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A microscopic model for the description of the giant multipole resonances in light deformed nuclei and their

excitation via (p,y) reactions is proposed. A version of Feshbach s fornialism of nuclear reactions is used for
which the bound states of the target and compound systems are described as linear combinations of angular

momentum projected deformed hole and particle-hole configurations, respectively. The theory is applied to
study the giant multipole resonances in Ne as seen via "F(p,y)' Ne reactions. Results for both-the transitions

to the ground state as well as the first 2+ excited state of ' Ne are calculated and a number of approximations
are tested. The 90' yields are found to be in good agreement with experiment. Gross features as well as
intermediate structures of the experimental cross sections are reasonably well reproduced.

NUCLEAR STRUCTURE ~F, ~Nq, Ne; Calculated spectra and El transitions.
Angular momentum projected Hartree-Fock and Tamm-Dancoff methods.

NUCLEAR REACTIONS ~~F(P, y); radiative capture. Calculated cross sections
to ground and first excited state.

I. INTRODUCTION

During the last 15 years, the proton radiative
capture reaction has been well established as a
useful tool for the experimental study of the giant
multipole resonances (GMR) in nuclei. ' " Within
the same period, some microscopic theories of
photonuclear as well as particle scattering pro-
cesses have been developed and used to study
these resonances with some success. '"" How-
ever, while both the microscopic structure as
well as the excitation mechanism of the GMR for
a couple of spherical nuclei seem to have been
reasonably well understood, there have been only
few attempts" ""to tackle the problem in de-
formed nuclei. For the latter, the (P, y) experi-
mental data"' display some very interesting fea-
tures from which one may hope to extract some
information about the 6MB, in addition to what one
can learn from the spherical case. For example,
the (P, y) excitation functions for deformed nuclei
show more structures than for spherical ones.
Furthermore, in addition to the (p, y, ) decay to the
ground state, transitions leading to the low-lying
first excited 2' states have also been measured.
These (p, y, ) cross sections are found to be of the
same order of magnitude as, and in some cases,
even larger than, the corresponding (P, yo) ones,
and their angular distributions are usually quite
different.

The above features can be understood from the
phenomenological point of view. The hydrodynami-
cal model" predicts a splitting of the GMR in de-
formed nuclei corresponding to the various possible
angular momentum projections on the symmetry
axis. Such splittings have been observed experi-
mentally in various nuclei of the rare earth re-
gion. " . Furthermore, some of the additional
structures of the excitation functions may be in-
terpreted with the help of the rotational model. "
In deformed nuclei, we expect rotational bands
on the ground state as well as on excited states.
Because of the similar intrinsic structure of the
states within a band and of the different angular
momentum selection rules for the transitions in-
volved, this would explain why the (p, yo) and the
(P, y, ) cross sections are of comparable magnitude
but their angular distributions are quite different.

The essential difficulty for a microscopic treat-
ment of the GMR in deformed nuclei is the creation
and handling of suitable many-nucleon wave func-
tions. In spherical nuclei, the relevant many-nu-
cleon configurations, namely the 1p-1h, or even
the 2p-2h and 3p-Sh configurations, can be, with-
out much labor, coupled to definite angular mo-
menta. The continuum is then incorporated, either
directly as in the continuum shell-model calcula-
tions, ' or indirectly as in Feshbach's formalism"
or 8-matrix theory. " In deformed nuclei, on the
other hand, neither the Hartree-Fock (HF) de-
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terminant nor the particle-hole configurations
have definite angular momenta. Hence, apart from
the cases where shell-model wave functions are
available, "or where the deformation has simply
been neglected, "one either has to forget about
the continuum and to be content with a description
of the nuclear structure (bound state) part of the
GMH in terms of intrinsic Tamm-Dancoff (TD) or
random-phase approximation (HPA) wave func-
tions, ' or one is forced to perform numerically
complicated angular momentum projections.

The first attempt to use angular momentum pro-
jected deformed wave functions in (p, y) and (p, n)
reactions on light nuclei has been made by Afnan. '
Using Feshbach's formalism, he first defines the
basis of bound state wave functions by performing
a diagonalization of the total Hamiltonian in the
space of very limited 1p-1h configurations. The
resulting intrinsic wave functions are then pro-
jected to good total spin by using the limit of
strong deformations. " This probably is the rea-
son, since such a limit is hardly justifiable for
light nuclei, for the rather poor agreement of his
results, at least as far as the GMB part is con-
cerned, with experimental data.

