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Dynamics of nuclear fluid. II. Normal sound, spin sound, isospin sound,
and spin-isospin sound
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Starting with the time-dependent Hartree-Pock equation in density matrix form, we investigate the
macroscopic description of the dynamics of the nuclear fluid involving the spin and isospin degrees of
freedom, in conjunction with the presence of only central exchange interactions. The time-dependent Hartree-
Fock equation can be cast into a set of conservation laws of the classical type coupling spin and isospin
densities. With simple zero-range interactions, we obtain the normal modes of density propagations and the
corresponding speeds of sound waves. In addition to the normal sound waves in which the total density varies
with space and time, there are the spin sound waves in which the difference of the spin-up and the spin-down
densities varies with space and time, the isospin sound waves in which the difference of neutron and proton
densities varies with space and time, and finally, the spin-isospin sound waves in which the difference of the
"parallel" spin and isospin densities and the "antiparallel" spin and isospin densities varies with space and
time. It is found that for a zero-range interaction whose density dependence is of the type
t,(1+5' )n8(r, —r2)/6, the speeds of spin sound a2, isospin sound a3 and spin-isospin sound a4 satisfy
a2'+ a, ' = 2a4'. With the parameters of Golin and Zamick and Vautherin and Brink, we have in addition
a, ) a4) a„ the numerical values of a2, a„and a4 being in the range of 0, 17 to 0.27c.

NUCLEAR STRUCTURE Dynamics of nuclear fluid, normal sound wave, spin
sound wave, isospin sound wave, and spin-isospin sound wave. Time-dependent

Hartree-rock theory. Estimate speeds of different sound waves.

I. INTRODUCTION

In our previous publications on the dynamics of
the nuclear fluid, ' we discussed a macroscopic
description and the equations governing the dyna-
mics derived from the microscopic time-depen-
dent Hartree-Fock (TDHF) theory. An indepen-
dent approach to obtain these equations using the
Wigner functions has been carried out by Koonin
and Kerman. ' Not surprisingly, these equations
turn out to be the equation of continuity and an
equation analogous to the Euler equation in fluid
dynamics. In the other articles of this series, we
consider the kinetic theory of quantum fluids based
on the exact many-body theory and the conditions
for a hydrodynamical description of a heavy-ion
collision. '

For simplicity, the discussions of the dynamics
of the nuclear fluid in our other investigations did
not touch upon the spin and the isospin degrees of
freedom. The presence of these degrees of free-
dom gives characteristics to the nuclear fluid to
make it distinct from any other fluid. The dyna-
mics of the nuclear fluid involving these degrees
of freedom is the subject of investigation in the
present paper.

That these degrees of freedom may give rise to
peculiar phenomena is well known in nuclear phys-
ics. The isospin degree of freedom is exploited

in the Goldhaber- Teller model' of giant dipole
resonance. Spin density oscillations were dis-
cussed by Wild, ' Glassgold, Heckrotte, and Wat-
son, ' Raphael, Uberall, and Werntz, ' and Bohr
and Mottelson. ' All the previous studies either
assume a fluid-dynamical model"' from the be-
ginning or exhibit oscillatorlike solutions in the
spectrum. ' We would like to examine how fluid-
dynamical type equations governing these densities
can be derived from the microscopic theory. One
may wish to quantize these degrees of freedom
with the appropriate boundary conditions as is
done. in Refs. 7 and 8.

Similar to I (Ref. 1), the starting point of our
investigation is again the TDHF equations, in-
cluding now the spin and isospin degrees of free-
dom. In Sec. II, we write down the TDHF equa-
tion in density matrix form. Limiting our atten-
tion to central exchange interactions, we reduce
the TDHF equation in such a way that the exchange
operators make no appearance. From the TDHF
equation, we describe in Sec. IV how a simplified
equation can be obtained when the spin and isospin
degrees of freedom are constrained in a pre-
scribed manner. Returning to the full TDHF equa-
tion in Sec. V, we cast it in the form of conserva-
tion laws of classical type which couple spin and
isospin density fields and velocity fields. Before
studying the propagation of small density pertur-
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bations, we generalize in Sec. VI the TDHF equa-
tion to the case when the interaction is density
dependent and we obtain an amended TDHF equa-
tion with an additional rearrangement term. With
simple zero-range density-dependent interactions,
the various normal modes of sound propagation
can be separated, and the speeds of the sound
waves evaluated in Secs. VII and VIG. Section IX
concludes the present investigation.

II. TIME-DEPENDENT HARTREE-FOCK EQUATION WITH
SPIN AND ISOSPIN DEGREES OF FREEDOM

We start with the many-body Schrodinger equa-
tion for a system of N particles

8 @2 N

zk 4 (xyp ~ pxg) Vg 4(xgp ~ ~ pxg)Bt 2'
1

+ — v (x„x~)@(x„.. . , x„),
(2 1)

where x& is the coordinate of the ith particle and
v(x;, x;) is the two-body interaction between the
ith and the jth particle. The coordinate x; in-
cludes the spatial coordinate r&, the spin coordin-
ate (&, and the isospin coordinate g&.

