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Inelastic deuteron scattering on "C has been studied using a microscopic description for both target and
projectile nuclei. From the fits of the calculated results to the experimental data, the effective two-body
interaction strength has been extracted. The Wigner part of the interaction was obtained from the analysis of
the 4.43-MeV {2+)state excitation and the result is compared with those found previously. The spin-spin part
of the interaction was examined by the analysis of the 12.71-MeV (1+) state. In addition, the consistency of
our results was also checked by analyzing inelastic 'He scattering. The real purpose of the present work was,
however, to investigate such a treatment when applied to heavier projectile scattering. For this purpose, the
inelastic Li scattering leading to the 12.71-MeV (1+) state was studied. Assuming the transition to be a spin-
flip process, an a-spectator model based on the cluster description of Li was used. Therefore, this analysis
may be considered an extension of the ordinary microscopic treatment with the nucleon-nucleon interaction to
the cluster description. The results of the effective interaction strengths are presented for various radial shapes
of the nucleon-nucleon interaction. The effects of more complicated possible processes are also discussed.

NUCLEAR REACTIONS Microscopic calculations of differential cross sections:
' C(d, d'), 8=28, 52 MeV; ' C( He, He'), 8=49.8 MeV ' C{ Li, 6I,i'), 8=36.4
MeV; o,-spectator model for ( Li, Li'); deduced effective two-body interaction

strengths.

I. INTRODUCTION

Nuclear inelastic scattering processes have been
studied in various contexts. Ana1yses are usually
made using the distorted wave Born approximation
(DWBA). Macroscopic form factors are commonly
adopted in such calculations, since the procedure
is very simple and generally provides good fits to
experimental results. However, the model is al-
most completely phenomenological. In order to
make a more fundamental approach, the form
factor must be calculated in a microscopic treat-
ment. For light-ion projectiles, such a formalism
has been presented by Madsen, ' where the indivi-
dual nucleons in the projectile and target nuclei
are explicitly described by their wave functions
and the nucleon-nucleon interaction between them
is folded in.

However, an extension of the treatment to heavy-
ion scattering will result in very complicated com-
putations since the number of nucleons (thus the
number of degrees of freedom) is vastly increased.
The familiar folding potential model provides a
method of simplification, since the individual nu-
cleons involved are described by the average nu-
cleon density function. In fact, a recent analysis'
of several cases of heavy-ion inelastic scattering
based on such a model has been reasonably suc-
cessful. However, a limitation of this model con-
sists in replacing the nuclear wave functions by the
derivative of average density functions so that the

explicit behavior of the nucleons is never traced
in the process.

The present study was carried out to explore the
standard microscopic treatment of the form factor
in the DWBA analysis for heavy-ion inelastic pro-
cesses. The basic concept is an adaptation of a
cluster-model description for the projectile nu-
cleus. 'The form factor is evaluated by - sum-
ming the cluster-nucleon interaction just as
the ordinary microscopic calculation does with
the nucleon-nucleon interaction. It is obvious that
this procedure restricts the number of degrees
of freedom to be small resulting in simplified cal-
culations. Such a treatment has been applied' to
the transfer reaction '2C('Li, 'Li)"C(g.s.). The
'Li and 'Li nuclei were described in terms of the
(a+i) and (a+d) cluster structures, respectively.
Then the reaction could be interpreted as a quasi-
(', d) reaction and it was found that this model re-
produces the observed data very well.

In the present study, a very specific process,
i.e., the inelastic transition '2C(0') -"C 12.71
MeV (1', T =0) induced by the (d, d') and ('Li, 'Li')
reactions is considered because of the following
reasons. ' The residual 1' state is well described
by the simple one-particle —one-hole configuration,
(P,), 'P, i,). Thus the transition corresponds to a
spin-flip process which may be caused by the spin-
spin part t'the (o ..o'} type] in the nucleon-nucleon
interaction. The (d, d') process is studied in terms
of the ordinary microscopic formalism. ' A cluster
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description is applied to the ('Li, 'Li') process,
since the 'Li nucleus can be well expressed by the
(n +d) configuration. Then the spin-flip transition
is caused only by the interaction between the d
cluster and the nucleon in "C. Since the n cluster
does not contribute to this particular transition in
the first order, we may refer to this excitation
model as the "n-spectator" model.

To pursue the actual analysis, the effective in-
teraction between the d cluster and the valence
nucleon in "C is needed. We obtain such an in-
teraction from the microscopic calculation of the
same spin-flip transition in "C by the (d, d') pro-
cess. The result of this calculation is compared
and fitted to the experimental data" at 28 MeV,
the only data available for this reaction, to the
best of our knowledge. However, the incident en-
ergy is rather low and the consequent momentum
mismatch problem might result in some ambiguity
concerning the effective interaction extracted in
the framework of DKBA. Therefore the consisten-
cy is also tested by comparing the {5~ o) type nu-
cleon-nucleon interaction from the study of the
"C('He, 'He')"C 12.71 MeV (1') reaction at 49.8
MeV. ' The (d, d') excitation form factor thus ob-
tained is utilized in the ('Li, 'Li') process. A com-
parison to the data is then expected to provide a
test for the validity of the n-spectator model.

It should be straightforward to compare such an
effective (o ~ o) type interaction obtained from the
analyses of the composite projectile scattering
data'. with those obtained from the (P,P') analyses.
However, the (p, p') processes leading to the "C
12.71-MeV (1', T =0) state as well as 15.11-MeV
(1', T =1) state at low incident energies are rather
complicated ' and important contributions from
exchange processes, "and tensor forces" have
been pointed out. It is, therefore, one of the
present motivations to analyze the (d, d') data,
in order to know whether they can be simply inter-
preted by the ordinary (o o) type central interaction.

In order to make the analyses complete, the
transition to the '~C 4.43-MeV (2+) state from the
(d, d') reaction at 28 MeV is also studied in terms
of the microscopic description. The nucleon-nu-
cleon interaction extracted from this analysis is
compared with those obtained by Hinterberger
et al."from the (d, d') process at 52 MeV, and

by Ball and Cerny' from the ('He, 'He') process
at 49.8 MeV.

The DVfBA formalism for the n-spectator model
is given in Sec. II. Physical parameters used in
the following numerical calculations are described
and summarized in Sec. III. The results of cal-
culations are dealt with in Sec. IV. General dis-
cussions and concluding remarks are given in
Sees. V and VI, respectively.

II. DISTORTED WAVE FORMALISM

The microscopic description of nuclear inelastic
excitations induced by composite projectiles has
been formulated by Madsen. ' He has given general
expressions .of the nuclear transition matrix ele-
ment and the differential cross section for the
inelastic scattering of projectiles from A =2 to 4.
The spin-orbit distortion was not included in his
formalism, which may be important for the pres-
ent spin-flip excitation processes, particularly
for the (d, d') process. The extension of his ex-
pressions to the case including the spin-'orbit dis-
tortion can readily be made by the use of standard
DWBA formalism. " Therefore, here we give
only a brief description of the generalization of
the relevant theory to include ('Li, 'Li') scattering.

