expanded in spherical harmonics as fol-
lows

(nMlC(r) ln'M') = g (-1)"C „„i(2I+ 1) ' '

The scalar and vector potentials are generated
by the nuclear charge and current densities C(r)
and J(r). Since we choose to work in the Coulomb
gauge, A(r) is transverse and is generated by the
transverse current density Z (r). To make the
scattering problem computationally tractable, we
must assume the various nuclear eigenstates to be
degenerate in energy. This approximation is ex-
pected, by Born-approximation arguments, to af-
fect scattering cross sections only in the forward
direction, where the momentum transfer is less
than the separation of the nuclear eigenstates.
This is not usually a region of experimental inter-
est.

We may write J (r) as the sum of a current dens-
ity and the curl of a magnetization density:

(nMl M(r) ln'M') = P (-1)"c'."„i"(2I+ 1)-'i2

xM","(r)X„„(ey).

It is easily established that

A",",'(r) = A","'(r),

(29)

(30)

(31)

The transition multipole potentials are related to
their sources by the radial equation

[y,(r},A, (r), M, (r)]
1 d, d A. (A. +1)

df
= —4v[Cx(r) Jx(r) &x(r)]. (33)

Since the potentials are bounded at the origin and
vanish at infinity, we have

xJ"„"(r)X„,(ey), (26)

(nMl p, (r)ln'M') = g(-1)"Cled/ ~i~(2I+ 1) 'i'

x C"," (r) 1;„(ey),

(nMl J (r) ln'M') = g (-1)"C„»i(2I+ 1) ' '
Xp

ao

C„(x)x'-'dz (34)

with parallel solutions for A„(r)and M~(r). Thus
a potential of multipolarity ~ is proportional to r
near the origin and to x ' as x tends to infinity.

We refer to Cz" (r), J"„"(r), and y ~" (r) as the multi.
pole charge, current, and magnetization transition
densities.

IV. NUMERICAL PROCEDURES

A. Integration of the radial equations

The integration of the regular solutions of Eqs.
(4) from the origin to infinity may be divided into
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two regions according to the behavior of the trans-
ition potentials. Within the nucleus, the transition
potentials are rather complicated functions of p.
Beyond the edge of the nucleus, however, they are
given simply by Eqs. (5). The boundary between
these two regions is p,„,the radius of the nucleus.
The bulk of the integration from the origin to p, „

is performed using Hamming's fourth-order pre-
dictor-corrector method with a step size of &p.
Each integration step requires one derivative eval-
uation plus knowledge of the functions and their
derivatives at each of the four previous integration
steps. The initial values of the functions and their
derivatives are created by making three fourth-
order Runga-Kutta steps starting with values ob-
tained from power series expansions about the or-
igin.

Beyond p,„,Eqs. (4) reduce to Eqs. (6). The
asymptotic series solutions to Eqs. (6), developed
in Sec. II, will converge adequately whenever p is
greater than, say, p„.When only monopole cou-

P"(x)= g C„*'x"
n=o (35)

The coefficients c„'~and d„'~are obtained from the
recursion relations

plings are present, Eqs. (6) decouple in pairs to
form sets of relativistic Coulomb wave equations.
In general, however, Eqs. (6) do not decouple, and
the solutions valid asymptotically cannot be related
analytically to solutions in the vicinity of the origin.
It is necessary to integrate Eqs. (6) from p, „

to
p„numerically.

Considered as equations with the independent vari-
able x=p —p„Eqs.(6) have singularities at x=-p,
and x=~. Accordingly, an expansion of the solu-
tions in powers of x will be convergent for ixi(p, .
Let

(36)

with the initial conditions

G' =f'J(p ) do' =g" (Po). (37)

B. Summing the partial wave series

Let qc„(g,t, )be the yhase shift of the r. egular,
relativistic Coulomb wave function associated
with X,. and t, Also let

Given the solutions of Eqs. (4) at p,„,we can con-
tinue them to a point p,„+xfor x(p,„.Let n(x)
be the number of terms. .in the series that must be
summed to attain the desired accuracy when the
step size is x. In the program, x is chosen to
minimize n(x)/x while at the same time avoiding
truncation error due to very large intermediate
sums.