'

(2.2)

From Eq. (2.1), one obtains the equation for the
N-body density matrix in the form

fX —X&"&(x x " x x x ~ ~ .x )1 2 E& 1 2 E

g (V„' —V„i') + —p [v(x&, x&) v(x(yx-j)]IX (x,x, ~ x»x, x, ~ x„) (2.3)

where

'5l +(xyx2' ' 'x»xyx2 ' 'xg) =e(x]x2' ' 'xg)e (x x ' ' 'x )

Upon integrating this equation successively over the particle coordinates, we obtain a hierarchy of
quantum kinetic equations'"' for the reduced density matrices X~'~ defined by

(2.4)

Xi' (x, x„x', ~ ~ x,') =N(N 1) ~ ~ ~ (N—- s +1) dx„, ~ ~ ~ dx~Ãi~~(x, ~ ~ .x,x„,~ ~ x~;x', ~ ~ x,'x„, ~ ~ x„),

where the integral J dx; is an abbreviation for the trace over g& and q& and the integral over r, :

(2.5)

dx& ~ ~ ~ = Q x& tr3 (2 6)

In particular, upon integrating over all the coordinates x; but one, we get the equation for the one-body
density matrix

2

(x& x&) = —
2 (V, —V, ~)& '~(x„'x',)+ dx, lim [v(x„x,) —v(x'„x2)]Xi'l(x,x„x',x2) .

x~ ~x"2 "2
(2.7)

The hierarchy of the quantum kinetic equation will not terminate unless simple assumptions are made con-
cerning the many-body wave function. In the time-dependent Hartree-Fock theory, one assumes that the
many-body wave function is in the form of a Slater determinant consisting of single-particle states 4 „(x).
The one-body and the two-body density matrices are then

Xt &(x;x ) = g C.(x)e.(x ) (2.8)

and

Zi'l(x, x„.x',x,') =g [C„(x,)e,(x,)C.'(x', )C', (x,') -C„(x,)C,(x,)C'(x',)C,'(x',)], (2.9)

where the summation is carried out over the oc-
cupied states o and P. In this case, the hierarchy
of the quantum kinetic equation terminates at the
lowest level, namely, with Eq. (2.7). In conse-

quence, it suffices to concern ourselves with the
one- and two-body density matrices. For simplic-
ity of notation, we can omit the superscript (1)
for the one-body density matrix and denote it by
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X(x;x',):

X(x„x',) -=X&'i(x„x',) (2.10)

and, in situations where confusion will not arise,
we can even use the shorter term "density matrix"
to stand for the one-body density matrix. Equa-
tion (2.7), with Xt'~ and Xt' given by Eqs. (2.8) and

(2.9), is known as the time-dependent Hartree-
Fock equation in density matrix form.

III. EXPLICIT FORM OF THE TDHF EQUATION

We wish to write the TDHF form explicitly in
terms of the different component of the two-body
interactions such that the exchange operators make
no appearance. As it can be readily seen, the al-
gebraic reduction of the TDHF equation is already
quite complicated even with only the central inter-
action. The spin-orbit and the tensor interactions
further allow the coupling between the space and
the spin degree of freedom in a nontrivial way.
We shall consider only central exchange inter-
actions represented by

v(x, x,) =vw(r„r, ) +vM(r„r, )6' (x,x,)
+v, (r„r,)(P" (x,x,) +v„(r„r,)(P"(x,x,),

(3.1)
where the subscript W stands for Wigner, M for
Majorana, B for Bartlett, H for Heisenberg, and
6', 6', and 6'" are the corresponding exchange
operators. The TDHF equation can be written in
terms of the one-body density matrix X(x„x',) and
the spatial part of the different exchange poten-
tials. This will be done first for a density-inde-
pendent interaction. Any amendment due to the
presence of density. dependence will be considered
in Sec. VI.

We choose our representation such that the (one-
body) density matrix X(r,r'„f g'„q,g', ) has only
diagonal matrix elements in the & and g degrees
of freedom. The simple exchange character of the
potentials in Eq. (3.1) will result in diagonal ma-
trix elements (in g and ti degrees of freedom) in
the TDHF equation. Such a simplification, of
course, will not be obtained with the addition of
spin-orbit and tensor interactions.

After some simplification, the TDHF Eq. (2.7)
can be written explicitly in terms of the spatial
coordinates and the density matrix as follows:

i@ X(rr'—; gg'; qq') = — (g„' g„,')X(-rr'; gg'; gq')

+ d'x, [vw(r, r, )-v&(r', r, )][X(rr';ff';gq') tr& „X(r,r„gg„q,q,)

-X(rr„gg'; qq')X(r, r'; gt'; rig')]

+: d K2 5M 2 X r2r ' ff'; gg' trg 7)
eR ~2~2 ~2~2

-vM(r', r, )X(rr„gf'; gq') tr& „X(r,r';gg„qp, )]

d'r, [v M (r j r, )- v M(r', r, )]X(rr'7 gg'y qq')X(r, r, p gg'; r/q')

+ d'r, [v, (r, r,)-v, (r', r, )]X(rr';gg';qq') tr, X(r,r„gg';7i,q,)

d'x, [v B (r, r, )X(r,r'; gg'; qq') trq X(rr„gg'; qq')

-vB(r', r, ) (Xrr„gf'; qq') trq X(r,r';fg„q ')r]j

+ d'r, [ (rv, r, )X(r,r'; ff'; qq') tr„X(rr„gg'; q,q,)"2

vs(r', r, )X—(rr„kk'; qq') tr„X(r r'; gg'; n,q,)]

d'r, [vs (r, r, ) —v„(r', r,)]X(rr'; ff '; qq') tr& X(r,r„' f g „gq') . (3.2)

In the stationary case, the density matrix is independent of time and one obtains the Hartree-Fock equa-
tion by setting the right-hand side of Eq. (3.2) to zero. This is the Hartree-Fock equation in density ma-
trix form and is not the usual one we encounter in terms of an equation for the single-particle wave func-
tion.
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IV. SIMPLIFIED TDHF EQUATION
IN SPATIAL COORDINATES

X(r r'; —,2, 2 2 ) = (UN/A') X(r, r'),
X(r r'; —,'-,'; =,' --,') = (UZ/A')X(r, r') .
X(rr';-p -2, 2 2) ={DN/A')X(r, r'),