It is the purpose 6f this work to make a careful
study of the (p, y) reactions on deformed nuclei
with excitation of the GMH. For this purpose, a
version" of the Feshbach formalism has been
adopted. %e pay special attention to the definition
of the bound state wave functions for which a model
has been proposed earlier. " In the projected
Tamm-Daneoff (PTD) model, the bound states of
the target (odd-mass) and compound (even-mass)
systems are defined as linear combinations of
angular momentum projected states of hole and
particle-hole configurations relative to the Har-
tree-Fock intrinsic state. The problem of the
center-of-mass spuriousity is dealt with approxi-
mately by the method of Elliot and Skyrme. '

In the next section, after a sketch of the reaction
formalism, we.give a careful description of how
the different configuration spaces are being de-
fined and, using these, how the T matrix of the
reaction can be calculated. Section IV deals with
the application of the model to the study of the
"F(p, y)' Ne reaction. Different approxiinations,
some of which are usually used in the literature,
are tested and the results are compared with ex-
periment whenever available.

II. REACTION FORMALISM AND CONFIGURATION SPACES

A. T matrix for photonuclear reactions

The T matrix for photon-induced reactions is
given in first order perturbation theory by

T =&+&-&ia„if&.

3C =H+H H (4)

and

Xy=H„+H H„.

In this way, the continuum space is defined by
some effective Hamiltonian X»,

(Z-X„)ic'-'&=O,
in terms of which the Green's function Gp" is given
by

Of course, one has not gone any farther because

Here, iI& is the initial state of the target nucleus
and H„ the electromagnetic interaction. The final
state i%' ') is an eigenstate of the nuclear Hamil-
tonian H

(E a)ie'-')=0

and has to fulfil the proper boundary conditions for
the exit channel under consideration. In the follow-
ing, we shall be interested only in single-nucleon
emission processes to a limited number of open
channels. All other channels will be treated only

indirectly.
A convenient method, at least for our problem,

to calculate the T matrix is provided by Feshbach' s
projection operator formalism" which allows a
transparent classification of the states of the nu-
clear Hilbert space according to their configura-
tions. %e shall use in the following a version of
this formalism, designed by Wang and Shakin"
specifically to study photonuclear reactions. The
total Hilbert space is divided into three orthogonal
subspaces I', d, and x, using the notations of
Ref. 21. The continuum space P contains all the
configurations formed by one nucleon in the con-
tinuum coupled to all'those states of the (A —l)
nucleon (odd-mass) system which are going to be
treated explicitly. The photon reaction is supposed
to go through a set of selected states of the com-
pound (even) system which form the "doorway"
space d. Finally, the rest of the Hilbert space
is collected in the x space which is supposed to
have only a marginal influence on the reaction
being considered.

Let ic ' '& be an exit channel belonging to the P
space, the T matrix leading to this channel is
given, using standard techniques, by

T = &
'-c'

I +„I
&I+ &c

' '
I +~a(E +au Xe-~a~"X-~u) '

x (i+Z„pep")X „iz), (3)

where the "effective" nuclear and electromagnetic
interactions are defined as
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Eq. (S) is a formal exact expression involving very
complicated operators and as such cannot be used
directly for practical calculations. In order to
make the expression tractable, a number of ap-
proximations and assumptions is needed. First,
let us define, inside of the doorway space, a set
of configurations of H«

(E„a„)~d)=O. (6)

and, - furthermore, that they are not connected to
the P space through the nuclear interaction

&e&-& ~a. ~e&-&) =o. (io)

Left to be considered. is the doorway-doorway
coupling via the x space which should take care of
the following two effects. First, it should describe
the so-called "spreading width" resulting from the
coupling of the doorway states to more complicated
bound A-nucleon configurations and second, it
should take into account the absorption due to those
channels c ) of Eq. (6) which are not explicitly
included in the calculations.

The spreading width is obviously strongly de-
pendent on the actual choice of the doorway space.
As can be seen in the following section we shall
use asdoorway states all the possible linear com-
binations of angular momentum projected deformed
1p-1h states with respect to the deformed A nucleon
Hartree-Fock determinant. Since these wave
functions are, expressed in terms of shell-model
configurations with respect to a spherical refer-
ence state, very complicated superpositions of
1p-1h, 2p-2h, and many particle-many hole states,
our d space includes much more degrees of free-
dom than are usually taken into account consider-
ing spherical nuclei. Hence here the spreading
will be much less important than in the latter ones
and could perhaps, in a not too bad approxima-
tion, even be neglected.

The additional absorption due to the neglected
channels could naturally be described by choosing
a complex optical potential for the scattering
waves. Then, if the spreading width is small, the
introduction of an x space would be unnecessary.
However, we are going to use only real potentials
and have hence to try to include this additional
absorption via the x space.