In this way, the solutions are continued until pp
reaches or exceeds p„atwhich point the asymp-
totic series are evaluated and the partial wave
phase shifts and amplitudes computed.

f (8$) =ga~P~~(cos8) e'"~, (38)

Pfp = Q k~pA~p exp(l5~p ) .
$

We refer to the real numbers x~~ and $z~ for which

P&~ =(1+x&~)exy/2i [pcs(y, , t,.) +(z~]}as the residual
amplitudes and phase shifts, resyectively. As f
tends to infinity, the residual amplitudes and phase
shifts tend to zero. ZENlTH carries out the inte-
gration described above until either the residual
amplitudes and phase shifts fall below a threshold
e specified in the program input, or f exceeds a
threshold f „„alsospecified in the program input.
From this point, the integration is dispensed with
by setting A~~ =6,, and 6~~ =qnc(~, t, ) 6,, Additional
phase shifts are accumulated in this manner until

f reaches a limit syecified in the program input.
Because the spherical harmonic 1'~„(8$)may be

expressed in terms of the associated Legendre
polynomial P~(cos8), a tyyical scattering amplitude
may be written
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where the a~ are obtained from the appropriate
parts of Eq. (15). As the phase shifts and ampli-
tudes are computed, the coefficients g~ are ac-
cumulated for each of the scattering amplitudes.
lennie, Ravenhall, and Wilson have shown that
the convergence of the series (38), which may rep-
resent a function singular at 8 =0, is considerably
improved by the reduction

f (Op) =(1 —coso) "Pa~ P~~(coso) e'"~ (39)

in which

a(g) a(n-o [p +1 +&)/(2y + 3)]a(~-n

—[(x —g)/(2X —1)]a'~,", (40)

and a~ =g~. For scattering amplitudes associated
with a diagonal monopole charge density, a reduc-
tion with n = 3 has been found necessary, while for
all others, a reduction with n =1 suffices.

The index A, in Eq. (38) ranges over only those
orbital angular momenta for which all contributing
partial waves have been computed. This implies
that iff,„

is the greatest total angular momentum
for which phase shifts are computed, and I is the
spin of the nucleus, then & may not exceed f,„I—

ZENITH estimates the error in the cross sec-
tion due to truncation of the Legendre series from
the magnitude of the last included term for each
amplitude.

The computational parameters e, 6p, p,„,and

f,„,discussed in Secs. IVA and IV B are specified .

in the program input. The values of these and

several other parameters are given in Table I for
most of the runs discussed in Secs. V and VI.
Since p, depends on f, the total angular momen-
tum, itisgivenonlyfor f„„,the largest value of f
for which nuclear phase shifts are computed. The

processing (CPU) time for each run is given in sec-
onds for execution on an IBM 3'70 Model 165 computer.

We define the strength s„ofthe transition density
C„(r)to be the coefficient of r " ' in the asymp-
totic expansion of s„(r).The strengths of current
and magnetization transition densities are simi-
larly defined in terms of the asymptotic behavior
of the matrix elements v&~ and vz~„defined in
Eq. (23)." zENITH requires transition densities
to be specified in terms of a strength parameter,
and an unnormalized shape, which must have the
form

E~(r) =r~exp[-(r/a)'] g a I,„''[2(r /a)']
m=0

(41)

in which I.~' *(x) is the mth generalized Laguerre
polynomial of order ~+ 2." These polynomials
are orthogonal on the positive real line with weight

x+ -'

x '&e ". Hence any shape which behaves like r~
near the origin and decays exponentially at infinity
may be cast in this form.

For a given charge density C„(r),we have

s~=e[4vi(2x ~ 1)]'~' f r""cz(x)dr
0

and

(42)

a„=m![I"(A.+m+ —')] '

"exp —r a ' L,
' ' 2 r a ' C~ r dr .