The DWBA amplitude of the reaction A(a, b)B
including the spin-orbit distortions is defined by

& = Z «', (k)IA.,'„„..IX.'.',.(i )&, {1)

where K», », , which is the same as K defined
B P™Ay

by Madsen, is th.e nuclear transition matrix ele-
ment

X (r)

((IMMa. Tampa Jt Mt, F v I I 4J M, T v 0J~Mg, rgvg) 9

and V is the two-body nucleon-nucleon interaction
potential,

V= V, t r]~ o',- ~ cr~
' y] ~ y~ t,

sj st

where s and t are the spin and isospin transfer,
respectively. Corresponding to the Yukawa or
Gaussian form of the radial shape of f(r,&) the
strength and the range parameter are defined by

&I 5 st xp & fj
st~ ~+ij&

. Vo, exp(- pr„').

The distorted scattering waves are expressed by
y's in Eq. (1), and g's in Eg. (2) are the nuclear
wave functions of target {A), projectile (a), re-
sidual nucleus (8) and ejectile (b), respectively.
The total spin and its projection along the Z axis
(isospin and its projection) are denoted by ZM(T7),
respectively. The notations for the radial vector
coordinates are shown in Fig. 1.

Equation (2) is expanded in terms of the trans-
ferred spin s, isospin t, and total spin j,
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(r) = g S(jJ„Js;j,j,n, n, )S'(sJ,J,; tT, T~)
1St Jj 20' j (X2

&& g ( )'~-~~(J„M„J, M, lj —l )(-)"-~ (J.m. J, -u, s-o)
P, OTg1 8P

where f,,(r) is defined by

(4a)

f'.(r) = g (-)""(jp.~. —~. lj- v)(-)""' " (-:~ ~.-l s- n)

'« ...&.,s, lv:.'(n ")'("'.)'I e;...e...,) . (4b)

The spectroscopic amplitudes S and S' in Eq. (4a)
are the same as defined by Madsen. ' The wave
function &f&, ,(P;, ) in Eq. (4b) is that of the nu-
cleon in target (residual) nucleus, respectively,
and the P„z (P, z ) is the product of spin and iso-

vl ~y &2~ 2
spin part of the nucleon wave functions in projec-
tile (ojectile) system, respectively. The suffixes
v and lI denote the projections of its spin and iso-
spin, respectively, and n in the S factor in Eq.
(4a) corresponds to the projection of the isospin
of the nucleon in the target system. In Eq, . (4b),
V" is the projectile-(a) —nucleon-(n) interaction
potential (same as V in Ref. 1) obtained by inte-
grating over the projectile radial coordinate $,

(5)

T's, exp(- pr,„'),
v„'„'(~ ) =

Vr, exp(- nx,„)/nx,„,
(6a)

(6b)

where g($) is the radial part of the projectile wave
function. If we assume a Gaussian wave function
for g($), it is well known that the projectile-nu-
cleon interaction potential takes a rather simple
form; for the Gaussian interaction, the result is
again Gaussian, ' and for the Yukawa interaction,
the result is approximately expressed by a Yukawa
form outside the radius of the target nucleus, "

where

T',",= V„exp(n /18y2), n = n for ~ )R„.
('lb)

In Eq. (7), y is the range parameter of wave func
tion g(g) and & is the numerical factor depending
on the projectile mass. ' The approximate rela-
tions (Vb) were found by numerical calculation" of
Eq. (5). It is useful for the cases of strongly ab-
sorbed projectiles, like Li, since the absorption
eliminates the contribution from the inside region
where the approximation becomes worse. In the
present calculations, however, we use the rela-
tions (7b) for the (d, d') excitation also for the
sake of simplicity.

The matrix element of the single-particle tran-
sition in Eq. (4b) is calculated by making the ten-
sor expansion for the projectile-nucleon interac-
tion t/"', „',

v'.„'(~.„)=v„g v, (~, ~,)F+ (~)I", (~,),
where V„ is Vo, or V,", defined by Eq. (6). Then
the function f~,(r) is expressed as follows:

~~ zi~

f (r) =2 Q i ' ~2V sf~(x)&l.(r)«. ll &illlx)( ) ' ' jijas(-) (lms —olj p) la 2' j2 D(npf)
lml1 l2

s

(Qa)

where D(nlI /) is defined as

Oo ga tO&1 2 1 2

and the radial function f,(r) is defined as

f ( )= «, ,'e,,(,)V (, ,)0,(,) .

(Bb)

(9c)

The expression for the differential cross section
can be obtained from the standard DWBA formal-
ism" and its explicit form is given in the Appendix.

The extension to the case of ('Li, 'Li') excitation
is straightforward if we assume a simple cluster
model wave function for the "Li projectile. Here
the 'Li ground state is assumed to have the n+d
cluster structure. The 'Li nucleus has also a
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FIG. i. Notations for the space coordinate vectors. The figure on the left-hand side is for the d+A scattering sys-
tem. The relative coordinate between d and A. is denoted by r. The figure on the right-hand side is for the Li+A scat-
tering system where the d+A subsystem is contained, since the 6Li=d+ n cluster description was assumed here for the
projectile. The relative coordinate between Li and A is denoted by R.

fraction of 'He+/, but one takes the risk of double
counting if one sums the reaction amplitude arising
from this fraction to that of the n+d fraction,
since both fractions are not completely orthogonal.
If the simple LS-shell model is used for describing
the 'Li ground state, it can be proved that the 'He
+ t fraction has a complete overlap with the a+d
fraction. "

The spin-flip s =1 transition is thus induced by
the d cluster, whereas the n cluster is assumed

- to be a spectator. The nucleon transition matrix
element in Eg. (2) is now replaced by the following

expression:

F(R) = dr u(t)0(r d)&M N, M„M (r)eo(r d)

where X(r) is the nuclear matrix element defined
by Eq. (2) and (t),(r B) is the s-state wave function
for the relative motion between n and d clusters
in 'Li. The integral of Eg. (10) can be performed
by introducing the tensor expansion method" as in
Eq. (6) for the function f,(r) Y," (r) which appears in
Eci. (Sa). We define the function

l,.(R)=f «:IO.(O:)l'f(~)&l.(~)

(11a)

where we used the relation r = R+ '-,r, (see Fig. 1),
and the g„ is defined as the expansion coefficient
of the radial function f,(r)r ',

f,(r)r '= Q 2 g, (R, r „)P,(cos8),
2X+ 1

(11b)
(12b)

and 8 is the angle between the two vectors B and
r ~. The radial part of the cluster wave function
is denoted by $0(r „). Inserting the explicit form
of the Clebsch-Gordan coefficient'7 in E(I. (11a),

I~ (R)=
O

QR' f d~ ~~ ~'(b)B (R«„)'„,
X=o

From the expressions, it is easy to see that the
angular momentum selection rule for the ('Li, 'Li')
spin-flip transition is exactly the same as that of
the (d, d') transition. This result arises from the
present 8-state assumption for the relative motion
between the o. and d cluster in 'Li.

x Q,'(r,)Yf (R) (12a. )
III. PHYSICAL PARAMETERS USED IN THE CALCULATIONS

2i+S
Q ( (l l)/('((01 XOI)O) (R)Rl«f dr sr a( r ) B(R r e)O (r s)

I

the new function f,„(R) obtained above. That is,
the radial factor f,(r) is now replaced by

f (R)= R"fBr, r, '( x, )B (R, r, )O '(r, ).
=0

Therefore, the nuclear transition matrix element
F(r) for the ('Li, 'Li') spin-flip transition has the
same expression as the K„~ ~ ~ (r) given by
Eq. (4) after replacing the quantity f,(r) Y*,„(r) by

Microscopic studies of the "C(d, d')"C scat-
tering leading to the 4.43-MeV (2'), 7.66-MeV
(0'), and 9.64-MeV (3 ) states have been reported
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TABLE I. Range parameters of interaction potentials used for present calculations. The
range parameters are defined by Eq. (3) for the nucleon-nucleon interaction and by Eq. (6)
for the projectile-nucleon interaction.