Because we know nothing more than just men-
tioned above about the x space and can hence hard-
ly do anything better, we shall in the following
approximate the doorway to doorway coupling via
the x space as in Ref. 21 by a diagonal energy in-

-Next, following Wang and Shakin, we assume that
the states of the x space cannot be reached directly
from ~I) by the electromagnetic interaction

(0' ' xa, iI)=o (9)

!

dependent constant

(d ~ad„(E —H„„) HP ~d')= 6(d, d')(6„—zI'„) .

r,'"I =(c' ' ~a, ~I)+g (c& &~a~„-~d)M;,'.
dd

x ((d' ia„iI)+Z„'.&),

where the "initial state interaction" term F d'", 'I
is given by

(is)

and the "shift and width" matrix M by

M, =6(d, d')[E E —2„-+-ii'„]

- (d (H„G&'H„(d'). (14)

The T matrix of Eq. (12) has been derived for
the (y, p) reactions. Because of the interest in the
inverse process, the radiative capture, the com-
plex conjugate of Eq. (12) has to be used. Then,
~c")describes the ground state of the target

plus the incoming nucleon and ~I) the final state
of the A nucleon system. Furthermore, I'd"I has
to be interpreted as the "final state interaction"
term.

Equation (12) is the central result of this sec-
tion. Its calculation requires the knowledge of the
wave functions of the nuclear systems in the d and
P spaces. This is what will be given in the follow-
ing sections.

B. Bound states of the target and compound systems

There are two classes of bound states: the
bound states of the A-nucleon system, namely the
final nuclear states or the doorway states, and
those of the target nucleus which are to be coupled
to the scattering waves to form the P space. To
define these states, we shall use a version of a
model proposed recently, "namely the angular
momentum projected Tamm-Dancoff model. As it
has already been explained in detail, we shall
sketch below only the main lines.

As usual, the theory starts by giving a set of
spherical single-particle wave functions which we
denote by the indices a, b, c, . . . . We assume that,
inside of this model space, the total Hamiltonian

We would like to point out that the values 4„=0
and I'„=150keV which we have used are very small
compared to, for example, the two additional
width of both 400 keV introduced in Ref. 21, and
that we have therefore good reason to hope that
the approximation (11) does not do too much harm
to our final results. With the above approxima-
tions, the T matrix of Eq. (4) can be rewritten as
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can be written as a sum of a kinetic and a two-
body interaction term:

H =g t(ab)etc~+ ,' g—V(abed)c~c~~c~c, .
ab

Recalling that we are dealing with deformed
nuclei, our first task is to define the average de-
formed field and the corresponding single-particle
orbitals. Using the Hartree-Fock theory, "the
orbitals, which we shall denote by the indices
i, k, j, . . . , can be expressed as

g. = A„.c, (16)

P = ~ dQD~M QR 0, (18)

where R(Q) is the rotation operator and Dr~„(A) the
rotation matrix. ,Actually, because of the assumed
axial symmetry, the integral in Eq. (18) can al-
ways be reduced to a single integral involving only
one polar angle, e. The overlap function of the
reference state, for example, is given simply by

where the variational parameters A„- can be ob-
tained in the usual way by minimizing the expecta-
tion value of the Hamiltonian in the reference
state in which the nucleons occupy the lowest or-
bitals, up to some level F. This is the unperturbed
Hartree-Fock state

~
) and any excitation of the

system in this intrinsic frame can be viewed as a
creation of particles and holes across the surface
F. A set of such excitations which will play a very
important role in our problem is composed of one
particle-one hole excitations

~Mn ') =at„a ~). (1V)

Now, for N =Z nuclei, if we do not allow any parity
and isospin mixing (neglecting the Coulomb force)
in the expansion (16), then the Hartree-Fock state
will have positive parity and T = T, =0. Further-
more, if we assume axial symmetry, as we do in
the following, the reference state will in addition
have a definite angular momentum projection K = 0
on the symmetry axis and is even under time re-
versal. Also in the limits of the above assump-
tions, the particle-hole states can be coupled to
good isospin and, by making linear combinations,
can be made to have definite properties under
parity and time reversal operations. Of course,
the above states do not correspond to any definite
total angular momentum. In order to use them in
our calculations, we must first project them to
good total spin: this can be done by using Villars's
projection operator

with

From

is'M, T = o&,
=p""

i &;

From [Ma '):

~[Ma ']Z'M T&

(21)

=P —([a„a
~
)],+m( 1)'--'"~ "n'[a-„a-,

~ &],],JM

where M and & indicate the time-reversed states
of M, Q. . ' Because of the angular momentum pro-
jection, this basis is not orthogonal even though
the states of the intrinsic system are. As a con-
sequence, to define the states of the A-nucleon
system, a diagonalization of the total Hamiltonian
will lead to equations of the form

(II' ' z"'bt"')c"'=o (22)

where H and N are the energy a,nd overlap
matrices, respectively, for states with quantum
numbers O'T. Note that, in this way, the pro-
jected ground state is no longer just the one ob-
tained from

~
): it also contains components

coming from, the particle-hole basis with the same
quantum numbers. This is equivalent to an approx-
imate projection before variation for the average
field which has been assumed to be the same for
all the intrinsic states under consideration, an
assumption which had been shown to be quite good"
at least as far as negative parity states are con-
cerned.