0

(43)

The shape parameters a clearly depend on the

C. Specification of the multipole transition densities

As discussed in Sec. III, the multipole transition
density C„(r)gives rise to the matrix element

TABLE I. Computational parameters for several of the zENITH runs discussed in the text in
Secs. V and! VI. The parameters are defined in Sec. IU.

Run
number (Mev)

Ep
(fm)

~nMLx

(fm)
~asm fmax

(
—'A)

flast
(-,'s)

CPU time
(sec)

1

2

3

5
6
7
8
9

10
11
12

1200
1200
1200
1200

170
200
100
100
100
250
250
250

Vxfp '
7x 10
Vx 10
7 x ip-'
1 x fO-'

1 x fp-'
f. x fp ~

1 xfp-'
1 xf0"~
1x 10
1 x fo-&0

1xip 8

0.003
0.003
0.003
0.003
0.023
0.020
0.010
0.010
0.010
0.016
0.016
0.016

2.1
2.1
2.1

2.1

13.9
11.8
5.9
5.9
5.9

f4.3
14.3
14.3

1.6
1.6
1.6
1.6

f 5.4
15.2
24.8
25.1

25.1

14.2
14.2
42.3

170
170
170
170
170
170
42
43
43

140
140
140

15
15
15
f.5

17
17
42
43
43
35
35
85

4.0
4.1
4.0
4.1
4.2
7.7
8.0

f 5.6
15.5
7.6
7.6

125.3
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length parameter a. In practice, a is chosen so
as to minimize the number of coefficients necess-
ary to achieve an adequate representation of C~(r).
This is done in a separate input-preparation pro-
gram CDFIT.

With this choice of parametrization for the trans-
ition densities, the integrals in EIl. (34) are rather
easy to compute. Let coefficients b„bechosen
such that

Q b„(~/a)'"= Q a„L„"''[2(r/a)'].
n=0

Also, let

n -"0

and

a-2n~-X-1 ~2X+2n 2eXp ~ a 2

0

r~„=y" g'"exp[-(x/a)']dr,
0

Clearly,

g 2N+~ g2n+ lezp —X a ' d
r

I„=(A.+n+ ~)I„,-E„, ~n ™n-1++n~

E„=(r/a)'E„„K„=(n--,')a'r 'Z„,—I
„„

F„=yF s, =0,

I', = —,'a'exp[-(r/a)'],

Z, = ,a W&erf(r/a). —

Io =+X+ l. y

Eo=~o=F~

n=0

Thus, the computation of p~(r) may be conveniently
organized as follows:

P~(r) = s„, s„=b„(I„+Z„)+s„

ZENITH currently allows the specification of
charge and current densities, but not magnetiza-
tion densities. "

V. TESTS OF THE PROGRAM

At the beginning of work on ZENITH, we had ac-
cess to a reliable one-channel partial wave code
for the scattering of electrons from spin zero
nuclei when the mass of the electrons may be neg-
lected. ' The results of ZENITH runs on data ac-
ceptable to the older program have been found to
be in agreement with results from that program
to all significant digits. The tests reported here
are primarily comparisons with the Born approxi-
mation in one form or another. They investigate
the handling of massive projectiles, nuclei with
nonzero spin, and multipole charge and current
densities. In addition to these tests, it has been
shown elsewhere' that ZENITH is in close agree-
ment with the version of DWBA contained in the
Duke program, "and with the DVfBA program
HEINEL when higher order effects, which are
not treated properly in DWBA, can be neglected.

In Born approximation, the differential cross
section is proportional to the square of the charge
z on the scattering particles. We have made four
ZENITH runs (runs 1, 2, 3, and 4) in which mass-
less particles of charge -2, -1, +1, and +2 are
scattered from hydrogen nuclei (Z =1, with, how-

ever, infinite mass) with a charge distribution of
the form exp[-(—,r)'] at an energy of 1200 MeV.
Table II displays the results for two values of the
scattering angle. The tabulated functions are
(da/dQ)/s' and its first two differences in s.
Clearly, (da/dQ)/s' is very nearly constant. The
additional differences show that even at this ener-
gy, which is quite unfavorable to the partial wave

TABLE II. (do/dQ)/z and its first two differences in z at two values of the scattering angle for
1200 MeV pqrticles scattering from infinitely massive nuclei of charge f. The small first and

second differences provide a check of zENITH against Born approximation.