Nucleon-nucleon interaction
Projectile-nucleon interaction

(d, d') ( He, .He')

Gaussian P (fm )
!

0.745
0.408

Range (fm)

1.16
1.57

0.35
0.25

1.7 (G 1.7)
2.0 (G-2.0)

P (fm 2) Range (fm) P(fm )

0.25
0.20

!

Range (fm)

2.0 (G-2.0)
2.25 (G-2.25)

Yukawa n (fm ') Range (fm) Z (fm ') Range (fm) n (fm-') Range (fm)

1.0
0.83

1.0
1,2

1.0
0.83

1.0 (Y-1.0) 1.0
1.2 (Y-1.2) 0.83

1.0 (Y-i.o)
1.2 (Y-1.2)

by Hinterberger et al."at E~ =52 MeV. The inter-
action potential used was Gaussian and its range
parameter was P=0.27 fm ' (1.9-fm range) for
the projectile-nucleon interaction [see Eq. (6a) j,
which corresponds to the range parameter p =0.35
fm ' (1.7-fm range) of the nucleon-nucleon inter-
action using y =0.566 fm ' and 5 =0.25 for the deu-
teron wave function. W'e used a smaller range
parameter y =0.402 fm ' taken from Madsen' and
used P =0.408 fm ' (1.57-fm range), so that the
effective deuteron-nucleon interaction range be-
comes P=0.25 fm 2 (2.0-fm range). The range
parameter dependence of the differential cross
section was studied in the present analysis and it
was found that a larger range parameter P =0.745
fm ' (1.2-fm range) provides a better fit to the
data for the 12.71-MeV (1') state excitation.
Therefore we will discuss the results obtained
using these two different range parameters,
P =0.408 and 0.745 fm ', for the Gaussian nucleon-
nucleon interaction.

Ball and Cerny' studied the "C('He, 'He')" C
scattering leading to the 12.71-MeV (1') state as
well as other particle-hole states in 1p-shell nu-
clei at E,„=49.8 MeV. They used approximate
relations (6b) and (7b) for the Yukawa interaction
potential and found the range parameter z = n
=0.83 fm ' (1.2-fm range) to provide good fits to
the experimental angular distribution. This inter-
action potential was adopted here and the interac=
tion strength Vr, obtained from the present analysis
of the "C(d, d')'~C 12.71-MeV (1') state excitation
is compared with that determined in Ref. 7. We
also carried out calculations with n =1.0 fm ',
since it is a typical range of the Yukawa form
used for usual microscopic analyses of the (p, p')
inelastic scattering. The range parameter y of
the 'He wave function is chosen to be 0.29 fm '
as in Ref. 7.

Thus in the present calculations, four different
types of interaction potentials were used for the
analyses of (d, d') and ('Li, 'Li') data as well as
for the reanalyses of ('He, 'He') data. In Table I,

all range parameters used in this work are sum-
marized. The Gaussian interaction with range
1.7 fm and the Yukawa interaction with range 1.0
fm are hereafter referred to as 6-1.7 and Y-1.0,
respectively.

The distorting potential for the (d, d') calcula-
tions at the incident energy of 28 MeV was taken
from Perrin et, al."which was found to fit the
"C+d elastic scattering angular distribution as
well as polarization data for the incident ener-
gies of 20.5, 25.2, and 29.5 MeV. We used the
set designated in Ref. 18 as GM2 (see the cap-
tion to Fig. 2). The corresponding elastic scat-

I
~
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j
l I I l-

~ ~y0
0

lo'
MeV
2

lo

0 20 40 60 80 l00 120 l40
ec.m.

FIG. 2. Rutherford ratio of the elastic angular distri-
bution of the ' C+d scattering at 28 MeV. The experi-
mental data, shown by the solid circles, are provided
from Refs. 5 and 6. The optical model calculation,
shown by the solid line, was done using the parameter
set GM2 from Ref. 18. The parameters are V=109 MeV,
ro ——0.9 fm, and a=0.82 fm for the real potential; Vl. &

=8.5 MeV, rz& ——0.9 fm, and az, &
——0.55 fm for the spin-

orbit potential, 8'a=3. 125+ 0.209E(=8.98) MeV, ra= 2.1
—0.022E(=1.48) fm, and aD ——0.745 fm for the Woods-Saxon
derivative type imaginary potential, where WD and rD
are dependent on incident energy E and the values inside
the parentheses are for E = 28 MeV.
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tering differential cross section calculated for
E„=28 MeV is shown in Fig. 2 and compared with
the data. For the ('Li, 'Li') calculation, the dis-
torting potential employed by Binda. l et a/."was
used for the "C+'Li elastic scattering (see the
caption to Fig. 4). The radial wave function

Q,(~„,) [see Eq. (11a)]wa.s obtained using the usu-
al separation energy method. The corresponding
Woods-Saxon bound-state parameters were R, =1.9
fm, a =0.65 fm, and V0 =77.2 MeV. This potential
gives almost the same radial shape as that pre-
dicted by the resonating group method for the 'Li
ground state. ' The wave function of the 12.71-MeV
(1', T =0) state of '2C was taken to be (1P,~, 'IP, ~,)
configuration" where other small components and
possible admixtures of isospin' ' were ignored.
The wave functions of 1p, &, and 1p», single-par-
ticle states in "C were calculated using the Woods-
Saxon potential with the separation energy method,
assuming x;=1.25 fm and a=0.65 fm. The separa-
tion energies used were determined from the cor-
responding reaction Q value assuming neutron ex-
citation. The separation energies of neutron and
proton in the "C ground state are 18.7 and 16.0

12C(d dl) 12@ /P 7$ /+

lOo

Eh

E

Cy

b

lo-'—

0 20 40 60 80 IOO l20 140
ec.m.

FIG. 3. The lower radial cutoff (LRC) parameter de-
pendence of the calculated angular distribution of (d, d')
at 28 MeV leading ' C to the 12.71-MeV (1', T =0) state.
The experimental data, shown by the solid circles, are
taken from Refs. 5 and 6. Theoretical E =0 angular dis-
tributions were calculated using the Gaussian type 1.'7-

fm range projectile-nucleon interaction potential and the
results are shown for the five different cutoff cases.
They are normalized by use of V&0 ——12.1 MeV (see also
Table II).

MeV, respectively. Therefore the cross sections
calculated here may be lower estimates.