Now, it is well known that states such as Eq. (21)
obtained by exciting particle-hole pairs across
shells may contain spurious components coming
from the center-of-mass motion. ' While in
spherical nuclei, the spurious state can either be
explicitly constructed and projected out'" or over-
come by the use of the random-phase approxima-
tion, ' the problem is much more complicated in
deformed nuclei. Here, an explicit construction
of the spurious state is practically impossible
and the RPA cannot be used mostly because the
behavior of its ground state under rotation is not
known. We therefore adopt an approximate method
proposed by Elliot and Skyrme" to eliminate the
center-of-mass spuriousity: it consists simply in
a diagonalization of the operator (1/A)R, ' in the

X,„(e)=(t~R(fl) (b&=g~.,(a(R(e) (b&~„. (2O)
ab

Starting from the reference state and the set of
particle-hole states coupled to good isospin, the
projection operator allows one to define the follow-
ing basis states with total angular momentum J,
parity m, and isospin T:
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basis being considered. Had our basis states been
complete and defined by the use of harmonic oscil-
lator wave functions, the diagonalization would
have given rise to a number of states with eigen-
values 2b' which are nonspurious and others with
eigenvalues 2b', —,'b', . . . which are spurious.
Actually, because our basis is mostly incomplete,
the eigenvalues are expected to come out close to
the above values. " We then consider all states
with eigenvalues near 2b' as nonspurious and pro-
ject out all others with eigenvalues around 2b' or
above. In this way, the spurious components in
the basis states (21) are, at least partially, elimi-
nated.

Left to be considered in this section is the prob-
lem of the bound states of the target nucleus.
This will be done as follows. Starting from the
Hartree-Fock state

I ) of the A-nucleon system,
we form a set of hole states a

I ). Using the pro-
jection (18), a basis of states with total angular
momentum I, parity m is given by

is supposed to be local and furthermore to be
diagonal in the channel indices (i.e., we neglect
channel coupling). As usual, this Hamiltonian is
then taken to be some optical potential U, (r), e.g. ,
a Woods-Saxon -potential. The radial part of the
scattering waves is of the form v~")(r)
= exp[+i 5,(E)]vs(r), where b, (E) is the phase shift
of the indicated channel and v~(r) is the solution
of the Schrodinger equation

d2
—U (r) r' v —(r) = 0c — c~= (25)

(27)

with E =k'/2m. In this way, the Green's function
is given by

g~")(r, r') = —(rv~(r&)[(()s(r&) +iv(r&)], (26)

where (vs(r) is the irregular solution of Eq. (25).
Now, a preliminary channel state can be defined

as

I
(r 'I'M,

&
=p'"r (a~ I

)+—)r(-1)' "'a~
I )),IN (23)

C. Continuum states

These states are supposed to be given by coupling
the scattering waves of the incident particle to the
bound states of the target nucleus. To treat these
states properly, we shall follow the prescription
of Wang and Shakin" based on the work of Auer-
bach et al.44

One first defines a preliminary channel vector by

lr, c) = g &Ij Mrm, I~.M,&bt(r) II'Mr&, (24)
MI ~c

where II'Mr) is one of the hole states defined in
the previous section and bt(r) is the creation op-
erator of a particle with the quantum number c
—= (I,j,m,~,) at the distance r. Such a channel vec-
tor is clearly not orthogonal to the states of the
d space because the b((r) operator can create a
nucleon in a bound orbital. We shall see later how
to orthogonalize the two spaces. Let us first say
a few words about the scattering waves. They are
defined by some effective Hamiltonian h, (r) which

where again & is the time-reversed state of &.
The bound states of the target nucleus are then ob-
tained by a diagonalization of the total Hamiltonian
in the basis (23). As in the case of the A-nucleon
system, this basis is not orthogonal and one is led
again to eigenvalue equations of the form (22). The
calculations of the various matrix elements of the
Hamiltonian and the overlap functions are straight-
forward even though at places they become rather
lengthy due to the angular momentum projection.

From the above, it becomes obvious how to ortho-
gonalize the space spanned by the channel vectors
(24) to the d space. In the case where the bound
state orbitals are already orthogonal to the scat-
tering waves, e.g. if they are all solutions of the
same optical potential, this can be done by defining
new channel vectors by

(28)

Q.f (r) =f (r) —Q I~ «)&b If ) (28)

with f (r) being any well-behaved function. It is
then obvious that with the definitions (24) and (27)
for the channel states and the following modified
functions

v, (r) =Q,v, (r)

gz(+)(r r&) Q grr(+)(r r&)

(30)

(31)

one would get exactly the results of Ref. 21. The
advantage of this prescription consists in the fact
that it can be used even when the bound single-

using the notations of Ref. 21 where b runs over all
bound states (occupied or not) with the same
quantum numbers as those of the scattering waves.
Using Eq. (28) instead of Eq. (24}will not modify
the wave functions vs(r) but leads to an additional
term in the Green's function.