(do/dQ)/z o((do/dQ)/z') 6'((da'/dQ)/z')

-2

1

2

3.929 814 55 x 10 3

3.924 059 74 x 10 3

3.913 f 0939 x f 0 3

3.907 912 85 x 10 3

1.582 519 35 x 10
1.580 167 94 x10
1 .575 853 54 x 10 4

1.57388956 x 10+

0.00575481 x 10
0.005475 f8 x f0"
0.00519654x10 '

8 =23'

0.0023514f x 10
0.002 15720x 10
0.001 96398x f0

0.000 279 63 x 10
0.000 278 64 x f 0+

0.000 194 21 x 10
0.000 193 22 x 10
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approach, the cross sections behave in a regular
fashion.

If one performs two independent scattering ex-
periments at the same incident momentun p, one
with particles of mass m„the other with particles
of mass m„then in Born approxi. mation, the dif-
ferential cross sections are in the ratio

(da/dQ), p'cos'(~ 0) + m, '
(do/dQ), p'cos'(-,'e)+ m, ' ' (44)

170 MeV/c
RATIO OF MUON AND ELECTRON CROSS

2 5 . SECTIONS

~~ 2.0-

~ l.5-
b

ZENITH
----BORN A

ZENITH has been used to compute the scattering of
electrons (run 5) and also of muons (run 6) from
"C. The mass of the muon was taken to be 105.66
MeV while that of the electron was neglected. The
incident momentum for both computations was 170
MeV/c. Following the notation of Sec. IVC, the
shape for the charge distribution had a length
parameter a=1.77 fm, and two nonzero shape
parameters a, =1 705 and Qj 0 470.

We see from Fig. 1 that the ratio of the cross
sections as computed by ZENITH agrees with that
predicted by Born approximation for small angles
but falls steadily below the predicted value as the
angle increases. In fact, Born approximation sys-
tematically overestimates the muon cross section
relative te the electron cross section. From a
classical point of view, the energy of the scattering
particle, be it muon or electron, increases as it
enters the nucleus. This gives rise to an increase
in the momentum of the particle which is slightly
greater for the muon than for the electron. As a
consequence, the muon cross section is shifted to
smaller angles, or equivalently, decreased at a
particular angle. At 90', Born approximation pre-
dicts a ratio of 1.773 while the ratio as computed
by ZENITH is 1.670. To account for this shift when

(Hv+ Vu+ Ei Vqq l (@&l t +~)

V12 +D V22 2) (+2) (+2)
(45)

As Ravenhall et al."have shown, when Vyy V22
and E'~ = E2 = 0, this two-state scattering problem
may be solved in terms of the two one-state scat-
tering problems

and

(H + V„+V„)C,=EC, (46)

(47)

If f,(8) and f,(g) are the scattering amplitudes for
these two one-state problems, then the elastic
and inelastic amplitudes for the two-state problem
are given by

ZENITH runs corresponding to Eqs. (45), (46),
and (47) show agreement with these predictions
to all tabulated decimal places (in this case, nine).

Another test is provided by the observation that
since a monopole charge density cannot couple
different magnetic substates of the same eigen-
state, scattering from a spin zero nucleus should
be identical to that from a spin one-half nucleus
with the same charge distributions. Comparison
of ZENITH runs with spin zero and spin one-half
nuclei shows agreement to six or seven decimal
places. The discrepancy arises because the cutoff
value for the phase shifts has a slightly different
meaning for spin zero and spin one-half nuclei.
(See Sec. IVB.)

