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Extra nodes and the phase shift of the scattering wave function
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This paper examines the presence of extra nodes in the scattering wave function for a nonlocal potential.
Extra nodes are known to result from the nonlocality of an effective potential which incorporates the Pauh
principle. It is shown that an extra node is directly linked to the existence of a continuum bound state or a
spurious'state in the scattering spectrum. Thus the presence of extra nodes occurs in conjunction with zeros of
the Fredholm determinants D (k) and D(k) associated with the integral equations for the physical and
regular scattering solutions, respectively. The behavior of the nodes due to spurious states and continuum
bound states is differentiated. Two possible definitions of the phase shift for a nonlocal potential are discussed
in connection with this behavior. Both are consistent with the local limit. The definition of the phase shift as
the negative of the phase of the Jost function 2+(k) is suggested as preferable. This definition is shown to be
in accord with the nodal behavior of the wave function and its interpretation in terms of an absolute value of
the phase shift. Examples of potentials with a spurious state and of potentials with a continuum bound state
are given. The nodal behavior of the wave function and the associated phase shift behavior are examined for
each.

NUCLEAR REACTIONS Scattering by a nonlocal potential, extra nodes „Fred-
holm determinants and their zeros, continuum bound states, spurious states,

phase shifts.

I. INTRODUCTION

The effective potential describing the interaction
between composite particles is inherently non-
local. ' ' Consider, for example, +-~ scattering.
Because of the Pauli principle, the ~-~ relative
wave function must exhibit effects of excluded ra-
dial configurations. Calculations' "using the
resonating group formalism, "as well as those"
based on the method of Saito, ' show that the radial
wave functions in the S and g) partial waves have
nodes at small distances. These nodes are re-
quired by the Pauli principle but are "extra" in
the sense that there are no bound states of the n-+
system. Such nodes are incompatible with a local
potential model of the effective interaction. This
feature of ~-~ scattering is discussed in detail
in the introduction of Ref. 14, where it is shown
that if the ~-~ relative wave function is to be the
solution of a radial equation with an effective po-
tential, that potential must be nonlocal.

The manner in which the nonlocality of the ef-
fective potential incorporates the Pauli principle
in the resonating group formulation of the scatter-
ing of composite particles has another important
consequence. The wave function for the relative
motion of the clusters obtained by solving the
resonating group integrodifferential equation ex-
hibits redundancies. The redundancies are solu-
tions (known as redundant solutions" '6) oi the

integrodifferential equation which occur in addi-
tion to the scattering solution. They can be added
in any arbitrary amount to the scattering solution
without affecting its asymptotic form. " In this
regard, Shakin and Weiss" have examined the
existence of the extra nodes in the solution of the
resonating group radial equation. They ascribe
the nodes to the fact that the Pauli principle re-
stricts the scattering wave function to a subspace
which is orthogonal to the space spanned by the
redundant solutions. Subspace-restricted scatter-
ing, known as orthogonality scattering, has been
extensively investigated by Scheerbaum, Shakin,
and Thaler 9 and by Shakin and Thaler. o

fective potential in subspace-restricted scattering
is necessarily a nonlocal potential. Again one sees
the connection between additional nodes in the
scattering wave function and the nonlocality of the
effective potential.

In this paper we employ Fredholm determin-
ants'~ "to discuss nonlocality. These determin-
ants are essential in describing properties of the
scattering wave function for a nonlocal potential.
%e demonstrate the connection between a single,
simple zero of Fredholm determinants and the
presence of an additional node in the radial wave
function. As shown in Ref. 14, two different kinds
of behavior, spurious states and continuum bound
states, may result from zeros of Fredholm de-
terminants associated with a nonloca" potential.
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It will be demonstrated that the presence of ad-
ditional nodes in the wave function is found with
both. The manner in which the extra node behaves
as a function of the energy depends upon the type
of state under consideration.

The connection between a zero of the Fredholm
determinant associated with one or more of the
radial scattering integral equations for a nonlocal
potential and the presence of an extra node in the
radial wave function is established by examining
the ambiguity which occurs in the definition of the
scattering phase shift due to the zero of the Fred-
holm determinant. Jn this regard, we review in
Sec. III the definition of the phase shift for a short-
range local potential. For a local potential an
ambiguity of p)), where p is an integer, exists in
the absolute value of the zero-energy phase shift.
This is due to the possibility of bound states for
that potential. The ambiguity is resolved by the
fact that each bound state of the potential results
in an additional node of the radial wave function
relative to the free-particle wave function. Thus
an absolute phase shift for a local potential can
be obtained by counting the number of additional
nodes of the wave function, or by counting the
number of bound states and applying Levinson's
theorem,

For a nonlocal potential, ambiguities in the phase
shift exist in addition to that due to the presence of
negative energy bound states. The ambiguity in the
phase shift due to a continuum bound state has been
discussed in detail by Bolsterli. " We find that a
similar ambiguity exists with respect to the defi-
nition of the phase shift in the presence of a spuri-
ous state. We investigate modifications of Levin-
son's theorem which are necessary in light of this.