(4.3)

(4.4)

(4 8)

X(rr'; =,' —q, -~ —&) =(DZ/A )X(r, r') . (4.8)
We obtain the simplified TDHF equation for our
special case

ik —X(r r')
et

(V„' —V„.')X(r, r')

+ d'r vdi r r2 -vdi & 2

d'r, [v,„(r, r,) -v,„(r', r,)]X(r, r,)X(r„r'),
(4.7)

Before we go on to investigate the fluid-dynami-
cal form of the TDHF equation, we may wish to
digress a little and write down a simplified TDHF
equation, involving only spatial coordinates. We
shall not use this simplified equation in the dis-
cussion to be followed in the next sections. The
simplified TDHF can be of use in other problems
where the spin and isospin degrees of freedom can
be assumed to behave in a simple and prescribed
way. In that case, it is not necessary to start with
a TDHF equation of the complicated form as Eq.
(3.2), but a much simplified equation whose inter-
actions are now admixtures of the different ex-
change components and whose density, matrix is
only a function of the coordinates r and r'.

We define a one-body spatial density matrix
X(r, r') which is the trace of the one-body density
matrix X(rr';gg', qrj') over the spin and isospin
degrees of freedom:

X(r, r') =tr&„X(rr'; gg';qg') = g X(rr';gg';qq) .
Ken

(4 1)
We assume that all the one-body density matrices
are related to this spatial density matrix by the
simple relation

ZX(r~r; r.(;qg)

j' d'r X(rr; &g; qq) j d'r +X(rr; g &; qq)
g7)

Those density matrices which are nondiagonal in

& and g vanish in our representation and need not
concern us here. Using the notation of & for a
(iso) spin-up variable and =, for a (iso) spin-down
variable and introducing U as the number of spin-
up particles and g) as the number of spin-down
particles, we have

where

vq; =vw —[(U +D') (N'+Z')/A']v M

+ [(U'+D')/A']v, —[(N'+Z')/A. ']v„(4.8)

v,„=[(U +D }(N +Z )/A ]v~ -vM

U=D =2A. (4.10)

Then, vd; and v,„becomes

v„=vz —[(N'+Z')/2A']vM+ 2v, —[(N'+Z')/A']v„

(4.11)

v „=[(N +Z )/2A ]vw —vM + [(N +Z )/A ]vB —2vH ~

(4.12)

In nuclear fluid, it is also necessary to include the
two-body Coulomb interaction on the right-hand
side of Eqs. (4.8) and (4.9) or (4.11) and (4.12). As
the neutrons and protons lose their identity in our
averaging over the isospin space, the Coulomb
two-body interaction must be modified accordingly.

One observes that in the present simple case in
which the spin and isospin degrees of freedom are
constrained to behave in a prescribed way, the
TDHF equation is the same as in the case where
there is no such freedom, with the exception that
the effective interaction is now different for the
direct term and the exchange term. It. is inter-
esting to note in passing that if one has the free-
dom, one can judiciously adjust the strength of
the various exchange components such that v,„can
be chosen to be zero. In that case, the mathe-
matics of solving the TDHF can be greatly simpli-
fied.

In the presence of interactions which depend on
densities, Eq. (4.7) needs to be amended to take
into account the density dependence. This wBl be
discussed in Sec. VI.

+ [(N +Z')/A. ']v —[(U'+D')/A']v„~ (4.9)

The subscript di stands for the effective potential
associated withthe "direct" partX(r, r')'X(r„r, ) of
the two-body spatial density matrix, while the
subscript ex stands for the effective potential as-
sociatedwiththe "exchangepart" X(r, r, )X(r» r'}of
the two-body spatial density matrix, In the par-
ticular case which is often encountered, the total
spin of the system is zero and we have
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V. FLUID DYNAMICAL EQUATIONS INVOLVING SPIN
DENSITIES AND ISOSPIN DENSITIES

We return now to Eq. (3.2) to investigate the
fluid-dynamical form of the TDHF equation. Fol-
lowing Hill and Wheeler" and Griffin and Kan, "
we separate the intrinsic motion of the nucleons
from the collective motion by writing the spatial
part of the single-particle wave function in terms
of its real intrinsic amplitude Q„(r, t), real phase
factor for extrinsic motion S~(r, t), and energy
factor Q„(t) which does not depend on positions:

@.(r, t) =A. (r, t)e*"'""'""'""'"X (K)v. (n) (5 &)

where m is the nucleon mass, and X and v are the
spin and isospin wave functions. The density ma-
trix derived from a Slater determinant becomes

X(rr'ff'qq') = g (I)„(r)(t)„(r')e'"f ~i' &

(n)

xx (K)X (g')v„(n)v„(q'),

(5 2)

where, and henceforth, for simplicity of notation,
all the symbols indicating explicit time dependence
are understood and the symbol (n} implies that
summation over n is carried out over the set of
occupied states (z}. The fact that all the density
matrices in Eq. (3.2) are diagonal in the spin and
isospin spaces in our representations allows one
to limit one's attention henceforth to the case
where g =f' and g =g'. One introduces notation

n(tq, r) =X(rr; gf; re) (5 3)

to represent the spatial density (in numbers per
fm') for particles having spin coordinate g and
isospin coordinate g.