Consider a nucleus with spin I ~ —,
' which is com-

pletely characterized electromagnetically by a
dipole current distribution of the form

the energy gained in the nucleus is 4 MeV, the
ZENITH electron cross section at 90' should actual-
ly be compared with the ZENITH muon cross sec-
tion at 89.52 . The ratio of the ZENITH cross sec-
tions is then 1.771 which agrees much more close-
ly with Born approximation.

The wave equation for scattering from a two-
state nucleus is

I.O 50 60' 90
SCATTERING ANGLE

I

I20

FIG. 1. The ratio of the differential cross section for
muons to that for electrons as computed by Zenith and
Born approximation. As explained in Sec. V, the Born
approximation consistently overestimates the muon .

cross section relative to the electron cross section at
larger angles.

J (r) = -4vr exp[-(r/a)']/(37rea'). (48)

do =z'v'(2I + 1) 'exp(-q'a'/2) [2+ cot'(-,' 8)]/18,

The differential cross section for scattering from
such a nucleus, when averaged over initial spins
and summed over final spins, is given in Born
approximation by
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Born
approximation

{fm )

ZENITH

(fm')

10

20

30

177'
178
179'

9.119476x 10 '
2.280 296 x 1p j

1.013781x10 '

8.315185x10 '
8.311976 x 10-5

8.310051 x10 5

9.119500x10 ~

2,280 293 x 10
1.0f3777x ip i

8.233290 x 10 '
8.230085x f0 ~

8.228162x 10 5

TABLE III. Comparison of zENITH and Born approxima-
tion differential cross sections for scattering of 100 MeV
electrons from the pure dipole current distribution given
in Eq. (48) for spin ~ nuclei.

section goes to zero at 180, the ZENITH cross
section does not. This is due to double-scattering
higher order effects, which ZENITH computes
properly. Columns (c) and (d) of Table IV are the
results of a similar computation with the quadru-
pole strength only balf as large (run 9). At 150',
the Born approximation then predicts a cross sec-
tion of 3.0984&10 ' fm', while the zENI'TH result
is 3.1950x10 ' fm'. At 179, these become 3.5077
&10 ' fm' and 9.9337&10 ' fm', respectively. Al-
though the difference is still present, it has been
greatly reduced. (It is approximately proportional
to s4, the dependence expected from an amplitude
corresponding to double scattering. )

where q is the momentum transfer and z is the
charge on the scattering Dirac particle.

We have used ZENITH to compute the scattering
of 100 MeV electrons from a spin one-half nucleus
of this type with a strength of v= 0.05 fm and the
length parameter a= 1 fm (run 7). The results for
the cross sections are shown in Table III.

Finally, consider a nucleus with spin I) 1 which
is completely characterized electromagnetically
by a quadrupole charge distribution of the form

C(r) = 8 v 5 sr'exp[-(r/a)']/(15mea').

The corresponding spin-averaged differential cross
section is, in Born approximation,

= 4E 's'(2I + 1) 'exp (-q'a'/2) [E' —P'sin'(-,' 8) ]/45 .

(49)

Columns (a) and (b) of Table IV are a comparison
of Born approximation and ZENITH differential
cross sections for the case s = 0.5 fm', l = 1, E =p
= 100 MeV (i.e., massless projectiles), and a = 0.25
fm (run 8). Although the Born approximation cross

VI. ISOTOPIC VARIATIONS IN THE CHARGE
DISTRIBUTION OF CALCIUM

Frosch et al."have analyzed the scattering of
250 MeV electrons from "Ca, "Ca, and 'Ca, in
terms of isotopic differences in ground-state
monopole charge distributions. However, because
'Ca, being doubly magic, has no low-lying excited

states, while 4'Ca and 4'Ca each have a low-lying
2' excited state, it is possible that the observed
isotopic differences in differential cross sections
may be due in large part to dispersion effects
rather than to actual differences in the ground-
state monopole charge distributions

Rawitscher" '3 has estimated the magnitude of
dispersion effects using a model in which the in-
elastic excitation takes place by a single monopole
transition to a state degenerate with the ground
state. The strength of this transition is adjusted
to give a reasonable value for the total inelastic
cross section. Applying his model to the calcium
experiments referred to above, Rawitscher finds
that the dispersion effects may account for as