Instead of considering a modification of the chan-
nel vectors, one can equally stick to the original
definition (24} and treat the orthogonalization in
terms of modified scattering waves and Green's
functions. Let us define a projection operator Q,
by
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- (.) Ib)(b I

@G gG
&b

I-z(+) Ib)
(32)

particle states are not eigenstates of h, (r). One
then simply has to change Q, : As a matter of fact,
it has been shown4' that any arbitrary state lb)
can be eliminated from the spectrum of eigen-
states of Eq. (25) by using the projection operator

q~ =Q q~ (ab)c,'c„
ab

where

q„(~d)q=&„(qq) f r drR, (rlr R~(rl,
0

(34)

(35)

instead of what is given by Eq. (29). The generali-
zation to the case where more than one state with
the same quantum numbers have to be eliminated
is straightforward.

The essential approximation made in this section
is the neglect of the channel-channel coupling.
This approximation is supposed to be reasonable if
there is no single-particle resonance in the scat-
tering waves. However, if such a resonance ap-
pears, one can always extract from its wave func-
tion a quasibound state which can then be included
in the d space and projected out from the P space
by the prescription (32)." The remaining spec-
trum will not contain this resonance any more.

In the following, we shall always use the modi-
fied wave and Green's functions defined by Eqs.
(30) and (31) with Q, given by Eq. (32). A channel
state is thus

~ vs(+)(r)
l

c"'&=
0

(33)

D. Continuum-bound state coupling and the differential
cross section

We can now proceed to calculate the different
terms of the T matrix involving a coupling of the
bound states Eq. (21) to the continuum channel
states of the last section. Let us consider first
the term &c' ' lII„ lI) representing the "direct" part
of the radiative capture process. For the electro-
magnetic interaction, we shall use the electric
multipole operators Q~ of the long wave length
limit

where vs(r) is given by Eq. (30) and may have been
modified by possibly appearing resonances.

2L+1
(0 (ab) =e' 5(vdq v~)R[1+(-1)'a"(' ]( 1)~

(&j I 20lj -( ~&&j nI mdiv l&,m, ) . (38)
Aa

The reduced matrix element of Q~ between a con-
tinuum channel state (33) and a state of the ground
state band can be written as

r'dr ' f~ (r). (37)

Here, f~ I(r) is the form factor

f,', I(r) = (r, cll Q'll»=r' g R,(r)fl.', ,(I), (38)

where in Qt I(I,) we collect all the factors which
come from the angular momentum coupling and the
integration over the rotation angle 6. The angular
momentum coupling part is most straightforward
and as to the part coming from the angular mo-
mentum projection, it can be handled by the usual
techniques" exactly in the same way as for
the calculation of the overlap and energy matrices
of Sec. IIB. The use of the primitive channel vec-
tor (24) in Eq. (37) instead of the orthogonalized
one, Eq. (28), is compensated by the fact that the
orthogonalization is already taken into account by
the replacement of vs(r) by the modified scattering
wave vs(r). Furthermore, the summation over b
in Eq. (38) runs over all bound single-particle
states of the d space. In a similar way, the cou-
pling between the P and d spaces via the nuclear
interaction H~~ can be calculated. One obtains

&c( ) lII ld) s(6G(s& r2dr c F (r)
v (r)

0
(39)

For a 5 interaction, the form factor E, d(r) can be written as

+, ~(r) = (r, c lII~d ld) = QR, (r)R~(r)R, (r)A
abc

(40)

where again, A, b„' contains all the factors coming from the angular momentum coupling and integration
over e. Using the above formulas, together with Eq. (31), one gets for the shift and width Matrix, Eq.
(14), the contribution

(d(HqrGp"Hr (d )= g ffdrdr''rr, q(r)H, '"(r, r')H, (r')r.
C

(41)



MICROSCOPIC STUDY OF THK GIANT MULTIPOLK

and for the final state interaction term

(d ((H~~Gp'~Q~! I ) = Q gdr de'xZ~ (r)gP'(r v')ff ~tv')r' (42)

In the above equations, the sums run over all channels e included in the calculation.
We now have all the ingredients for the evaluation of the T matrix. From this, the cross section for the

radiative process (N, y) leading from a target hole state h = (I'v„mh) to a final state J', of the ground state
band of the A-nucleon system can be derived. It is explicitly given by

2F 2 4 1 Idoff, y) 2w, k„ &I, L'+l --1 Z Z { 1)z do+ t-+'!z +a+&/2

dQ c 0» 2(2I+ 1) c' gL, ' Qc

x,—[(2l, + 1)(2l,'+ 1)(2j,+1)(2j,'+ 1)(2J,+ 1)(2J~+1)]'~'

c c c c c 0
$ $&00 . 0

x g(-I)'«'f-&-&Iqo&&[f', c]J.II1"'Ill&&[f', c']J'll&' J &*& (»)
(43)

where k„ is the momentum of the incoming nucleon
and

-(2L, +1)(L,+1)'~' cu'„
(2i+1)!! (44)

It is common practice to write the differential
cross section in the form

«Ã, y) =a, 1+ g ao Po (cose) (45)

from which the total cross section is given by
4m'ao.