The analysis in this paper applies to nonlocal
potentials which are symmetric and real. For
simplicity, we consider the I =0 partial wave; sim-
ilar considerations also apply for l &0. The re-
sults presented in Secs. II-V are illustrated by
specific examples in Secs. VI and VII. The con-
clusions concerning necessary revisions of Levin-
son's theorem are given in Sec. VIII.

II. DEFINING EQUATIONS FOR FREDHOLM

DETERMINANTS

For l =0 the radial equation for a nonlocal po-
tential is

e Vv, s ds&~.
0

This condition is sufficient to insure the conver-
gence of all integrals given in this paper. Equa-
tion (1) can be converted to an integral equation by
the use of the appropriate Green's function. Sev-
eral integral equations and their solutions must
be considered in analyzing the phase shift.

The physical wave function g'(k, r) and its con-
jugate g (k, r) are defined to be the solutions of the
pair of integral equations

y'(k, r)

=su&a+ G kpvp Y V f ', s 'k, s dsdx'
0 0

with

G'(k, r, r') =-k 's"'"& sin(kr, ) .
The Fredholm determinants associated with the
kernels of Eqs. (3) are referred to as D'(k). The
solutions of Eqs. (3) will be regular at the origin,
and g'(k, r ) will satisfy the boundary condition that,
as Y ~00~

g "(k,r )-sinkr +T(k) s.'"",

where T(k), the s-wave 7 matrix, is given by

T(d) =-(.'- f f sinkr |'(t, s) d'(d, s) dsd'.
0 0

The regular solution of Eq. (1) is defined to be
the solution of the integral equation

y(k, r) =k 'suer
7 Oo

+ G(k, r, r') P(r', s) y(k, s) dsdr'
0 0

with

The Fredholm determinant associated with the
kernel of Eq. (7) is D(k). The regular solution
y(k, r) is real and is governed by the boundary
conditions

y(k, 0) =0

and
u(d, r)" +(( u((;r) = f V(. ,'w")M, (d, r')dr' (().

0

(9a)

In all cases, the potential V( rr') will be assumed
to be symmetric and real. We impose on the po-
tential the condition that there exists a P&0 such
that

(9b)

The Jost solutions f '(k, r) satisfy the integral
equations
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f '(k, r) u(k, r)" +k u(k, r) = V(r)u(k, r) . (16)

G kY t' V/', s ks ds~'.
0

(10)

The Fredholm determinant associated with the
kernel of Eqs. (10) is denoted by a(k), and is equal
to D(k) for a symmetric potential. " The boundary
conditions on f '(k, r) are imposed at ~, and are

The integral equations for the physical, regular,
and Jost solutions of Eq. (16) follow from sub-
stituting Eq. (15) into Eqs. (3), (7), and (10), re
spectively.

Since V(r) is taken to be a short-range potential,
there will exist a regionr&R for which V(r) can
be neglected. In this region, the most general
solution u(k, r) of Eq. (16) has been shown to be"

u(k, r) =A sin(kr +6), r &R . (17)

The Jost function g'(k) and its conjugate g (k)
—= Z'(k)* are defined for a symmetric nonlocal po-
tential by the behavior of the Jost solutions at the
origin according to"'

For a local potential, the kernels of each of the
integral equations defined previously, with the ex-
ception of those for ('(k, r), become Volterra
kernels, with Fredholm determinants identically
equal to unity. " Thus D(k) and b, (k) have no ex-
plicit role in the description of the scattering pro-
cess. For a local potential, all phenomena asso-
ciated with scattering are determined by the Fred-
holm determinants D'(k). It is well known that
D'(k) and the Jost functions 2'(k) are identically
equal" ~:

g'(k) =D+(k) [local potentialj. (13)

For a symmetric nonlocal potential, it has been
shown2"4" that D'(k) and Z'(k) are not identically
equal; rather, they are related by

2'(k) =D'(k)/D(k) [nonlocal potentialj . (14)

The local potential result, Eq. (13), is a special
case of Eq. (14) since D(k) =1 for a local potential.
The integral equations with which D(k) and b, (k)
are associated have Fredholm rather than Volterra
kernels when the potential is nonloeal. In general,
the Fredholm determinants of integral equations
which have Fredholm kernels may have zeros.
Thus the Fredholm determinants D(k) and a(k)
for a nonlocal potential may have zeros for any
real value of k. Furthermore, the Fredholm de-
terminants D'(k) may also have zeros for any real
k gO when the potential is nonlocal.

limp =0.
k~~

(18)

Equating T(k) in terms of the phase shift with
the local limit of Eq. (6) gives

T(k) =e"sin6

= -k '
Jt sinkr V(r) j((k), )rdr .