It is clear that the TDHF contains more infor-
mation about the dynamics of the system than there
is in the equation of motion of the classical type
where the density field is only a function of one
coordinate and not two coordinates. The passage
to conservation laws is made possible if one re-
stricts oneself to the limit where r r . One ob-
tains, after some simplification,

8 2—n(gq) + V [n(gq)u(gq)] =—fm d'r, v M (r, r, ) X(r,r; gf, gq) tr& „X(rr„f,f„ tip, )

2VB r r2 3 2r ~~ '
gq tr& X rr2 ~2~2& ~~

(5.4)

(5.5)

=-n(gq) d'r, X(r„r,)V (vs, r, )+ rd, i (Xrr„gg; qq) i'Vv~(r, r, )

+ d'&, vH r, r, A r2r;g&;qg tr„X rr»&g;g2g2

As one observes, this is an equation of continuity for the density n((ri). The presence of the exchange po-
tentials, which change one type of particle into another and thus alter the densities at different positions,
gives rise to the source terms in the equation of continuity.

We note also in passing that by summing Eq. (5.4) over g and q, we obtain, as expected, the equation of
continuity for the total density

—g n(gq)+V g n(grt)u(grt) =0 .8

Following Ref. 1, we again obtain an equation for the variation of the probability current by applying the
operator (V„—V„) to the TDHF Eq. (3.2) and then taking the limit as r - r:

3

m
t

n(tq)u&(r—rl) +g V& [mn(Kq)u, (gq)u&(gq) + p(', (r-'(i) +Pi (Kri)]
4=1

—Re d'~2 X r2r;gg;qqX r, r, VVM 2 +vM r r2 r2 ~f;qg VX r, r, -X r r2 VX r2r7~~P~~

( v)ntn( d rrn)tVnv '(,r, rn) — ( )nftdn'r, tr, (rr„ dt; )ttn(rn, rv,l)vv

+Re rd, ( (rX,r;gg; qq) tr& X(rr„gg„7iq)Vvt) (r, r, )

+ v B (r, r, ) [X(r,r; rf; q7i) tr& VX(rr„fg „qq) —tr(. X(rr„g g „'qq) VX (r,r; rf; qrt)]}

—Re d'r, (X(r,r; i;f;qq) tr„X(rr„gg;qq)Vv„(r, r, )

+ v„(r, r, ) [X(r,r; ff; yves) tr„V(Xrr„gg; qp, ) —tr„X(rr„g&; ti,qgVX(r, r; ig;qq)]}

+n(tll) I d rtrt dt(r, r„t,t„,till)vv„(r, r, ), (5.6)
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wher e2s 13s 18

pf)(pter) = m g y '[V~S. -N, (gq)][V&S„-~,(gq)]X (L)X.(K)v. (q)~ (17) (5.7)

S2
pi„'.&(gq) =+4 v, v, n(rq) — g y„v,v, 4.x (L)x~(K)~ (n)~ (n) . (5.8)

This is the equation which follows directly from the TDHF equation, but written in a form analogous to the
Euler equation in fluid dynamics. So far, we have not made any approximation. We have only introduced
the stress tensors by combining the appropriate terms.

VI. TDHF EQUATIONS FOR DENSlTY-DEPENDENT FORCES

Our discussions in the preceding sections have been concerned with density-independent interactions.
In many physical applications such as in the use of the Skyrme interaction introduced by Brink and
Vautherin"'" and Golin ant' Zamick, "'"it is often desirable to consider forces which are dependent on the
density. Vfe seek to oblain the TDHF by a variational principle

6(%, (H -ik—)4) =0,8
(6 1)

where 4 is taken to be a single Slater determinant and

+ Zv(lra-rsl ~(~lra+rsl) ~n ks~Rn 'Os) (6.2)

We specialize to the case where the density-dependent component of the interaction has a zero range and
we obtain the familiar TDHF equation in the form

ik —4„(x,) = —
2

v'C„(x,) + dx, Q Cts(x, )v(x„xg(4 (x,)4s(x,) -4 (x,)cs(x,))+b, (r,)C. (x,) (6.3)
8

where the additional rearrangement potential a(r) is given by

a(r, ) = Q Q d'~, lim — " ' X'(x,x„x2x3)
1 sv(x„x,

(6 4)

The TDHF equation in density matrix form is therefore amended to be

ia —„5fto(x„.x',) = — (v„'-v„)X('&(x„;x',)

+ dx, lim (v(x„x,) -v(x'„x,')]X"l(x,x„x',x',) +[a(r,) b, (r',)]Jd-'l(x„x',),
x2 x2

(6.5)
7

I

which differs from the usual TDHF Eq. (2.7) only
by the presence of the last rearrangement term.

How does this additional rearrangement term
affect the dynamical equation'P We can again fol-
low the procedures outlined in the last section by
taking the appropriate limits. Upon taking the
limit r', r„we find

lim [4(r,) —h(r', )]X(x„x',) =0 . (6.6)
r'~r

1 1

Thus, from the procedures leading to the equation
of continuity (5.4), it can be concluded that the
equation of continuity is unaffected by the density
dependence of a zero-range interaction. It is
clear that such simple results are obtained be-

cause of the zero range of the density-dependent
force; when the range of the force is nonzero, one
expects a source term in the equation of continuity
due to the exchange of particles at different loca-
tions.

The presence of the rearrangement potential
however gives rise to additional force fields in the
equation of motion. Following our previous pro-
cedures, we take the limit r', - r, after applying
the operator V„-Vzs onto the last term of Eq.F g 1

(6.5). We obtain

lim (V„,-V„.) f [a(r,) -~(r',)]at(x„x',))

=2[v„ib,(r,)]X(r,r,';&g'„q,q',) . (6.7)
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Therefore, it is now necessary to add a force
density

F~(r) = -n(Kq) [V(r)] (6.8)

to the right-hand side of the equation of motion
(5.6) to take into account the additional force field

arising from the density dependence of the inter-
action.