III. APPLICATION TO THE F(p,j )Ne REACTION

. As a test of the physical approximation as well
as of the numerical feasibility, we have applied the
method and the model described in the previous
chapters to study the multipole resonances of ' Ne
as seen via the "F(p,y)"Ne radiative capture re
action.

First of all, we shall suppose that the transition
is mainly dipole electric so that the operator Q

='

is just the electric dipole operator for which we
use the effective charges & e for proton and -~ e
for neutron. We shall discuss later on possible
contributions from other multipoles, in particular
from quadrupole transitions. The electric dipole
operator is an isospin vector and as the states of
the ground state rotational band all have T =0, all
intermediate states contributing in the process
must have T = 1, and furthermore must have nega-
tive parity. These states consequently will not
contain any component from the projected Hartree-
Fock determinant. We shall suppose furthermore

I

that the ground state rotational band does not con-
tain components from projected particle-hole
configurations with the same quantum numbers,
in other words it is given by simple projected
Hartree-Fock states. This is known to be a good
approximation for 2 Ne. ' We have furthermore
neglected the mixing of configurations with intrin-
sic odd 4K in Eq. (22). It has been checked that
this approximation has no significant effect on the
negative parity states. Its effect on the positive
parity states will be studied in some future work.

Because we are interested in both transitions to
the ground state as well as to the first 2'.excited
state of ' Ne, all intermediate states with J'
=1, 2, or 3 will contribute. We hence restrict
the partial wave expansion of the incoming particle
to the s, P, d, and f waves of the Woods-Saxon
potential. The parameters of this potential are
taken over without modification from Afnan. "
They are U0=-50.5 MeV, U„=-6.85 Me&, and
co 0 70 fm Furthermore, the central, spin- or-
bit, and Coulomb radii have been assumed to be
equal and state independent, given by B=r, (A —I)'~'
with so= 1.25 fm.

As described in Sec. IIC, the channel states
must be orthogonalized with respect to the bound
states of the d space. As the single-particle
states of this space have been taken to be described
by harmonic oscillator wave functions, the ortho-
gonalization is then carried out using the prescrip-
tion (32). Only Os-, OP-, 1sOd-, and Of-oscillator
states have been adopted, as the p waves of the
Woods-Saxon potential do not show any resonance
which would permit the extraction of a quasibound
state. Using this basis, together with a modified-
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surface 5 interaction4' (MSDI) with parameters
A~, =0.77 MeV, A~, =0.95 MeV, B~ 0- —2.51
MeV, and B~,= 0.37 MeV as the residual interac-
tion for the d space, the Hartree-Fock problem is
then solved. For this purpose, we make the addi-
tional assumption that there is no orbital mixing
between different shells and thus we can use sin-
gle-particle energies relative to the unperturbed
"0core. For the 1s0d shell, they a,re taken from
Halbert et ai. to be E~ = —4.49, &, = —3.16,
and e~ =+1.05, all in'/leV. For the 5P shell,

d3] 2
we have adopted the values &~, ,= —18.74 MeV and

= —12.6 MeV, which are about 3 MeV higher
&X(2

than the experimental values in 'M. This upward
shift is necessary in order to reproduce roughly
the right separation between the first I' = 2 band
and the I'= 2' ground state band in the A =19 sys-
tem. One may think of this as a renormalization
of the effective interaction. As a matter of fact,
the MSDI as used here can hardly describe the in-
teraction between shells. The choice of the Of
single-particle energies is more complicated.
There are some experimental as well as theoreti-
cal evidences that in the neighborhood of 0, the
e's are at about 15 MeV and 22 MeV for the Of »,
and Of »„respectively. However, as for the OP

shell, a shift from these values is possible and we
have used another set with && =7 MeV a,nd 4&~7/2 f5)2
=14 MeV, denoted below as set II. These are
roughly the energies where f -wave resonances
are found for the Woods-Saxon potential.

The results of our d-space calculations are sum-

marized in Figs. 1-4. Figure 1 displays the in-
trinsic Hartree-Pock single-particle spectrum.
The appearance of a large gap between the last
occupied and the first unoccupied orbitals indicates
the relative stability of the Hartree-Fock solution
and thus justifies our approximation to describe
the ground state band as projected Hartree-Fock
states. The ground state band is compared with
experiment in Fig. 2. The agreement is excellent
and in fact cannot be improved much even if higher
order correlations are taken into account. " Fig-
ure 2 also compares the experimental low-energy
spectra" of "Fand "Ne with the theoretical pre-
diction for the A = 19 T = 2 system, "Fand "Ne
are very good mirror nuclei, which justifies the
neglect of the Coulomb force in our d-space cal-
culations. Although our calculation interchanges
the positions of the ~ and 2 states, the agreement
of both positive and negative parity states with
experiment is of the same quality as for "Ne. This
supports our description, Eq. (23), of the low-
lying bound states of the target nucleus. All the
six states shown in Fig. 2 will be used later in
our calculation to define the channels c. Actually,
there are 12 macrochannels because both "Fand
",Ne spectra are being used.