0
(19)

The solutions g'(k, r) and p(k, r) are related
through the Jost function g'(k). This relationship,
which is well known" and follows from the defini-
tions given in Sec. II, is

Thus for r &R, the regular solution y(k, r), which
is real, must be of the form given in Eq. (17).
The boundary condition (9a) establishes qr(k, r) as
regular at the origin. This fact is sufficient to de-
termine 6 by comparison of y(k, r) with the form
given in Eq. (17) for r&R. The constantA is de-
termined by the boundary condition (9b).

The phase shift g can be interpreted geometri-
cally" as the amount by which the radial wave
function 9)(k,r) is "pulled in" or "pushed out" by
the potential V(r) relative to the free-particle so-
lution k 'sinks. That is, the phase shift for scat-
tering from a potential ean be defined uniquely by
comparing the scattering solution in the presence
of the potential with the free-particle solution.
Comparison at very large values of r allows one
to determine the phase shift within the range+ —,

' m.

However, the absolute phase shift can be found by
investigating the wave function for all i, and noting
the increase or decrease in the number of nodes
of the wave function relative to the free-particle
solution. Inherent in this definition of the absolute
value of the phase shift is the assumption

III. PHASE SHIFT FOR A SHORT-RANGE LOCAL

POTENTIAL

The local potential V(r) is a special case of the
nonlocal potential, namely

V(r, r') = V(r) 6(r —r') .
For a local potential, Eq. (1) assumes the form

Substituting this expression for g (k, r} into Eq.
(19) gives

T(k) =e"sinS

= —(i!'())] f Binir i'(r) i (i. ,v)dr . (21)
0
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In the limiting case that the potential goes to zero,
the Jost function g'(k) must become unity and the
phase shift 5 must go to zero. Thus it follows
from Eq. (21) that

6 =-phase of 2'(k) =—phase of g (k)

and that

(22)

sin6 =-(I g'(k) I) 'Jl sinkr V(r) y(k, r)dr.
0

(23)

An absolute value for the phase shift can be ob-
tained either by comparing the scattering wave
function with the free-particle wave function for
all r or by starting with the condition of Eq. (18)
and requiring that the phase shift be continuous
from k =0 to k =~.

T(k) =e"sin6

IV. PHASE SHIFT FOR A NONLOCAL POTENTIAL

In the case of a spurious state [D(k) =O, D'(k) g0],
it has been shown in Ref. 14 that the regular solu-
tion y(k, r) does not exist. Nevertheless, a real
regular solution of Eq. (1) does exist at a spurious
state. This solution, discussed in Ref. 14 and re-
ferred to there as C (k, r), is defined by the bound-
ary condition C (k, 0)' =D(k). Outside the range of
the potential the solution O(k, r) must exhibit the
asymptotic form given in Eq. (17). Also, since
D+(k) gO, the solution f+(k, r) will exist at a spuri-
ous state. For a continuum bound state [D(k) = 0,
D(k)'=0], it has been demonstrated in Ref. 14
that the real regular solution y(k, r) and the physi-
cal solution g'(k, r) both exist, but that each is
arbitrary with respect to the addition of the solu-
tion of the associated homogeneous integral equa-
tion. In each case, however, the arbitrary part of
the wave function is orthogonal to J

" sinkr V(r, s)dr.
Keeping these considerations in mind, it is pos-

sible to show that for a nonlocal potential

lim D(k) =1.
k~~ (25)

As long as one is in the vicinity of (but not at) a
zero of D'(k) or D(k), Eq. ,(20) remains valid; In
substituting this result into Eq. (24) and separating
into a phase factor and sin5, one can either set

6D =-phase of D'(k), (26)

sin5 D sinkr V(r, s) y(k, s) dsdr
D(k)
D'(k 0 0

(27)

or

been pointed out, '~ however, that the existence of
a zero of D'(k) implies a simultaneous zero of
D(k). Furthermore, the possibility of the exis-
tence of a spurious state, characterized by a zero
of D(k) without a corresponding zero of D'(k), is
now known. It is necessary, therefore, to re-
examine Bolsterli's discussion in the light of this
additional information.