From Eq. (6.5), it is clear that in the presence
of a density-dependent interaction and when the
densities are constrained to vary according to Eq.
(4.2), the simplified TDHF equation in spatial co-
ordinates, Eq. (4.7), needs to be amended to read

fk —X(r, r') = — (V„' —V„i')X(r, r') + d'r, [v~ , (r, .r,) -vd,.(r', r,)]'X(r, r')X(r„r,)

d'r, [v,„(r,r,) -v,„(r', r,)]X(r, r,)X(r„r') + [6(r) —h{r')]X(r, r') . (6.9)

VII. FLUID DYNAMICAL EQUATION WITH ZERO-RANGE FORCES

The complicated form of Eq. (5.6) makes it difficult to perform a simple analysis unless the spatial
form of the potential can be very simple. We shall specialize now to a short-range 5-function force to
write the two-body potential in the form

v(x, x,) = [W+M(P (x,x,) +B(P (x,x,) +H(P" (x,x,)]6(r, -r,) +—,
' t, [l+(P (x,x,)]n5(r, r,)—, (7.1)

where W, M, B, H, and t, are constants and the density-dependent term t, is introduced to simulate the
three-body interaction and to give rise to saturation of nuclear matter as is introduced by Vautherin and
Brink and others. "'" The density n without the labels of f and g is the total density

(7.2)n = P n(gq),
CoR

to be evaluated at the point —,(r, +r,).
With a zero-range interaction of the type as in Eq. (7.1), the fluid-dynamical equations can be greatly

simplified. The right-hand side of the equation of continuity [Eq. (5.4)] vanishes because density matrix
elements diagonal in the spatial coordinates have no imaginary' parts. One has

—n(gq) + V ~ [n(gq)u(gq)] =0 .8

Bt

The right-hand side of the dynamical Eq. (5.6) can also be integrated to yield

(7.3)

m —'t n(tq)u, (&q) +g V, [mn(tq)u;(tq)u, (&q) +P,", (tq) +P,,'!(gq)]

=-n(fq)V;(( W+ ,'t, n+M) [n—-n(gq)] + (B+ t6, n +H)[tr—„n(gq, ) —tr& n(f,q)]]+ Ez . (7.4)

We have, on the other hand,

b. (r) = —,', f, g [ (g,nq, ) tr& n(f,q,) +n(f,q,)n(g, r7,)]

where p, is the complement of g, namely

The additional force field is therefore

F~=-n(gq)V f —,', t, tr& ~ [n(&,7i,) trj n(f,q,) +n(f,q,)n(i;,r/, )])

(7.5)

(7.6)

(7.7)

Equations (7.3) and (7.4) are the equations gov-
erning the dynamics of the nuclear Quid. As both
f and q can assume two different values, one has
four equations of continuity and four (vector) equa-
tions of motion. The equations of continuity are
all uncoupled, whereas the equation of motion

couples different densities for the different spin
and isospin coordinates.

We shall now attempt to obtain the normal modes
of the different density variations by making the
linear ization approximation for small deviations
from equilibrium for which the second-order
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terms in u can be neglected. We shall also con-
sider temperatures not far from 7 =0, so that
P'P) can be neglected. For the quantum pressure,
we assume a Thomas-Fermi model to write

Equations (7.3) and (7.4) lead toa', a'9'& gqm, , 5n(gq) —n "(pre) &,&, V'5 n(g 7i) —n'"(gq)

p(,)(] ) „2(~ )
a[&(C&)/n(&n)1 5

an/ q)

where

(7.8)
&& ((W+M+ —,

' t, ni g [5n-5n(fq)] +2 t, n2 V'5n

+(B+H+—t, ni )V [5n(g —,') +5n(r ——')'

—5n(2q) —5n(-2q)]) =0 . (7.12)
3I'

~(Ln) =
10

(8~')' '[n(Ln)]' ', (7.9)

and a correction term of the form O2V2n(fq)/12m
obtained recently" for the quantum stress tensor
has been neglected. We further assume that the
equilibrium density is given by

In order to separate the normal modes, we shall
write out Eq. (7.12) explicitly. To simplify the
notations, we introduce the symbols

I I I I
n, = n(2 2), n, = n(2 -2),

I I I 1
n, = n(-2 2), n, = n(-2 ——,),

n'( '-') = n-"&(-' ——') = n'(='-')
=n" (=' --') =-'n' (7.10)

and thus n 'i(gq) a27ioi(gq)/an 'i(gq)2 is independent of
f and g.

For small deviations from equilibrium, we can
write

c =~n" (W+M+ t 2n2'),

d = ni i(B+H+ —,'t, n' ),
f= —,'. t.(.&'&)',

and

g ="'('ln) a' "(i;n)/an"'(Ll)' .

(7.13)

n(~n) = n'"(r. n) +5n(~n) (7.11) Then Eq. (7.12) can be written, in full, as follows

82m, 5n, —(g +f)V'5n, —(f +c +d) V'5n, —(f+c -d) V'5n, —(f+c)V'5n, =0, (7.14)

82
m 2 5n, —(f+c +d)V'5n, —(g +f)V'5n, —(f +c)V'5n, —(f+c - d) V'5n, =0, (7.15)

82m, 5n, —(f+c -d)V'5n, —(f+c)V'5n2 —(g+ f)V'5n, —(f+c +d)V'5n4=0, (7.16)

82
m 2 5n, —(f+c)V'5n, —(f+c -d)V'5n, —(f+c +d)V'5n, —(g+ f)V'5n, =0 . (7.17)

From Eqs. (7.14)-(7.17), we get all the normal modes of sound propagation for the nuclear fluid under
investigation. By adding Eqs. (7.14)-(7.17) together, we get

82m, 5 (n, + n, + n, + n,) - (g +4f + 3c)V'5 (n, + n, + n, + n, ) = 0 .
8t

We recognize the sum of the n's as the total density

S 8I + S2 + 83 + SQ

(7.18)