IV. RESULTS OF CALCULATIONS AND SPECIFIC
DISCUSSIONS

A. "C(d,d')"C 12,71 MeV (1') at 28 MeV

Calculated (d, d') angular distributions and ex-
perimental data" leading to the "C 12.71-MeV
(1', T =0) state are shown in Fig. 8, where the
Gaussian intera. ction with 1.7-fm range (G-1.7)
was used. Since the present incident energy is
rather low, there exists a mismatch problem"
between the momenta of the initial and final scat-
tering states, and consequently a lower radial
cutoff (LRC) was found to be necessary in the
DWBA calculation to reproduce the structure of
the angular distribution observed.

For such mismatch cases, it is well know that
.the effects arising from nonlocalities" (NL) of
the optical potential and the bound state potential
are quite considerable, particularly in the light-
ion reactions, since contributions from the nuclear
interior to the DWBA amplitude is appreciably en-
hanced if such NL effects are ignored. The cal-
culated angular distribution with LRC therefore
effectively simulates the NL corrections. This
was checked using NL parameters P =0.54 for the
distorting potential of the d+ "C systems and

P =0.85 for the bound-state potential of P-shell
nucleons. The obtained angular distribution was
quite similar to that obtained by using LRC =2.0
fm without such corrections, but the change in
magnitude of the cross section was different,
i.e., the reduction due to the NL corrections is
by a factor of 1.6, whereas that due to LRC is
by a factor of 4.6. The NL correction is, how-
ever, not enough to reproduce the observed shape
of the angular distribution (see the case of LRC
=2.0 in Fig. 8). One of the reasons arises from
a predominant E =0 transfer for such an 1' state
excitation (see Sec. IV B), where contributions
from nuclear interior are quite enhanced owing
to the finite nature of the l =0 form factor at the
origin.

Therefore, we here simply use only LRC instead
of NL corrections when we consider the fits of
calculated angular distributions to the data. The
cutoff radius was changed in the calculation up to
3 fm and a reasonable fit was obtained for LRC
=2.3 fm. The cross section was reduced by about
a factor of 5 with this cutoff. All calculated cross
sections shown in Fig. 3 are normalized using the
same constant factor found for the normalization of
the case of LRC = 2.3 fm. The angular distributions
calculated using three other different interaction
potentials (see Table I) are shown at the upper portion
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of Fig. 4 together with the case of the G-1.7. For
all calculations, a radial, cutoff 2.3 fm was used.
The case of G-1.7 gives the best fit to the observed
data and it was found so from other choices of LRC

IO'

2C f2.7I MeV I+ T=O
2=0 S=l

loo

parameters.
The interaction strengths extracted from the

normalization of calculated cross sections to
experim'ental data at the 8, =20' are summarized
in Table II. The normalizations provide the pro-
jectile-nucleon interaction strengths VG, or V,",
defined by Eqs. (8) and (7). For the ('Li, 'Li') re-
action, these are the strengths of the interaction
between the d cluster in 'Li and the nucleon in "C.
The obtained strengths were reduced to the nu-
cleon-nucleon interaction strength V~o, or V,", using
Eq. (7). Assuming the equivalence of the volume
integral of the interaction potential, the equivalent
strength V»(Y-1.0} to the strength of the Yukawa
form with 1.0-fm range can be obtained by using
the following relations:

lo-'—
G- I.7
G-2.0

tee o e eve
Io &t'

Y—I2

C(o.:1.0) '1
'

Vr, (n),
v(n:1.0)

V„(Y-1.0) =

~ C(n:1.0) -" ' '
V,',(lI),

V

(13a)

(13b)

where the v's are the volume integrals of Yukawa
or Gaussian interaction form,

Io-'

0 20 40 60 80 IOO l20 I%0

C.N.

FIG. 4. Angular distributions of the (d, d') process at
28 MeV (shown at the upper part) and the ( Li, Li') pro-
cess at 36.4 MeV (shown at the lower part) leading to the

C i2.7i-MeV (i', T =0) state. The experimental data
for ( Li, Li') were taken from Ref. i9.. The four differ-
ent curves show the l =0 partial angular distributions
calculated using four different interaction potentials,
which are annotated in the figure as G-i.7 for the Gauss-
ian type i.7-fm range potential, etc. (see also Table I).
The calculated cross sections are normalized by using
the strength V&o given in Table II. The distorting poten-
tials used for the ( Li, Li') process were the same as
those from Ref. i9. The parameters are 7=85.2
-0.64E~ ~ MeV, xo ——0.97 fm, and a =0.735 fm for the
real potential, W= —6.4+ 0.96E~~ MeV, x'o ——i.25 fm,
and a' = 0.386 fm for the volume type imaginary potential,
and r~ = 1. .35 fm, where all radius parameters are defined
such as multiplication by (A&' +A2' ) gives the potential
radius, with the exception of the case of the (d, d') in the
caption to Fig. i.

and C(n:1.0) is exp(-1/18y'), the conversion fac-
tor of the projectile-nucleon interaction to the
nucleon-nucleon interaction with range parameter
c. =1.0 fm ' for Yukawa potential [see Eq. (7b}].
Equations (13) correspond to one way of conver-
sion; that is, first the strength of projectile-nu-
cleon interaction is converted to that of an equiva-
lent projectile-nucleon Yukawa interaction with
1.0-fm range, and then to that of the nucleon-nu-
cleon Yukawa interaction. There is another way
of conversion; first to convert to the nucleon-nu-
cleon interaction and then reduce it to the equiva-
lent Yukawa 1.0-fm interaction. These two dif-
ferent ways give different results, and for the
(d, d') case, the latter gives about 10 or 40/o lar-
ger strength co'rresponding to Yukawa or Gaus-
sian types of interaction, respectively. Equations
(13}were used for all reactions and excitations
discussed in this paper to derive an equivalent
strength V„(Y-1.0).

From Table II, it can be seen that the spin-spin
interaction strengths V»(Y-1.0) thus obtained
from the (d, d') process at 28 MeV are almost con-
stant at 8.28 MeV on the average without cutoff
(LRC =0.0 fm) and 20.2 MeV with LRC =2.3 fm.

B. ' C( Li Li')' C, 12.71 MeV(1') at 36.4MeV

Since the incident energy of 36.4 MeV is not so
high in comparison with the Q value of 12.71 MeV,
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TABLE II. Interaction strengths obtained from the ' C 12.71 MeV (1', T =0) state excitation
calculation using four different interaction potentials with ip3g& —ip, y& transition picture.

"C 12.71 Mev (1')

(d, d') 28 MeV

( Li, Li') 36.4 MeV

( He, He') 49.8 MeV

LRC = 0.0

LRC = 2.3

Y-1.0
Y-1.2
G-1.7
G-2.0
Y-1.0
Y-1.2
6-1.7
6-2.0
Y-1.0
Y-1.2
6-1.7
G-2.0

Y-1.0
Y-1.2
6-2.0
6-2.25

11.4
7.31
4.90
3,39

28.3
17.7
12.1
8.14

12.2
7.60
5.35
3.44

20.6
11.9
5.54
3.76

b
V~0

(MeV)

8.09
5.76

15.5
7.06

20.1

14.0
38.2
17.0

8.67
5.99

16.9
7.17

10.7
7.51

27.5
11.2

Vxo(Y- 1..0
(MeV)

8.09
8.97
7.56
8.53 (8.2S)"

20.1

21.7
18.7
20.5 (20.2)'
8.67
9.32
8.26
8.65 (S.73)'

10;7
10.6
10.1
9.89 (10.3) '

Strength V,&
or V~& of projectile-nucleon interaction [see Eqs. (6) and {7)]for s =1 and t = 0.