TABLE IV. Comparison of zENITH and Born approximation differential cross sections for scat-
tering of 100 MeV electrons from the pure quadrupole charge distribution given in Eq. (49) for

2
spin 1 nuclei. Columns (a) and (b) correspond to a quadrupole strength s = 0.5 fm, while col-
umns (c) and {d) correspond to a quadrupole strength s =0.25 fm .

s =0.5 fm2

(a)
Born

approximation
(fm2)

(b)
ZENITH

tfm2)

s =0.25 fm2

(c)
Born

approximation
(fm2)

(d)
ZENITH

gm2)

10

30'
60'
90'

120
150'
179'

1.902450 x ip+
1.774 890 x f 0~
f.424 086 x f0+
9.436 924 x f0+
4.671 357x f0+
1.239 369 x f0+
1.403 100 xjp ~

1.900945 x jp~
1.773 220 x jp+
1.422 352 x 1p

9.472756 x jp+
4.773 09f x f 0+
1.364838x fp+
1.254 306 x 1p"5

4.756 125 x f 0+
4.437 224 x f 0+
3.560 214 x f 0+
2.359 231 x f 0+
1.167 839 x 10~
3.098423x 10 5

3.507 750 x 10

4.734 573 x f 0+
4.413 615x f p

3.535249 x f0+
2.346484 x 10"
1.171 213 x f 0+
3.195 024x 10 5

9.933 763 x 10
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much as a 5% effect in the differential cross sec-
tions in the first diffraction minimum. (The quan-
tity quoted is actually the difference in the cross
sections divided by the sum, in agreement with
the usage of Frosch et al. ) Inasmuch as the mea-
sured difference between "Ca and "Ca is on the
order of 12% there, this would appear to be an
important effect. This view has been emphasized
by Wall '4

To discover if this is the case, we have computed
the dispersion corrections in the ' Ca- 'Ca case.
Although the charge distributions used by Frosch
et al. are not immediately acceptable to ZENITH,
we have made fits to them that are. The resulting
parameters are shown in Table V. Using these
fits, we computed the elastic differential cross
sections for 4'Ca and 4'Ca (runs 10 and 11). The
quantity B(8), the ratio of the difference in the
cross sections to their sum is plotted in Fig. 2(a).
It is in good agreement both with the experimental
data and with the Ca-"Ca curve given in Fig. 8
of Ref. 21, indicating that the fitting process lead-
ing to the parameters in Table V is adequate.

We then added to the "Ca ground-state charge
distribution, a 2' excited state coupled to the
ground state by a quadrupole transition charge
density (run 12). Heisenberg, McCarthy, and
Sick" have fitted this transition charge density for
~'Ca. In doing so however, they treated B(E2) as
a variable parameter which resulted in a value for
it that is different from that determined by Coulomb
excitation experiments. " We have therefore used
the Coulomb excitation value for B(E2) and chosen
the shape of the transition density to be that given
in Eq. (1) by Heisenberg, McCarthy, and Sick. The
parameters and strength for this transition density

(a)

20

IO
o&

0

CL

40'
ANGLE~

I Iv/ I

6o Y& so.
I

100

are also given in Table V. The 2+ excited state
was assumed to have a (diagonal) charge density
identical to that of the ground state. The effect of
the excited state on the differential cross section
is shown in Fig. 2(b). The vertical scale there is
IO times larger than that in Fig. 2(a). Although
the effect grows with angle relative to the experi-
mentally measured difference in Fig. 2(a), it re-
mains negligible throughout the region investigated
experimentally. ' Analyses of experiments in which
the ratio is sampled for larger values of the mo-
mentum transfer, however, may have to take
proper account of these dispersion corrections.

Rawitscher has suggested" that the magnitude of
the dispersion corrections may be energy depen-
dent, growing appreciably for lower energies. We
repeated the computations described above at 50
MeV. The effects are extremely small, and to
within the accuracy of the computations depend
only on the momentum transfer.