(7.19)

and thus Eq. (7.18) is the equation of propagation of normal sound in which all the different components of
the density are constrained to vary together. The speed of normal sound a, can be readily obtained from
(7.18):

a,'=(g+4f+3c)/m . (7.20)

We get a different mode of sound propagation by adding the first two equations and subtracting the last
two equations in the set (7.14)-(7.17). We obtain

8m, 5 [(n, + n, ) —(n, + n, )] —(g —c + 2d) V'5 [(n, + n, ) —(n, + n,)] = 0 . (7.21)

We note that the quantity in the square brackets

(ng+ n2) (n2+ny) n(2 2) + n(2 2) ['n( 2 2) +n( 2 2)] (7.22)
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is the difference of the total spin-up density and the
total spin-down density. Thus, we recognize Eq.
(7.21) as describing the propagation of sound waves
in which the difference of spin-up and spin-down
densities varies in both space and time (spin sound
wave). The speed of propagation of spin sound
wave is

'W= —
k~ + ~2(W+M+ 2 t2n)n10 m

(7.30)

A. =(1.5v'n)'~' .f (7.31)

where kf is the Fermi momentum and is related to
the density by

a,'=(g —c+2d)/m . (7.23)
From Eq. (7.30) the nuclear incompressibility is
given by

We can form a different sum of the n's by adding
the first and the third equation to subtract from
the second and the fourth equation in the set
(7.14)-(7.17). We obtain

82m, 5 [n, + n, ) —(n, + n, )]Bt'

a,'=(g -c -2d)/m . (7.26)

Finally, we can form a normal mode of oscilla-
tion by adding the first and the last and subtracting
the second and the third of the equations in the set
(7.14)-(7.17). The resultant equation becomes

8m, 5 [(n, + n, ) —(n, + n,)]Bt

—(g —c)V'5 [(n, + n, ) —(n, + n, )] =0 . (7.27)

The quantity in the square brackets

(n, + n, ) —(n, + n, )

= n(2 -2) + n(-2 - 2) —jn(2 - 2) + n(-2 2)] (7 26)

is the difference for densities when both spin and
isospin are "parallel" to each other and when they
are "antiparallel. " Equation (7.30) is the equation
of propagation of such a density wave which we
shall call spin-isospin sound waves. The speed of
such a sound wave is

a,'=(g —c)/m . (7.29)

It is easy to see how the speed of normal sound
is related to the nuclear incompressibility. With
the interaction given by Eq. (7.1), the energy per
nucleon in infinite nuclear matter is given by

—(g —,c —2d)V'6 [(n, + n, ) —(n, + n, )] =0 . (7.24)

We note that the quantity in the square brackets

(n, + n,) —(n, + n,)
= n(2 2) +n(-2 —,') —jn(2 -2) + n(=,' -2)] (7.25)

is the difference of the total neutron density and
the total proton density. Thus, we recognize Eq.
(7.27) as an equation of sound propagation in which
the difference of neutron and proton density
changes with position and time (isospin sound
waves). The speed of propagation of isospin sound
1s

K=gn — = —— & +—t n
2~~ 3@ 2 9

e
(7.32)

One can show that for nuclear matter at equilibri-
um, we have

g+4f+3c = —,
' K . (7.33)

Thus, the speed of normal sound is related to the
nuclear incompressibility Z by

a, ' =K/9m, (7.34)

a~ + a~ =2a4 (7.36)

With the addition of a zero-range momentum-de-
pendent interaction, the algebraic relation (7.39)
between a„a„and a4 is nonetheless preserved. "

With the parameters of ZB,mick and Golin, "'"
Vautherin and Brink, "and Negele and Vautherin, "
the quantity d is negative and thus we have, in ad-
dition, the inequality

a, &a4.&a, . (7.37)

This is to say, an isospin sound propagates faster
than a spin-isospin sound which in turn propagates
faster than a spin sound.

Given the simple zero-range force and the
Thomas-Fermi approximation for the stress ten-
sor, the results in this section could have been
obtained in a much "cleaner" way. " The evalua-
tion of the speeds of various sound waves is, how-
ever, not our only, objective. Knowing the fluid-
dynamical equations (5.4) and (5.6), one knows ex-
actly the modifications needed for different situa-
tions. One can, for example, consider interactions
which have both a zero-range and a long-range
component, as is discussed in Ref. 1. One can also
have a different approximation to the quantum
stress tensor in situations where the single-parti-

as is expected. '
By comparing Eqs. (7.23), (7.26), and (7.29) with

the expressions for the symmetry energies" s;,
one can show that the speeds and the symmetry
energies are related to the symmetry energies by

a =2s, /m (i=2, 3, and 4) (7.35)

It is easy to see that the spin sound, isospin
sound, and spin-isospin sound are governed by the
simple algebraic relation
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cle wave functions are constrained to vary coher-
ently in a special way as in some special cases of
the random phase approximation. The latter con-
sideration, in line with the elastic response of
nuclei suggested theoretically by Bertsch, "will be
the subject of a forthcoming publication.