In analogy with the local potential case, expres-
sions for the phase shift follow from separating
the right hand side of Eq. (24) into parts equal to
e' and sin5. For a nonlocal potential there are
two possible ways in which this separation can
take place which are consistent with the local
potential results given in Eqs. (22) and (23). These
separations differ in the manner in which the Fred-
holm determinant D(k) enters into the resulting
expressions for g'~ and sing. For a local potential
the separation is unambiguous, since D(k) =-1 in
that case. For a nonlocal potential, however, be-
cause of the possibility of zeros of D(k) different
separations correspond to different definitions of
the phase shift. Despite ambiguities when D(k) =0,
for sufficiently large k the phase shift for a non-
local potential is uniquely defined by the condition
of Eq. (18) and the asymptotic condition

=-k ' smkx Vx, s + k, s dsdx.
0 0

(24)
6~ = —phase of g'(k) -=-phase of

D'(k)
D(k)

(28)

Equation (24) is convenient for discussing the be-
havior of the phase shift in the neighborhood of a
spurious state or a continuum bound state. It has
been recognized for some time that because of the
possibility of a zero of the Fredholm determinant
D'(k) at a continuum bound state, an ambiguity
exists with respect to the definition of the phase
shift. Arguments regarding this difficulty have
been crystallized by Bolsterli, ' who pointed out
the difference in behavior of the phase shift re-
sulting from two possible definitions of g at a con-
tinuum bound state. In formulating these arguments,
he considered only zeros of D (k). It has since

sin6~ = —( ~
Z'(k) ~)

' " sinkr V(r, s) y(k, s) dsdr .
0 0

(29)

The pair of equations (26) and (27) and the pair
(28) and (29) represent the two possible ways of
treating the ambiguity of the phase due to D(k).
Using either the pair of equations (26) and (27) or
the pair (28) and (29) to construct e' sing results
in the same expression for T(k). The phase shifts
6D and 5z are identical for a local potential, and
for a nonlocal potential for which there are no
zeros of D'(k) or D(k) for real k. However, if
there is a continuum bound state or a spurious
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state associated with the yotential V, then 5D and

5z behave differently.
Consider a continuum bound state at the wave

number k, . The Fredholm determinant D'(k) must
be zero at a continuum bound state. Its phase for
k =k, —g differs by m from its phase for k =k, +&
in the limit as q 0. On the other hand, if there
is a spurious state at the wave number k„ the
Fredholm determinant D'(k) will be unaffected.
The presence of this spurious state leaves the
phase of D'(k) unchanged as k goes from k =k, —q

to k =k, +&. Thus the phase shift 5D given by Eq.
(26) will experience a discontinuity of m at a con-
tinuum bound state and will be continuous at a
spurious state.

By contrast, the phase of 2'(k)= D'(k)/D(k) will
not change sign at a continuum bound state. That
is, the phase of g'(k) for k =k, + q will be identical
to the phase of 2'(k) for k =k, —q in the limit as
q-0. On the other hand, for a spurious state at
k =k, the Jost function +'(k) must differ by 7j as k

goes from k =k, —q to k =k, +q. Thus the phase
shift 6z given by Eg. (28) will be continuous at a
continuum bound state and will experience a dis-
continuity of m at a spurious state.

The net result of these considerations is that it
is not possible to define in a straightforward man-
ner a phase shift for a nonlocal potential which is
continuous both at a spurious state and at a con-
tinuum bound state. The major difference between
the behavior of the phase shift for a nonlocal po-
tential as contrasted to that for a short-range local
potential is this presence of a discontinuity in the
phase shift. Wigner" and Luders' have shown
that the phase shift for a short-range local poten-
tial is continuous. These proofs must break down
in the case of a nonlocal potential. Thus it is pos-
sible to reject the conjecture by Martin" that con-
tinuity can be extended to all nonlocal potentials.

V. RELATIONSHIP OF THE PHASE SHIFT
TO THE EXTRA NODE

The choice of 5D or 5~ as the phase shift for a
nonlocal potential can be resolved by considering
the existence of an extra node in the radial wave
function. In Secs. VI and VII several examples of
potentials with either a syurious state or a con-
tinuum bound state are given. Analytic expressions
are obtained for the scattering solution for each of
these potentials. The wave functions in each case
show the existence and behavior of an extra node.
The resolution given below of the phase shift am-
biguity is consistent with all of these examples.