For (6Li, Li'), strength of d cluster and nucleon interaction.
"Strength Vs~& or Vs+| of original nucleon-nucleon interaction [see Eq. (3)] for s =1 and t =0.

Strength converted to the Yukawa 1.0-fm range interaction using volume integral discussed
in the text.

Average strength.

there might be a momentum mismatch problem
here also which was very serious in the case of
(d, d') at 28 MeV. The nuclear interior contribu-
tion was examined by changing the LHC parameter
up to 5 fm for every 0.5-fm step. It was found
that the shape of the angular distribution was
quite stable and that the cross section decreased
by only a factor of 3 with LBC =3.0 fm, which is
rather small in comparison with those found in
the analysis of (d, d') at 28 MeV. Such suppressed
contribution from the nuclear interior in the case
of ('Li, 'Li') scattering may be caused by'the smal-
ler amplitude and large cancellation due to the
more frequent oscillations of the distorted waves
compared with the corresponding situation for
(d, d') scattering.

The results of the calculations are shown in the
bottom portion of Fig. 4 after normalizing them
to the data observed at 8, =35 . The radial cut-
off was not used. Differences in the shapes of
angular distributions arising from the use of dif-
ferent interaction potentials are less than those
appearing in the (d, d') excitation. This reduced
sensitivity in the ('Li, 'Li') excitation to the shape
of the interaction potential obviously comes from
the fact that the form factor is more smeared
out owing to the additional integration over the
'Li cluster model wave function &f&0(x ~) [see Eq.
(lla) and Fig. 1].

The interaction strengths derived are given in
Table H and the equivalent strength V„(Y-1.0)
was found to be 8.73 MeV on the average, which
is quite consistent with that determined in the
(d, d') analysis without cutoff.

For the present unnatural parity 1' state ex-
citation, there exists two possible transferred
angular momenta, l =0 and 2 [see Eq. (9a)], and
only the l = 0 part of the cross sections was dis-
cussed above. The l =2 cross sections are shown
in Fig. 5 and they are compared with those of the
l =0 transfer for the (d, d') and ('Li, 'Li') excitation.
The same interaction strength was used for nor-
malizing the l =2 cross section as was used for
normalizing each l =0 cross section to the experi-
mental data. The l =2 cross section is about one
order of magnitude smaller in the (d, d') and about
50 times smaller in the ('Li, 'Li') excitation.
Since the spin-orbit distortion was used in the
present (d, d') calculation, these two transition
amplitudes should be summed coherently. How-
ever, since the l =2 component is relatively small,
it was neglected.

It may be argued that such a small contribution
of the l =2 transfer is physically reasonable. In
a classical picture, the l =2 transfer corresponds
to a process of double flips, the flip of the orbital
rotation of the valence nucleon as well as the flip
of the intrinsic spin, whereas the l =-0 transfer is
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FIG. 5. (a) Comparison of the calculated l =2 partial cross section with that of the l =0 for (d, d') at 28 MeV leading
to the ' C i2.7i-, MeV (i', T = 0) state. The calculations were performed using the Gaussian type i.7-fm range projectile-
nucleon interaction potential and the lower radial cutoff 2.3 fm was used for both l =0 and l =2 cases. The l =2 cross
section is normalized using the same strength V~p= i2. i MeV used for the l = 0 cross section. (b) Comparison of the cal-
culated l =2 partial cross section with that of the l =0 for the ( Li, Li') process at 36.4 MeV leading to the C i2.7i-
MeV (i', T =0) state. In the figure, the l =2 cross section is normalized using the same V&p used for the l = 0 cross sec-
tion and then multiplied by an arbitrary factor of 20. See also the caption to Fig. 5(a).

a nonf lip process for the orbital rotation. The
other evidence for suppression of the l =2 trans-
fer is a concentrated Ml y decay [with a branching
ratio of 83.3%%uo (Bef. 22)] from this state to the
ground state.

C ' C{ He, He')' C 12.71 MeV {1+)at 49.8 MeV

In the calculations, the distorting potential pa-
rameter set F given by Ball and Cerny' was used.
The results are shown in Fig. 6. The case of the
Y-1.2 potential without LRC (LBC =0.0 shown by
dot-dashed line at the upper part) corresponds to
that of Ball and Cerny. ' All calculated cross sec-
tions were normalized to the data at the angle
8, =20' and the extracted interaction strengths
are summarized in the last four rows of Table
II. The equivalent nucleon-nucleon interaction
strength V„(Y-1.0) obtained from the use of Y-1.2
potential is 10.6 MeV and this value is the same as
that obtained in Bef. 7 (see comments on Bef. 7).

From Table II, one can conclude that the present
four different interaction potentials used in the
('He, 'He') analysis give an almost constant
strength, about 10 MeV, for the equivalent nu-
cleon-nucleon potential V»(Y-1.0). However,
there exist problems as seen in Fig. 6, particul-
arly at forward angles. It was found that the in-
troduction of LHC does not improve the quality
as is evident from the lower portion of Fig. 6
where LHC =2.0 fm was used. The calculated
cross section is reduced by a factor of 2 with
this cutoff. The contribution from the l =2 trans-
fer was estimated and the result is shown in Fig.
'7. The l =2 cross section is about two orders of
magnitude smaller around the angle 0, =20' than
that of the l =0 transfer, consistent with those
found in the (d, d') and ('Li, 'Li') scatterings dis-
cussed in Sec. IVB. Therefore this l =2 compon-
ent arising from the central (o' o) type interaction
does not appear to be the source of the present
discrepancy at forward angles.
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D. ' C 4.43-MeV {2')state excitations

Microscopic studies of this state have been re-
ported by Hinterberger et al."from (d, d') scat-
tering at E„=52 MeV and by Ball and Cerny' from
('He, 'He') scattering at E, =49.8 MeV. Angular
distributions calculated considering only the 1p3/2
—1p, &, single-particle transition are shown in
Fig. 8 and they are compared with the observed
data. For the 28-MeV excitation, the interaction

potential G-1.7 gives an overall good fit to the
shape of the observed data. This result is con-
sistent with that found in the 12.71-MeV (1 ) ex-
citation. While for the 52-MeV case the potential
G-2.0, which is very close to the G-1.92 (1.7-fm
range of nucleon-nucleon Gaussian type inter-
action) used in the analysis of Hinterberger et al. ,

"
gives the best fit. The reason for this energy de-
pendence of the interaction potential is not well
understood.

For the ('He, 'He') process, the Gaussian type
interaction potential gives a sharp oscillatory
angular distribution thereby reproducing the deep
valley around the angle 0, =25', while the Yukawa
potential gives a rather structureless angular dis-
tribution. The calculated angular distributions do
not show satisfactory fits, which was also the case
for the 12.71-MeV (1') state excitation by
('He, 'He') discussed in Sec. 1VC.