VIII. SPEEDS OF VARIOUS SOUND WAVES

We seek an effective density-dependent inter-
action in the form of Eq. (7.1). The density-de-
pendent interactions introduced by Golin and
Zamick" and Zamick" contain many of the terms
of Eq. (7.1) and have a zero range. They are well
suited for our purpose. However, since the pa-
rameters are fitted by using data from spin- and
isospin-saturated nuclei, the Bartlett and Heisen-
berg components are not determined. An adequate
description can still be possible if, in conjunction
with the zero-range interactions of Zamick et at. ,
one uses the Bartlett and Heisenberg components
as determined by other workers employing data
from isospin-unsaturated nuclei. The density-de-
pendent interaction introduced by Vautherin and
Brink" and Negele and Vautherin" for Hartree-
Fock calculations has terms of the form (7.1),
with additional momentum-dependent components.
It seems to be a suitable force for our purpose
when the parameters are fitted to known nuclear
data with the stipulation that the momentum-de-
pendent part of the force is chosen to be relatively
unimportant. In that case, there can still be an
adequate description of a realistic nuclear Quid if
one neglects the momentum-dependent part of the
interaction of Vautherin and Brink to bring the
interaction to the form of Eq. (7.1). The impor-
tance of the momentum-dependent part of the inter-
action can be assessed by treating the momentum
dependence as arising from an expansion of a fin-
ite ran~e interaction with radial dependence
e &~'~ '2~ and by examining the range of such an

equivalent finite-range potential. For various
Skyrme interactions, Davies and Satchler" found
that y = 2.241 fm ' for Skyrme I, 0;9988 fm ' for
Skyrme II, and 1.637 fm ' for the interaction of
Negele and Vautherin (at nuclear matter density).
As the neglect of the momentum-dependent part of
the interaction can still be appropriate if the range
1/v y is small, we find that the Skyrme I inter-
action, having an effective range (1/v y) of 0.67
fm, is the one closest to a zero-range force, while
the other sets of similar interactions cannot be
used in the present context. Accordingly, in using
the interactions of Golin and Zamick, "'"the
strength of the Bartlett component is adopted from
the Skyrme I interaction of Vautherin and Brink. '4

The set of parameters used is listed in Table I.
Shown there also are the incompressibility and
symmetry energies obtained for these parameters.

With these sets of interaction parameters, we
obtain the speeds of various sound waves. They
are listed in Table II. For the set of zero-range
(or nearly zero-range) interactions we have in-
vestigated, the numerical value of the normal
sound is about 0.18c, while the numerical values
of a„a„and a4 are in the range of 0.17c to
0.27c. Comparing the numerical values of the
sound speeds obtained here with those obtained
from the full Skyrme interactions which includes
momentum dependence, "one finds that the present
results are only slightly different from those ob-
tained with Skyrme I, II, III, and VI. They differ
significantly from those of Skyrme IV and V,
where the density dependence and the Bartlett
component are quite different from the other
Skyrme interactions.

IX. DISCUSSION

It is worth noting that we, have chosen the density
dependence of the two-body potential to have a
form given by the last term of Eq. (7.1). Such a

TA]3J E I. Parameters for the zero-range interaction Kq. (7.1) with M =H =0. The quantities
g and & are the equilibrium density and nuclear incompressibility obtained with the sets of
parameters. The quantities s2, s3, and s4 are the spin, isospin, and spin-isospin symmetry
energies (Ref. 1.9).

Vr (Mev fm ')
B (MeV fm )
t3 (MeVfm )

(0) (f -3)

Z (MeV)
s, (MeV)
s3 (MeV)
s4 (MeV)

Golin and Zamick I
(Ref. 16)

—1045.754
—592.09

19 189
0.1213

280.7
13.99
26.38
20.18

Golin and Zamick II
(Ref. 16)

-1077.083
-592.09

18 133
0.1352

333.4
16.07
28.48
22.28

Zamick
(Ref. 17)

-996 ~ 89
—592.09

16259.209
0.1361

299 ~ 3
14.12
29.31
21.72

Skyrme I~
(Ref. 14)

—1057.3
—592.09

14 463.5
0.1554

286.2
16.85
33.75
25.30

The momentum-dependent part of the interaction has been neglected.
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TABLE II. Speeds of various sound waves in infinite nuclear matter in units of c calculated
with different interactions.

Golin and Zamick I Golin and Zamick II Zamick Skyrme I
(Ref. 16) (Ref. 16) (Ref. 17) {Ref. 14)

Normal sound
Spin sound
Isospin sound
Spin-isospin sound

0.1821
0.1726
0.2370
0.2073

0.1986
0.1850
0.2463
0.2178

0.1883
0.1734
0.2499
0.2151

0.1840
0.1895
0.2681
0.2322

The momentum-dependent part of the interaction has been neglected.

term is equivalent to the three-body contact poten-
tial in static Hartree-Fock theory' where param-
eters were determined from nuclear properties of
many nuclei. In extrapolating to nuclear systems
not in equilibrium, there are many different
choices for such a term in the interaction. For
example, one can take the view that the three-body
contact potential is the. more fundamental form og

the interaction, in spite of its mathematical sim-
plicity. One can then either consider the equiva-
lent two-body interaction appropriate for the prob-
lem in question by evaluating the matrix element
of the three-body contact potential for the particu-
lar transition in question, "or one can incorporate
the three-body contact potential fully in the dyna-
mics." One finds, however, that in the linear re-
sponse of the system subject to a nuclear force
with such a three-body potential term, many sound
waves turn out to be unstable. Such unrealistic in-
stabilities have been traced to the specific para-
metrization of the density dependence of the inter-
a.ction. "'"

We have, however, taken the view that density
dependence such as given by the last term of Eq.
(7.1), in conjunction with the static Hartree-Fock
theory, has been found to give good account of
many properties of finite nuclei. In extending from
a static Hartree-Fock theory to a time-dependent
Hartree-Fock theory for nonequilibrium dynamics,
one makes use of the same mean field for single-
particle states in the dynamical case as in the
static case. Interactions such as given by Eq. (7.1)
are therefore well adopted for the time-dependent
Hartree-Fock theory, and it is indeed used for the
zero-range part of the two-body interaction in a
TDHF calculation. " Since our equations of sound
have their origin from the TDHF theory, it is ap-
propriate to use a density dependence in the form
of Eg. (7.1). The sound speeds are found to be
real and the various sound waves are now stable,
as they should be.