In terms of the examples, the phase shift 5~
appears to be the better choice. As discussed in
the previous section, this phase shift is discon-

tinuous by m at a spurious state and continuous at
a continuum bound state. A discontinuity of s in
the phase shift at wave number k, implies an
abrupt change in the wave function. This change
is the equivalent of multiplication of the wave
function by -1 as k goes from k, -& to k, +&. This,
in turn, implies that the regular solution y(k, x)
suddenly changes from a function with a positive
slope at the origin (at k, —e) to a function with a
negative slope at the origin (at k, +e), or vice
versa. This sudden change is not compatible,
however, with the additional feature imposed on
the regular solution y(k, r) that y(k, 0)' =1 both
for k =k, +q and k =k, —&. The resolution of this
apparent discrepancy rests in the existence of an
extra node in the wave function at wave numbers
below k, as compared with wave numbers above
k, . As k approaches k, from below, this node re-
cedes into the origin, and disappears. Thus below
k, the small additional oscillation between the ori-
gin and the extra node makes it possible to satisfy
the condition y(k, 0)' =1. When the extra node dis-
appears into the origin at wave number k„ the
wave function changes sign.

The behavior just described is exactly that ex-
hibited at the spurious state in each of the ex-
amples in Sec. VI. Moreover, the examples in
Sec. VII show that for a continuum bound state an
essentially energy-independent node is present
both above and below the continuum bound state
wave number k, . Thus at a continuum bound state
no abrupt change in the scattering wave function
occurs. This fact is consistent with the selection
of 5z as the definition of the phase shift.

The above discussion establishes the compata-
bility of Ecl. (29) with the definition of 5c given in

Eq. (28). At a spurious state the change in sign of
y(k, s) changes the sign of the expression for sin6c.
Since cp(k, s) is continuous at a. continuum bound
state, Eg. (29) for sin5c is unchanged in this case.
On the other hand, the definition 5D of the phase
shift given in Eq. (26) implies a change of phase
of n in the scattering wave function at a continuum
bound state and no change in phase shift at a spuri-
ous state. The change in sign of qr(k, s} in the inte-
gral in Eq. (27) compensates for the change in sign
of D(k) at a spurious state, resulting in a continu-
ous phase shift. At a, continuum bound state y(k, s)
is continuous, and the change in sign of sin&D
comes from the change in sign of D(k}. Therefore
Eq. (27) is compatible with Eg. (26).

We have investigated several cases, which are
discussed in detail in the next two sections. For
each case the configuration space wave function
has been calculated, and the behavior. of this wave
function compared with the two possible definitions
gD and 5z, of the phase shift. Starting from the
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assumption that 5-0 as k ~, the phase shift 5~
best describes the character of the wave function
in the neighborhood of spurious and continuum
bound states. In each case considered the number
of nodes of the scattering wave function changes
discontinuously at a spurious state. For a con-
tinuum bound state the wave function is unchanged
as the wave number moves from just below the
wave number k, of that state to just above.

In the examples which follow, the term phase
shift and the symbol (5 will always be used as
meaning the phase shift g~. That is

0 (k) = -phase [Z'(k) j —=-phase ID'(k)/D(k) j ~ (30)

All of the potentials considered are of the type dis-
cussed in Ref. 34. In this reference a method is
developed for obtaining in compact form analytic
expressions for the configuration space wave func-
tions and the phase shifts for a wide class of sep-
arable nonlocal potentials. Thus the wave func-
tions, yhase shifts, and Fredholm determinants
quoted here are not the results of techniques in-
volving numerical integration. In evaluating the
analytic forms we have used 2m/k' = 1/41.47
MeV ~fm '.
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VI. SPURIOUS STATES

We have defined a spurious state as occurring
at k =k, when D(k, ) is zero, but D'(k, ) is not.
Clearly if D'(k) is well behaved as k passes
through k„ the factor D(k) in the denominator of
Eg. (30) indicates that we can expect a change of
phase of n as D(k) goes through zero. We would
thus expect a discontinuous change in the scat-
tering wave function as k passes through k, . To
see that this takes place, we consider two simple
examples in which a spurious state is known to
occur.

A. One-term separable potential with a Yamaguchi form factor

V(r, r') =Xg(r) g (r'),
where

g(r) =e "".

(31)

(32)

Expressions for D(k), D'(k), and y(k, r) for this
potential are given in Ref. l4. No values of X and

o. will make D'(k) zero. Therefore a continuum
bound state cannot be associated with the Yama-
guchi form factor On the other. hand, D(k) can be
zero for a wide range of values of A. and +. The

Yamaguchi" has introduced a one-term separable
nonlocal potential to describe nucleon-nucleon
scattering. In configuration space his potential is
of the form
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FIG. 2. Phase shift and Fredholm determinants for a
one-term separable potential with a Yamaguchi form
factor with parameters given in the text. This potential
yields a spurious state at 400 MeV.

FIG. 1. Wave function y(k, r} at Ez& =0, 395, and
405 MeV for a one-term separable potential with a
Yamaguchi form factor with the parameters given in the
text. This potential yields a spurious state at 400 MeV.
The broken lines show the free-particle wave function.
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values of A, and & used by Yamaguchi do not gen-
erate a spurious state at any energy. However, if
A. &2~' a spurious state will occur.