TABLE V. zEwn'H strength and shape parameters for the
calcium charge distributions used in Sec. VI. The mono-
pole distributions were obtained by fitting to the results
given in Table III of Ref. 21. The B(E2) for the Ca 2'
state is 480 as measured in Ref. 26, and pexcited(r)
=r(d/dr)[ pg~~d(r)]. For all distributions, a = 1. .99 fm.

-IO;
(b

I.O

4o
Pground
A, =O

sooo 0 145 944
n an

0 2.309 223 5
—1.388 671 3

2 0.465 263 61 2
3 -0.020 994 11 3
4 —0.005 709 91 4
5 —0.021 036 00 5
6 0.000 093475 6
7 0.002 158 589 7
8 0.002 788 878 8

44
Pground
X=O

so ——0.145 944
an

2.354 695 9
-1.469 435 9

0.524,645 86
—0.030 256 31
-0.013 376 05
-0.022 613 65
-0.001 853 795

0.003 543 130
0.003 182 487

44
Pexci ted
X=2

s~' = 0.256 079 fm
n an

0 -0.190404 38
0.274 509 32

2 -0.1.91 84641
3 0.032 526 47
4 0.019 039 94
5 0.005 532 25
6 —0.005 044 521
7 —0.003 907 150
8 —0.001 408 490

0'

FIG. 2. The ratio, &(0) = [ 0(0)- 0(0)] /[ 0'(0)+ 0(0)],
is plotted as a function of scattering angle. (a) The 44ca
cross section is computed using the ground-state mono-
pole charge distribution determined by Frosch e& A.
(Ref. 21) as fitted by us with the parameters shown in
Table V. The experimental data are from Table'IIb of
Ref. 21. (b) The 44Ca cross section is computed using
the Ca ground-state charge distribution and a 2+ excited
state coupled to it, as described in Sec. VI. Note that
the vertical scale is 10 times greater than that in (a).
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VII. SUMMARY AND DISCUSSION

ZENITH obtains for the scattering of a Dirac
particle from a nucleus, a numerical solution
which is exact to the extent that the nucleus may
be treated as a nonrelativistic object possessing
a finite number of degenerate energy eigenstates
coupled to one another through the electromagnetic
interaction with the Dirac particle. The most
vexing of these limitations is the requirement that
the eigenstates be degenerate in energy unless the
corresponding radial wave equations decouple
asymptotically. The need for this restriction
arises because we have been unable to produce
usable recursions for the coefficients of the asym-
ptotic series when k, & k& in Eq. (9).

The program has been designed to allow direct
access to the scattering amplitudes defined in,
Eq. (15), thus making it quite easy to treat scatter-
ing from polarized or aligned nuclei' and to com-
pute such things as the polarization of the scattered
particles.

Although we have developed the computational
scheme presented here for the Dirac equation in
the presence of the electromagnetic field of the
nucleus, the key ingredients to its practical suc-
cess (i.e., the asymptotic solution of the coupled
radial wave equations discussed in Sec. II, and the
analytic continuation of the radial wave equations
by power series expansions as described in Sec.
IVA) are applicable to more general scattering

situations. As was mentioned in Sec. I, Saladin,
Roesel, and Alder' have suggested a very similar
method for the Schrodinger equation. We have
verified that ZENITH works well in the nonrelativ-.
istic domain associated with Coulomb excitation.
We are in the process of developing a program
similar to ZENITH for particles satisfying the
Klein-Gordon equation.

Interactions other than the electromagnetic inter-
action may be used simply by evaluating the matrix
elements corresponding to those in Eqs. (20) and

(21) and placing them properly in Eqs. (4). Com-
plex potentials have been added to an earlier ver-
sion of ZENITH for use in optical model calcula-
tions, ' and we are currently adding them toZENITH
itself. Thus ZENITH offers the potential for hand-
ling, in a single program, scattering situations
ranging from very low energies all the way up to
energies at which strong interactions in the form
of an optical model potential may be treated.
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