Using the Hartree-Fock spectrum of Fig. 1, one
can now construct the intermediate states id) of
the compound system. Because of the required
negative parity and 1'= 1 and since, due to our ap-
proximation of ~E= even, only configurations with
either even or odd angular momentum projection
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FIG. 2. The low excited bands of Ne, ~F, and ~Ne.

K will mix with each other, the 1p-1h space con-
sists of 8 and 15 configurations with even and odd
E respectively, for J'=1, while the correspond-
ing numbers are 20 and 15 for J'=2 and 20 and
22 for J'=3 . Within each of the J' sets of states
thus obtained, one first solves an eigenvalue prob-
lem analogous to Eq. (22) for the center-of-mass
operator (I/A)B'. All the eigenvalues found are
either exactly equal or very close to the value &b'.
The slight deviation, of course, comes from the
fact that our basis is not complete. According to
Sec. IIB, we may hence consider all our states
as nonspurious. Note that these are T =1 states.
As a matter of fact, the same calculation for the
T =0 leads to five states mith eigenvalues close to
—,'b'. (Two states for Z'=1, one for J'=2, and
two for J' = 3, T = 0.) Figures 3 and 4 give the re-
sults obtained from the diagonalization of the Ham-
iltonian. Figure 3 displays the reduced B(E1)
values of the transitions to the ground state of

Ne, plotted against the excitation energies of
the T =1, J'=1 states. We distinguish the transi-
tions coming from states built on K = 0 (dashed
lines) and from states built on K = 1 (full lines).
Furthermore, the results corresponding to the
two sets of energies are compared. As expected
from the Hartree-Fock spectrum, for Set I, the
excitations from 1sOd to Of shells are well sepa-
rated from the OP to 1s0d excitations. If Set II
is used, the two excitations are seen to mix strong-
ly with each other in the energy region between
18.5 and 23 MeV. Of course, from the bound

spectra given here, one cannot say which set
should be used. We shall come back to this point
later. Figure 4 shows the reduced B(E1)for tran-
sitions to the first excited 2 state. Here, all in-
termediate states with/' = 1. (dotted lines), 8' = 2
(dashedlines), andJ'=3 (fulllines) contribute. As
a result, one sees much more structures than for the
ground state transitions. We observe againthe same
characteristics about configuration mixing depending
on whether Set Ior Set II is beingused. Itis remark-
able that most of the transition strengths to the 2'
state comefromthe2 and 3, butnotfrom the1
states, a fact which already explains the large
discrepancies between the (p, yo) and (P, y, ) angu-
lar distributions. We now proceed to calculate the
T matrix, as explained in Sec. IID. For this pur-
pose, we have adopted for the residual interaction
H~~ a 6 force with the parameters given by Wang
and Shakin, "namely Vo= 613 MeV fm', a =0.865,
anQ b=0.135. On the other hand, the coupling
of the d space to the complicated x space, as
mentioned already in Sec. IIA, is supposed to
be state independent and diagonal in the d space.
It is characterized by the parameters ~, and I',
which we shall take to be 0 and 150 keV, respec-
tively.

With the above parameters, we have calculated
the 90' yields for both the (P, yo) and (p, y, ) reac
tions. We have taken this occasion to test a num-
ber of approximations which are often made in the
literature. First of all, the final state interaction
(FSI) which, to our knowledge, had never been ex-
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plicitly calculated, has been found, at least with
our model space, to be negligible. We have also
examined the validity of the isolated resonance ap-
proximation (IRA) where the width and shift matrix
is supposed to be diagonal in the d space, as com-
pared to the fuQ calculation, the matrix inversion
approximation (MIA), where this matrix is effec-

tively inverted as shown in Eq. (12). The results
of the calculation are shown in Figs. 5-12 and in
Table I.

Figures 5 and 6 display the 90' yields for the
(p, ye) and (p, y, ) reactions as calculated in the
isolated resonance approximation, with the final
state interaction taken into account (IRA+ I'SI). In
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both figures, the results obtained by using the two
sets of Of energies are compared with each other.
While below 5.5 MeV and above 8.5 MeV incident
proton energies both sets give almost identical re-
sults, one observes that Set II gives much more
strengths in the region in between the above ener-
gies. We also wish to point out that the two states
at 19.7 and 20.8 MeV in the bound state calcula-
tion using Set I (Fig. 8) are suppressed when con-
nected to the continuum.