If we take

~ =21.219 fm '

0.04—

0.02

-0.02—

I I

+iamb
= 0

B. Mongan potential

Another widely used potential is that suggested
by Mongan. ~ The Mongan case IV potential is de-
fined in configuration space by

V(r x') =A. e "~ "+" +X e "~ "+"
2

with

A. ~=3454.8 fm ', z~=-28.293 fm ',
z, =6.157 fm ', O, ,=1.V86 fm '.

(33)

Expressions for D(k), D'(k), and y(k, r) for this
potential are given in Ref. 14. The potential is
known to have a zero of D(k) at a laboratory en-

~ =1.5 fm ',
then D(k) will be zero at E„., =400 MeV. Figure 1
shows the wave function y(k, x) at 395 and 405 MeV,
along with the fre~-particle wave function for com-
parison. Note that at 395 MeV the wave function
has an extra oscillation at very smally, as shown
in the inset. At 405 MeV, this oscillation has dis-
appeared. Calculations show that the extra oscil-
lation vanishes at exactly 400 MeV and persists at
all energies below 400 MeV. To emphasize this
point the zero-energy wave function has been in-
cluded in Fig. 1.

Figure 2 exhibits the phase shift as a function
of the energy for this potential, showing the dis-
continuity of m at 400 MeV. Also given in Fig. 2

is the Fredholm determinant D(k), showing its
zero at 400 MeV. The ReD'(k) and ImD'(k) have
been included to demonstrate that there is not a
simultaneous zero of D'(k) at the zero of D(k).

Figure 1 shows that above 400 MeV the wave
function is "pushed out" relative to that of a free-
particle wave function, indicating a negative phase
shift. Below 400 MeV, the wave function is "pulled
in" relative to the free-particle wave function,
indicating a positive phase shift. Below the energy
at which the spurious state occurs the wave func-
tion has an extra node. As the energy of the par-
ticle becomes larger, the node moves closer to
the origin. As the energy passes through &„ the
extra node disappears. Since we have imposed the
boundary condition that the slope of the wave func-
tion be positive at the origin, the wave function
must change sign when the node disappears. This
results in a n change of phase at this energy.
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FIG. 4. Phase shift and Fredholm determinants for
the Mongan case IV potential. This potential yields a
spurious state at 19.6 GeV.

FIG. 3. Wave function p(k, r) at E»b=0, 19.5, and
19.7 GeV for the Mongan case IV potential. This poten-
tialyields aspurious state at19.6GeV. Thebrokenlines
show the free-particle wave function.
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ergy of 19.6 GeV.
Figure 3 gives the scattering and free-particle

wave functions at 19.5 and 19.7 GeV. Again, as
the inset shows, below 19.6 GeV there is an extra
node in the wave function not present above that
energy. The zero-energy wave function included
in Fig. 3 shows this extra node present at that
energy. The existence of this extra node at zero
energy has been pointed out previously by Arnold
and Mac Kellar. "

Figure 4 gives thephase shift, D(k), HeD (k), and
ImD'(k) for this potential. Calculations in the
neighborhood of 19.6 GeV show that the change of
phase of m in the wave function corresponds ex-
actly to the zero of D(k). Note that neither HeD+(k)
nor lmD+(k) is zero at this energy.

VII. CONTINUUM BOUND STATES

A continuum bound state will occur at k =k,
if and only if both D'(k, ) and D(k, ) are zero. To
investigate the behavior of the wave function and
the phase shift when a continuum bound state oc-
curs, it is useful to consider several potentials
which can produce a continuum bound state.

A, One-term Tabakin potential

Tabakin" has suggested a one-term nucleon-
nucleon separable potential which can be written
in configuration space in the form of Eq. (31) with
g(r) given by

g (~) = (A, cosn, ~ +A, sinn, ~) e "~"+A, e

(34)

For the 'S, state the parameters are

y =-400.85 fm

g~ =-1.0248, g~ =0.0773, A, =0.0248,

and for the 'S, state
e

~ =-104.61 fm ',
g~ = -1.8579, g2 = -1.3877, &3=0.8579,

2.863 fm, Q2=2. 360 fm

In both cases the potential has a continuum bound
state at 240 MeV. The deuteron binding energy
for the 'S, potential is 2.2357 MeV, while the 'S,
potential has no bound state. For this potential

D(k) = a(k)

XAg (2ng —3k') AA~'(2n, '+k') AAp' X A,A2(2n, +k')
8n~(4n~~+k ) 8n~(4n~ +k~) 2n, (n2'+k') 4n~(4n~~+k~)