The interaction strengths were obtained by nor-
malizing the calculated results to the data as
shown in Fig. 8, and are summarized in Table
III. The equivalent Wigner part of the interaction

10o

C( He, He) C I2.7I I+

49.8 IVleV

Cg

10-'— LRC =2.0

10

0 20 40 60 80 100 120 140
ec.m.

10

~v=2 S=1

x 10

/

10'.
0 20 40 60 80 100 120 140

gem.
FIG. 6. Angular distribution of the ( He, He') process

leading to the C 12.71-MeV (1', T = 0) state at 49.8 MeV.
Four different curves show the calculated l =0 partial
angular distributions corresponding to the four different
projectile-nucleon interaction potentials used in the cal-
culation, e.g. , G-2.0 indicates the use of Gaussian type
2.0-fm range potential, etc. (see also Table I). The
cases without lower radial cutoff and with a cutoff at 2.0
fm are shown. The experimental data are taken from
Ref. 7.

FIG. 7. The l =2 partial angular distribution is com-
pared with that of the l = 0 for the (3He, 3He') process at
49.8 MeV leading to the C 12.71-MeV (1', T = 0) state.
The Gaussian type 2.0-fm range potential was used for
the projectile-nucleon interaction. The calculated cross
sections are normalized using the same strength V~p

given in Table II. For the l = 2 partial angular distribu-
tion, an additional renormalization was done by multi-
plying by a factor of 10.
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strength V«(Y-1.0) was obtained by using Eqs.
(13). The strength of 85.9 MeV for the G-2.0 po-
tential from the (d, d') analysis at 52 MeV is a
little different from the result of 66 MeV obtained

l0 I
/

I
/

I
f

&

/

)
/

I
(

I

l 2C 4.45 MeV 2+

P 5/2 = Pl/2

lo'

by Hinterberger et al.' using the G-1.92 potential,
mainly owing to the different range parameter y
of the deuteron wave function (here we used y
=0.402 fm ' and they used 0.566 fm ', see also
Sec. III). The equivalent strength of V~(Y-1.0)
=92.4 MeV obtained from the ('He, 'He') analysis
using the Y-1.2 potential is very close to the value
of 92.7 MeV obtained by Ball and Cerny' even using
the different distorting potential parameter set
(see also Sec. IV C). The present analyses of three
different reactions provide a quite consistent
strength V»(Y-1.0) of the equivalent interaction
from four different interaction potentials: on
the average 93.4 MeV for the (d, d') process at
28 MeV, 106 MeV from the (d, d') process at
52 MeV and 82.6 MeV from the ('He, 'He') pro-
cess (see the last column in Table III).

lO'

lo'

loo

6 —2.25

V. DiSCUSSION

The equivalent (a ~ a') type interaction strength
V„(Y-1.0) was consistently obtained in the present
analysis of the "C 12.71-MeV (1') state excitation
by various processes, i.e., 8.28 MeV from the
(d, d'), 8.73 MeV from ('Li, 'Li'), and 10.3 MeV
from ('He, 'He'), on the average (see Table II).
Owing to a momentum mismatch problem in the
(d, d') at 28 MeV, LHC was necessary to reproduce
the shape of the angular distribution observed.
The interaction strength was increased to 20.2
MeV for the (d, d') process when the cutoff at
2.3 fm was used to fit the shape. Therefore (d, d')
data at higher incident energies are quite desirable
to check whether the strength of about 10 MeV
will result again without the ambiguity of radial
cutoff, since the momentum mismatch problem
is expected to be less severe there.

In the present microscopic analyses, we em-
ployed only the (o ~ o) type central potential, but
w'e did not consider contributions from tensor
forces or exchange processes. Such interactions
of increasing complexity may not be so impor-
tant2' '9 at least for analyses of the (p, P') excita-

i0-i
0 20 40 60 80 IOO l 20 140

ecj
FIG. 8. Angular distributions of three different pro-

cesses to excite the ' C 4.43-MeV (2') state: (d, d') at
28 MeV, (d, d') at 52 MeV, and ( He, He') at 49.8 MeV.
The experimental data are taken from Ref. 6 for the first
three points shown by the open circles and from Ref. 5

for other solid circles in (d, d') at 28 MeV, from Ref. i2
for (d, d') at 52 MeV and from Ref. 7 for ( He, He').
Four different curves show the results of calculations
using the four different interaction potentials (see Table
I). The single-particle ip3y2 —ip&y2 transition process
was assumed. The calculated cross sections are nor-
malized using the strength Ppp given in Table III.

tion at high incident energies (100-200 MeV).
However, the (P,P') experimental data at around
50 MeV leading to the "C 12.71-MeV (1', T=0)
state and the 15.11-MeV (1', T = 1) state show
rather anomalous shapes in their angular dis-
tributions. " A broad peak at forward angles
like an /=2 transition was seen, which is
contrary to the prediction of the predominant
I =0 transition if we use the (o ~ o) central inter-
action. In addition to this, the angular distribution
of the 7 =0 state transition showed a backward
rise beyond 8, =100' in contrast to a sharp falloff
in the T =1 state transition.

Love and Parish" investigated the effects of the
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TABLE III. Interaction strengths required to produce the observed cross section exciting
the ' C 4.43-MeV (2') state using ipay2 ip&g2 single-particle excitation.

"C 4.43 MeV (2')
Voo'

(MeV)
Voo'

(MeV)
Vop(Y-1.0)

(MeV)

(d, d') 28 MeV

(d, d') 52 MeV

( He, He') 49.8 MeV

Y-i.o
Y-1.2
G-1.7
6-2.0
Y i.o
Y-1.2
G-1.7
G-2.0
Y-i.o
Y-1.2
6-2.0
6-2.25

119
80.1

60.3
38.9

146
94.2
66.2
41.2

177
103
43.3
25.4

84.4
63.0

191
81.0

104
74.2

209
85.9
91.8
65, 1

215
75.5

84.4
98.1
93.2
97.7 (93.4)

104
116
102
1O4 (1O6)'
91.8
92.4
79.7
66.7 (82.6)

Strength Vs~& or V~& of projectile-nucleon interaction [see Eqs. (6) and (7)] for s =1 and t = 0.
For (6Li, Li'), strength of d cluster and nucleon interaction.