Figures 7 and 8 compare the cross section in the
IRA+ FSI with the results of the full calculation
MIA+ FSI, using Set II. In the case of the (p, y,)
reaction (Fig. I), only a slight redistribution of
the strengths due to the matrix inversion is ob-
tained. This is to be expected since the 1 states
of Fig. 3 are rather. well separated from each
other. The situation is quite different for the
(P, y, ) reaction (Fig. 8). As expected from the
higher density of 2 and 8 states (Fig. 4), here
the effect of the nondiagonal part of the width and
shift matrix becomes important, leading to marked
differences between the two approximations. In
other words, the IRA is not valid in this case.

The results of the full calculation (MIA+ FSI)
using Set II are compared with the experimental
results' in Figs. 9 and 10. The agreement should
be considered as excellent, especially for the

(P, y, ) reaction, having in mind the fact that we
are doing a fully microscopic calculation. Most .
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of the structures are reproduced including their
abundance in the (p, y, ) reaction. Of course, we
do not expect to get exactly the positions of the
various peaks. This would require a more careful
choice of the single-particle energies as well as

of the residual interactions. Furthermore, the
limitation to only dipole transition is probably not
satisfying. Figure 11 shows the a, coefficients of
the (p, y,) and (p, y, ) angular distributions, as de-
fined in Eq. (45). While the agreement of the co-
efficient for the (p, y, ) reaction with experiment
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IRA+ FSI
———--Kf7 =15MeV/2"

Cf5/2=22MeV

Cf7/2 =7 MeV

Cf5/ =14MeV

h
Il
I l

h

Yo

I
Il

l
I-l
I

ea ~~
I I I I I

2 3 4 5 6 7 8 9 10

Ep (MeV)

I

11 12

FIG. 12. The g2 coefficients as obtained in the IRA
+ FSI approximation for the two different sets of (ff-
single-particle energies.

is rather good at least up to 7.5 MeV incident en-
ergy, the (p, y, ) angular distribution is far off the
experimental result. There may be two reasons
for this discrepancy. The appearance of two peaks
at around 6 MeV in the (p, ye) reaction instead of
just one experimentally observed seems to indi-
cate that the energies of Set II of states are prob-
ably a little too low, by about 1 MeV. In a different
calculation where the Of energies are shifted up-
ward, the high energy part of the angular distributions
seems to be improved (Fig. 12). Nevertheless,
Set I is definitely too high to give enough strengths
in the region where resonances are observed. The
second reason may be due to the fact that we have
neglected quadrupole transitions. This would in-
volve intermediate states with J'=0', 1', 2', 3',
and 4' for the (p, y, ) reaction and probably would
change markedly the angular distributions (though
not necessarily the cross sections) for this reac-
tion much more than for the (p, ye) reaction where
only J' =2' would contribute.

IV. CONCLUSION

In this work, "we have proposed a microscopic
model for the description of the 6MB in light de-
formed nuclei and their excitation via radiative
capture reactions. In this model, the bound states
of the A. and A. -1 nucleon systems are described
as linear combinations of angular momentum pro-
jected p-h and h states in a deformed Hartree-
Fock field. The angular momentum projections
are performed exactly and furthermore are ap-
plied before the Hamiltonian is diagonalized.
Spurious admixtures due to the center-of-mass
motion are eliminated, at least approximately.
The connection to the continuum is done using a
version of Feshbach's formalism of nuclear reac-
tions. Continuum and bound states are properly
orthogonalized and furthermore defined in such a
way that scattering waves will contain no single-
particle resonance and hence the channel-channel
coupling can be neglected.

The model has been applied to study the GMR in
"Ne via the (p, y) radiative reaction. Various ap-
proximations have been tested, and it has been
shown that the isolated resonance approximation is
not always valid, especially when intermediate
states are densely populated as in the case of the
(p, y, ) reaction. The agreement of our theoretical
results for the 90' yields with experiment is re-
markably good, for both (p, Z,) and (p, Z, ) reac-
tions. Besides the gross features, most of the
intermediate structures are also reproduced. Of
coprse, the agreement is not yet completely satis-
fying. Improvements may be expected from the
inclusion of the quadrupole transitions as well as
from a careful choice of the effective interaction

TABLE I. Theoretical and experimental values for the integrated total (y, P) cross sections.

Approximation
Z„[MeV mbl

(0'-1-) Q„,[MeV mb)
(2+ 1,2, 3 )

Q~ [MeVmb]
(4'-3-)

IRA+ FSI (I)
IRA+ FSI (II).
MIA (II)
MIA+ FSI (II)

Experiment

21.38
27.01
24.08
24.72 '

24.81

4.22
' 7.24
6.22
6.43

9.57

0.25
0.55
0.43
0.45
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and single-particle energies. We' believe, however,
that the present work can already be considered
as a meaningful step in the direction of a micro-
scopic understanding of both the microscopic
structure ag well as the excitation mechanism of
the GMR in light deformed nuclei.
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