&A. ~A. , Q, +Q,
(2n, '+2n, n, +n, ') n, '+k'

~A2A,
"

Q,
(2n, '+2n, n, +n, ') n, '+k'

Qyk + Q2k —2Qy+
4Ql +k'

Qyk +2Q1 Qg +2Q
+

4Q,4+k4

where
A zk2+2A2 Qi~ &3

C' =-A. +
4Q,4+k4 Q,'+k'

The regular solution y(k, r) for this potential is

4 +k4 Q~ +k

c &3 &ik'+2&2Q
D(k) n, +k 4n, +k

(38)

(37)

(k) 4 'k' ' 4 'k' ' '
(k)

(38)

Figure 5 gives the wave function for the 'So poten-
tial at 235 and 245 MeV, with the free-particle
wave function included for comparison. The wave
function calculated for energies between 235 and

245 MeV shows no discontinuity.
As required for the potential to have a continuum

bound state at 240 MeV, both D'(k) and D(k) are
zero at that energy. Thus the ratio D'(k)/D(k) and,
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FIG. 7. Wave function y(k, x) at E&,b =0, 235, and
245 MeV for the one-term Tabakin 3S& potential. This
potential yields a continuum bound state at 240 MeV.
It also has a negative-energy bound state. The broken
lines show the free-particle wave function.
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therefore, the phase shift from this definition,
become undefined. Figure 5 shows that at 240
MeV the scattering wave function is m out of phase
with the free-particle solution. %'e conclude that,
at 240 MeV, the phase shift is exactly m. The
zero-energy wave function also has been given in

Fig. 5. %e find that the shape of this wave function
near the origin and the position of the-first node
are almost unchanged as the energy is increased
from zero to g, .

The phase shift as defined in E(l. (30) is con-
tinuous at a continuum bound state. Had the defi-
nition hD given in E(l. (26) been used, a discon-
tinuity of m would occur in the phase shift at the
position of the continuum bound state. Figure 5

indicates that the definition of E(l. (30) corresponds
to the behavior of the wave function, and is to be
preferred on that basis. The phase shift for the
one-term Tabakin S, potential is shown in Fig. 6 ~

along with D(k), HeD'(k), and lmD'(k) as functions
of g„,„. In particular, the phase shift for this po-
tential does not go through zero, but starts with a
value of n at zero energy and approaches zero
asymptotically as k approaches infinity.

The wave function for the one-term Tabakin 'S,
potential is given in Fig. 7 for zero, 235, and 245
MeV. At energies near the continuum bound state
the 'So and 'S, wave functions are quite similar.
The 'S, wave function at zero energy, however,
differs from the 'So wave function in that because

of the negative-energy bound state it exhibits an
additional node. There is no change in the wave
function as the energy passes through p, .

The phase shift resulting from this potential, as
well as D(k) ReD (k) and lmD (k) are given 1I1

Fig. 8. In the 'S, case the phase shift starts off
at 2m at zero energy and approaches zero asymp-
totically for large k. Calculations of the wave
function over the energy range show no discon-
tinuity as a function of energy.

B. Bcregi potential

Beregi" has suggested a separable nonlocal
potential of the form of E(l. (38) which repro-
duces the characteristic features of the Tabakin
3S, potential in that it has a continuum bound state
at 259.3 MeV and a bound state at -2.225 MeV.
Beregi's potential function@(x) is of the form

g(r) =e ~"-(2e "2".

The parameters for the potential are

g =-302.73 fm 3,

~, =2.67 fm ',
~2= 5.34 fm

a = 3.0854.

For this potential

2o)g(Qg +k )' (Q) +Q2) Qg +k &2 +k 2Q(2(o)2 +k )
(40)

(~ 2~k3)2 (~ 2+k2)(~ 2+k2) (~ 2+k2)2 ( 2+k2)2 ( 2+k2)(~ 2 k2) (
2 k2)3

(41)

The regular solution (1)(k,x) for this potential is

(1)(k,~) =k 'sinks +

Cq C2—.(.) ., "".:")
C2n2+ 2 smkx

+k

1 —cflr C 2 +2"
a{).) '+)i* Q(),') (a,'+0*) (42)

where

~a
+k +k

Xa Xa
2 2+$2 2+$2 (44)

%e have calculated the wave function for this po-
tential in the neighborhood of 259.3 MeV and find
no change in the wave function as 0 passes through

k, . The wave function at 254 and 264 MeV and the
free-particle wave function are given in Fig. 9.
Also shown is the wave function at zero energy
for this potential.