Strength Vs~& or Vs~& of original nucleon-nucleon interaction [see Eq. (3)] for s =1 and t = 0.
Strength converted to the Yukawa 1.0-fm range interaction using volume integral discussed

in the text.
Average strength.

tensor force for the 15.11-MeV (1', T =1) state ex-
citation, and they found that the enhanced l =2
transfer component arising from the tensor force
is capable of reproducing such a broad peak at
the forward angles. Mori" investigated the ex-
change (knockon) process for excitation of the
12.71-MeV (1', T =0) state, and he pointed out an
important contribution of the unnatural parity
l =1 transfer component, resulting in a broad
peak at forward angles by the sum of the l = 1 and
the ordinary l =0 transfer components. The in-
creasing trend at the backward angles is still an
open question. The exchange process was also
investigated by Love and Satchler" employing the
Hamada- Johnston interaction potential, but in
their analysis a rather small contribution of the
l =1transfer component was found. Detailed stud. —

ies of these effects should also be made for in-
elastic processes with composite projectiles. In
particular, calculations for the ('He, 'He') excita-
tion did not succeed in predicting the extremely
forward angular distribution (see Fig. I). It was
found here that the l =2 transfer component aris-
ing from the (cr ~ o') type central interaction is too
small to fill up the sharp dip of the l =0 angular
distribution at extremely forward angles, although
such an l =2 component would reproduce the broad
peak observed. A similar discrepancy was found
in the ('He, 'He') process leading to the "C 15.11-
MeV (1', T = 1) state, and also for the analogous
('He, t) process leading to the "N(g.s.) (1', T =1)
state. ' These facts may be showing the importance
of one-nucleon pickup and stripping type second-
order processes for the ('He, 'He') process, which

has been found important in the ('He, f) charge ex-
change processes, " and can provide the l =2 trans-
fer.

Despite such ambiguities, it may still be worth-
while to compare the strength V„=2.9 MeV found
in the analysis. of (p, p') by Mori" for the 1.6-fm
Gaussian form nucleon-nucleon interaction with
that extracted from the present analyses. The
former can be converted to an equivalent strength
V„(Y-1.0) = 5.3 MeV of the Yukawa form with 1.0-
fm range nucleon-nucleon interaction compared to
the present value of 8.28 MeV (see Table II). Such
differences indicate the need for more detailed
treatments including exchange effects.

The nuclear wave function used here for the ex-
cited 1' state was taken to be the (P,&, 'p, &,) con-
figuration. " The single-particle wave functions
were calculated by the separation energy method
using the Woods-Saxon potential (see Sec. III for
details). The Z-transition width of the Ml decay
to the ground state was calculated using these
wave functions to be I"„,=0.67 eV, which should
be compared with the observed width'4 0.35 +0.05
eV. Such large transition strengths due to the use
of simple jj-shell model wave function were also
found" in analyses of (P,P') data at 160- and 100-
MeV incident energies. About a factor of 10 times
larger cross sections were obtained by the calcu-
lations using the WKB impulse approximation.
Kawai, Terasawa, and Izumo" studied spin-flip
excitations by the (p, p') process for the sd-shell
nuclei where the single-particle picture of d, &,
-d, &, transition gives about 3 times larger Ml
decay width than that observed. Reduction of this
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overenhanced value was dramatically achieved by
the inclusion of configuration mixing (see com-
ments in Ref. 27). This suggests that the nuclear
transition matrix element calculated in the pres-
ent study may be subjected to a similar reduction
if a more precise wave function is employed, and
then the interaction strengths obtained here could
be increased by a factor of 1.4 which turns out,
for instance, to be V,o(Y-1.0) =11.7 MeV on the
average for the (d, d') at 28 MeV excitation, or
7.42 Me& if a simple correction is done for the
exchange effect based on Mori's calculation.

The analysis of the 4.43-MeV (2') state excita-
tion in the 28-MeV (d, d') scattering was made em-
ploying the simple P, /, -P, /, excitation picture.
The E2 decay width from the 2' state to the ground
state was calculated using the same wave function
used for the (d, d') analysis, with the result I',~(E2)
=2.08 meV, while the experimental value is
I', (E2) =10.8 a6 meV." It again yields the reduc-
tion factor of 2.3 if we assume the same enhance-
ment due to the collective nature of the 2' state
wave function. A similar collective enhancement
in the inelastic excitation has been discussed by
Hinterberger et a/." in their microscopic analysis
of (d, d') at 52 MeV using the Gillet-Vinh Mau
shell model wave function. " They found that the
required interaction strength was reduced by a
factor of 1.8 from that obtained by using the simple
p3 /2 pz / 2 excitation model . All these findings
point out the strong effects of the configuration
mixing. It is thus quite important to note that
microscopic treatments of inelastic excitation
provide a very sensitive test of the wave function.
It also points out that any microscopic calculation
faces such complexities in details, and further
efforts must be.made to refine the theory in the
future.

The investigation of the "C(c., n')"C excitations
at 36 MeV was done by Cecil and Peterson. " The
calculations of differential cross sections to ex-
cite 4.43-MeV (2') and 9.64-MeV (3 ) states have
been done with the microscopic description for the
target nucleus but regarding the z projectile as
an elementary particle. They also used the Gillet-
Vinh Mau wave function. The e-nucleon interac-
tion had the Yukawa form with 1.0-fm range and
the strength was found to be 430 MeV. Converting
this strength to the nucleon-nucleon interaction
strength using y =0.329 fm ' for the Gaussian type
a wave function from Ref . 1, we find 64.3 MeV for
Voo(Y-1.0) which is quite compatible with 51.9
MeV obtained above.

One of the most important aims of the present
investigations was to test such a model for the
spin-flip excitation process by the ('Li, 'Li') in-
elastic scattering assuming the 'Li =0+ n cluster

model. As shown in Sec. IVB, a reasonable agree-
ment with the observed data was obtained, at least
for the shape of the angular distribution, thus pro-
viding a possible justification for the present mod-
el. A conclusive result about the strength of the
calculated cross section cannot be obtained here
because of the ambiguities in the extraction of the
basic strength of the (d, d') effective interaction
where we had to introduce a radial cutoff param-
eter. However, it should also be noticed that the
strength of 8.73 MeV which is needed for reproducing
the observed cross section is rather close to 7.42
MeV where the exchange effects and the configura-
tion mixing of the wave function were simply
estimated, though such a simplification should be
taken with caution. This strength is also very
close to those found by Ball and Cerny in P-shell
nuclei. '

Other related problems are to be noted: (1) The
optical potential of the 'Li+'~C scattering system
calculated by the folding method using the cluster
model for 'Li was quite different" from those
found by the phenomenological parameter search.
Particularly, the imaginary part is considerably
different. (2) The "C(n, n')"C 12.71 MeV (1', T
=0) excitation is expected to be a strongly forbid-
den process because of the spinless n projectile.
The experimental measurement has been done by
Cecil and Peterson' for the 36-MeV incident en-
ergy and the peak cross section is about 1 mb/sr
at the angle 9, =15' which is larger than those
of the present (d, d') at 28 MeV (about 0.5 mb at
the forward angles, see Fig. 4) and of the
('Li, 'Li') excitations (about 0.07 mb).

For the first question, the importance of com-
posite properties of the 'Li nucleus or the Pauli
principle should be remembered, and therefore
such a simple folding model for producing the Wig-
ner part of the central potential cannot represent
the phenomenological optical potential. Neglect
of the decay channels of the weakly bound 'Li
system brings about more difficulties for the im-
aginary part. However, for the present specific
spin-dependent channel, only the deuteron cluster
part should play a role and the existence of the n
cluster should not disturb such a spin-dependent
interaction between the deuteron cluster and target
nucleus. The same situation has been found" in
the calculation of the spin-orbit potential of the
'Li+ "C scattering system by the use of a basic-
ally similar picture used here and it was found that
the folding model gave successful results.