From the equations of sound propagation, one
may wish to investigate density oscillations ap-
propriate for various boundary conditions. " For
example, in the isospin sound waves, there is the

hydrodynamical model of Steinwedel and Jensen, "
the quantized form of which gives rise to the giant
dipole oscillation. Other types of density oscilla-
tion can be worked out in a similar way, as is done

by Uberall and his collaborators' and Bohr and
Mottelson. '

In the absence of noncentral forces and zero-
range interactions, all four different modes can be
well separated. However, when the ranges of the
exchange forces are nonzero, complication arises
as the equation of continuity has additional source
terms. In terms of the eigenmodes of density os-
cillations, these exchange forces couple the vari-
ous modes together and lead to a mixture of vari-
ous eigenmodes. The mixing of these eigenmodes,
due to the exchange forces, is, however, not ex-
pected to be very large, as evidenced by the pres-
ence of giant dipole states for which the widths are
usually much smaller than the eigenenergies.

The mixing due to spin-orbit and tensor inter-
actions is probably much stronger than that due to
the range of the exchange interactions. It affects
mainly the spin sound and the normal sound which
are now coupled by the presence of such interac-
tions. It will be of interest to investigate the de-
gree of admixture due to these farces and to study
whether a pure normal sound wave and a pure spin
wave can remain a meaningful concept in the pres-
ence of these intera, ctions.

The speed of various sound propagation allows a
simple discussion on the dynamics of many nuclear
phenomena. We shall discuss one such example
concerning the equilibration of neutron to pro-
ton ratio in a heavy-ion reaction. The re-
action time for a collision of two nuclei with
radii 8, and A, and a relative velocity u at the mo-
ment of contact is approximately

v„-2(R, +A/[1 —(I/I~)'j' '/u,
where / is the angular momentum in the center-. of-
mass system and l~ the grazing angular momentum.
One expects that in a deep-inelastic collision event,
this is also approximately the time for the reaction
to be completed. On the other hand, the time for
a sound wave of the ith type to propagate through
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from one end of a nucleus to the other is

T; —2(R, +A,)/a;, i = 1, . . . , 4 .
Thus,

7„/7'; =a;[1 —(I/I ) ]' /u

(9.2)

(9.3)

To be more specific, we can consider the collision
of Ca on a "Ni target at a laboratory energy of
280 MeV for which experimental results are avail-
able. " We have at the moment of contact

u- 0.08c

and thus

~„/T, = 3.2[1 —(I/I )']' '

(9.4)

where we have taken a; to be 0.25c. One observes
that during the collision the number of times a
sound wave is propagated through the nucleus de-
pends on the angular momentum. For head-on
collisions, the various sound waves pass through
the system about three times and are probably
able to bring the various densities close to equi-
librium. For other values of t/I~, the number of
times the sound wave can pass through the nucleus
during encounter diminishes slowly and thus there
will be less chance of equilibrium for the various
densities. Consider, for example, the isospin
sound. Initially, the "Ni nucleus has an N/Z ratio
of 1.28 and the "Ca nucleus a ratio of 1.00. For
the combined system in isospin equilibrium, the '

ratio of neutron density to proton density is
(36+20)/(28+20) =. 1.17. Thus, at the moment of
contact, the neutron-proton density difference in

Ca nuclei is smaller, while that of the "Ni is
larger than the equilibrium neutron-proton density
difference. Then subsequently there occurs a pro-
pagation of the isospin sound from "Ni to "Ca and
back. Thus, in a deep-inelastic scattering with
280 MeV, "Ca beam, the isospin sound travels
through the nuclei a few times. However, because
of the small number of times the isospin waves
can pass through, the equilibration process can-
not be complete. Furthermore, the reaction time
diminishes with angular momentum; there are
those collisions with large values of impact param-
eter for which equilibration of the isospin densities
is impossible. Such complications indicate that the
observed resultant nucleus has the N/Z value close

to the equilibrium value but the spread of N/Z
should be large, as is indeed the case."

The result obtained here is based on the Thomas-
Fermi approximation for the kinetic energy dens-
ity. For the static case, the Thomas-Fermi ap-
pr'oximation is a good approximation. " In the dy-
namical case, one expects that it remains a good
approximation when the time scale for the collec-
tive motion is long compared to the microscopic
relaxation time. Vfhat we then obtain is a hydro-
dynamical-type equation of sound propagation pre-
sented here. How these sound waves are related
to the various sound waves in the Landau-Fermi
liquid theory is still not completely resolved, al-
though it is known that in the long wavelength
limit, the TDHF equation for the %igner function
corresponds to the equation of motion for the
Landau-Fermi liquid theory with no collision
terms. "

On the other hand, the comparison' of the gen-
eralized hydrodynamical equations obtained from
TDHF and from the exact many-body Schrodinger
equation indicates that Eq. (7.3) and Eq. (7.4) could
have been obtained from the exact many-body
Schrodinger equation where only the two-body cor-
relation function has been approximated by the use
of a single Slater determinant while the thermal
stress tensor and the quantum stress tensor can
take on other forms of approximation for the many-
body problem. Thus, the use of the Thomas-
Fermi approximation can be justified on a different
context, namely, as approximations to the exact
many-body problem, which need not coincide with
the results for these quantities in a TDHF calcu-
lation.

Finally, we may mention that in cases where the
spin and isospin degrees of freedom are not im-
portant, one can initiate many interesting investi-
gations on the dynamics of the nuclear fluid with
the simplified TDHF Eq. (6.9).
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