As was the case with the Tabakin potential, the
wave function near the origin is very much the
same at energies below E,. At energies above E,
for which the potential continues to have an im-
portant effect on the wave function, the behavior
near the origin is unchanged. The phase shift and
Fredholm determinants for this potential are given
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C. Mongan-like potential with a continuum bound state

As noted earlier, the Mongan potential using the
parameters quoted in Sec. VIB exhibits a spurious
state but does not have a continuum bound state.
We now discuss a potential of the same form, but
with parameters for which a continuum bound state,
but no spurious state, appears in the spectrum.
The method of cancellation of the Green's function~
makes it convenient to pick potential parameters
in such a way that me may select the energy at
vrhich the continuum bound state occurs. The fol-
lowing values for the parameters of the potential
given in Eg. (33) result in a continuum bound state
at 400 Mey:
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zero-energy wave function, excluding the node at
the origin. Martin and Mills and Reading~' have
pointed out that for the case of a nonlocal poten-
tial this relationship must be modified. In par-
ticular, they conclude that for each continuum
bound state an additional m must be added to the
right hand side of Eq. (45).

The results of the calculations of the phase shifts
and of the zero-energy wave functions presented
in the present payer suggest that a further modi-
fication of Eq. (45) is necessary for the case of a
nonlocal potential. From these results we con-
clude that Levinson's theorem for the nonlocal
potentials discussed here must assume the form

5(0) —5(~) = (N +¹)z [nonlocal potential],

(46)

FIG. 12. Phase shift and Fredholm determinants for
a two-term separable potential of the Mongan case IV
form with parameters given in the text. This potential
yields a continuum bound state at 400 MeV.

where N is, again, the number of negative-energy
bound states of the yotential and pf' is the number
of zeros of the Fredholm determinant D(k) between
k =0 and k =~. This result is in agreement with
the conclusions of Martin and of Mills and Beading,
and represents an extension of their results to in-
clude the z change of yhase which we have shown
to be necessary at each syurious state.

VIII. LEVINSON'S THEOREM FOR A NONLOCAL

POTENTIAL

Levinson" "has shown that for a short-range
local potential the phase shift at zero energy 5(0)
and the phase shift at infinite energy 5(~) are re-
lated by the condition

5(0) —5(~) =¹' [local potential], (45)

where N is the number of bound states of that po-
tential. The possibility of states of zero binding
energy is excluded in the present discussion. For
a local potential a state of zero binding energy was
shown by Levinson to require an additional —,'n on
the right hand side of Eq. (45). The number N is
also equal to the number of nodes exhibited by the

The wave function at 395 and 405 MeV is given
in Fig. 11 along with the free-particle wave func-
tion. Also given in Fig. 11 is the zero-energy
wave function. The phase shift and Fredholm de-
terminants are given in Fig. 12. For this poten-
tial the undetermined ratio D'(k, )jD(k, ) does
not, under the ayplication of L'hospital's rule,
turn out to be zero, as is the case with the Tabakin
and Beregi potentials. Thus the phase shift is not
yrecisely m at that energy at which the continuum
bound state occurs. Calculations show that the
wave function and phase shift are continuous as k
yasses through k, .

IX. SUMMARY AND CONCLUSION

In this paper we have discussed the fact that the
wave function for- a nonlocal potential can have an
extra node within the range of the potential even in
the absence of a negative-energy bound state. This
behavior of the wave function is not possible for a
short-range local yotential. The extra node occurs
whenever there is a zero of the Fredholm determi-
nant D(k) for real positive k. The nodes are found
either with a spurious state [D(k, ) =0, D'(k, )g0]
or with a continuum bound state [D(k, ) = 0, D'(k, )
= 0]. Nodes due to a spurious state are present only
for wave numbers below the wave number k, of the
syurious state. Above k, the extra node is not
present. Furthermore, the radial position of the
extra node is at its maximum value when k =0 and
decreases until the node reaches the origin when
k =k,.

For a continuum bound state the extra node is
present essentially without change both above and
below k, . That is, the yosition of the extra node is
relatively stable as a function of increasing wave
number. It is important to realize, however, that
in a numerical calculation apparent energy inde-
pendence of an extra node does not guarantee that
the node is due to a continuum bound state. For
example, a spurious state at an energy very much
higher than energies at which a calculation is per-
formed will also result in an almost energy-inde-
pendent node.
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Another imyortant result given in this payer is
the superiority of the definition of the phase shift 5z
over the phase shift 5~. This definition has been
shown to have the advantage of being directly re-
lated to the nodal behavior of the radial wave func-
tion. It is also open to unambiguous interpretation
with respect to an absolute value of the phase shift
as a function of k.

Finally, we have generalized Levinson's theorem
to inc1ude the possibility of spurious states. The
desirability of a more complete investigation of
Levinson's theorem as it applies to a nonlocal

!

potential is clear and this subject is currently un-
der study.
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