For the second question, one may remember that
this excitation induced by n particles can only
proceed through second or higher-order process-
es. These were investigated by Cecil and Peterson
by considering the successive nucleon stripping



SPIN-F LIP TRANSITIONS CAUSED BY Li INELASTIC. . . 1771

and pickup processes and also the successive in-
elastic excitation processes through the 2' and 3
intermediate states of "C. A crude estimate may
be made for those higher-order contributions to
the ('Li, 'Li') process arising from the c.-cluster
part. Assuming first that the whole ('Li, 'Li')
cross section arises from the inelastic scattering
of the deuteron cluster part, the reduction factor
of the free (d, d') cross section due to the deuteron
being bound inside the 'Li projectile may be an
order of 0.07 mb/0. 5 mb = 0.1, which is caused mainly
from the bound nature of the deuteron inside the
'Li and the stronger suppression of nuclear inter-
ior contributions in the ('Li, 'Li') than those in the
(d, d'). The same order of reduction should occur
for the n-cluster part, but the square of this re-
duction factor should be multiplied to the free
(n, n') excitation cross section (1 mb at peak),
since the possible lowest excitation processes are
in the second order. Then a rough estimate for the
(n, n') contribution to the ('Li, 'Li') excitation is
about 10 p,b. This magnitude should be compared
with the 70 pb of the ('Li, 'Li') peak cross section
and one may conclude that the (o, c.') contributions
are very small.

It is interesting to note that applications of the
cluster description of lithium nuclei showed quite
successful results in three different cases: the
('Li, 'Li) reaction, ' the spin-orbit potential of the
'Li+ "C scattering, "and the present spin-flip in-
elastic scattering.

VI. CONCLUDING REMARKS

The excitation mechanisms of (d, d') and
('Li, 'Li') leading to the "C 12.71-MeV (1', T =0)
state were studied in the framework of DWBA with
microscopic descriptions for both projectile and
target systems For th. e ('Li, 'Li') scattering, the
n-spectator model was tested assuming the z+d
cluster configuration where only the d-cluster
part was supposed to contribute to the spin-flip
excitation while the n-cluster part acts as a spec-
tator. The form factor for the ('Li, 'Li') calcula-
tion is provided in principle mainly from the
analysis of the (d, d') excitation without any other
free parameters.

The (o ~ 5) type central interaction was assumed
for the present (d, d') 'calculation. Four different
forms of interaction potentials were tested: a
Yukawa formwith range 1.0-1.2 fm, and a Gaus-
sian form with range 1.16-1.57 fm (see TaMe I).

The results were compared with and fitted to the
observed results of (d, d') 5" The interaction
strength extracted was 8.28 MeV on the average,
which is an equivalent nucleon-nucleon interaction
strength V„(Y-1.0) of Yukawa form with 1.0-fm
range for the s =1 and t =0 transfer. This value is
quite consistent with that obtained from the analy-
sis of ('He, 'He') (Ref. 7; see Table H}.

Because of a momentum mismatch problem dug
to the present rather low incident energy of 28
MeV for the (d, d') process, the use of a lower
radial cutoff (LRC) was necessary in DWBA calcu-
lations to reproduce the observed angular distri-
bution. With LRC =2.3 fm, a reasonable fit of the
calculated angular distribution to the data was ob-
tained (see Fig. 3), but the interaction strength
was increased to 20.2 MeV. Therefore, it is sug-
gested that a check be made on whether the
strength of about 10 MeV will result again from the
analysis of high enough incident energy data for
the (d, d') scattering without the ambiguity of radial
cutoff.

The results from the (d, d') analyses thus ob-
tained were utilized in the ('Li, 'Li') calculation,
and. it was found that the present model can repro-
duce consistently the shape of the angular distri-
bution of the ('Li, 'Li') experimental data." The
magnitudes of the calculated cross section are
consistent with the observed result if we use the
strength of 8.28 MeV (without cutoff case) and
about 5 times larger for 20.2 MeV (with the cutoff
case).

Effects of more complex interactions were dis-
cussed in general including the effects of the tensor
force, exchange processes, and two-step pro-
cesses. The configuration mixing in the target "C
nucleus seems to be also an important factor to
finalize the interaction strength extracted.

The (d, d') excitation leading to the "C 4.43-MeV
(2'} state was also studied. The result of the cal-
culation was compared with and fitted to the ob-
served data. 5' The extracted interaction strength
of the Wigner part of the nucleon-nucleon interac-
tion strength was found to be quite consistent with
those previously obtained in the (d; d'},'3
('He, 'He')' (see Table III), and (o., n') (Ref. 32)
analyses.

One of the authors (K.-I. K.) appreciates the
hospitality accorded to him by T. T. Sugihara and
the Cyclotron Institute staff at Texas A 5, M Uni-
versity.

APPENDIX

The DWBA differential cross section is given using the T matrix defined by Eq. (1}

dg (2'')' 0,. (2Z, +l)(2J +1) „
(A1)
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where jU,, and p, , are the reduced masses of projectile and ejectile, respectively. The distorted waves are
expanded into partial waves. Then Eq. (A1) may be expressed as follows, "

do 1 1 1 k~ ~
5 jp, MaMy

where the reduced reaction amplitude P„"~ „(8)is

(A2)

p'j& ~ (e) = g f~l, l~'(I . ohio f,o)(f,.oJ,M. lji~ )(fz~zJ»M»lj~pI)(j~pzj —p lj M.)
&f Jf&l &c

j f f il~ lg lllsf pllly(g)
~

~(I +m)t f jf i l y

~i ~a ~f

and the overlap integral I',"», &
is defined byf f

I) ~ g. ~. = dÃX) g
ky'V )s~ f ) ~ k~ 7'

(AS)

(A4)

In Eq. (A4), »,.q, and X r.&&z are the radial parts of the initial and final distorted partial waves, respectively.
The function f„&(x) is the so-called form factor, which contains details of the nuclear structure of the pro-
jectile and target systems as well as the interaction potential, and it is given by using the physical quanti-
ties defined in Sec. II,

f(.;(~) =
l&l& j& i&nie

S(jJ„Js;j,j,o.,a, )S'(sJ,J„tT, T,)

xg(-)""(T.~.T»-~»lf- T) g (-)""''~(kP 4-P. lf ~)D(~P&)( )'""Is-'J. 'iiA

(A5)

In Eq. (A5), V„ is the strength of the projectile-nucleon interaction, defined by Eq. (6) and f, (x) is the ra-
dial factor defined by Eq. (Bc) for the (d, d') process. The nuclear transition matrix element K~ ~, ~„„
given by Eq. (4a) is expressed using the form factor defined by Eq. (A5) as follows:

A". .., ( ) = g( )' '(J„M-„J,-M, lq q)(—-)"-"(—J M J,—M„ls —o)
Jts

x (-)' '(Lrns —o j~p)(-)'"J,s 'l 'f„,(x)i'Y*,„(r). . (A6)

The expressions shown above can also be used for the present o-spectator model in the ('Li, 'Li') spin-
flip excitation process with the following two changes: The radial coordinate x is replaced by R, and the
radial factor f, (r) is replaced by f,(A) given by Eq. (12b). The radial parts of distorted waves appearing
in Eq. (A4) are, of course, those of 'Li scattering.
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