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We discuss a method for constructing an explicit orthonormal representation for the collective subspace
associated with the generator coordinate method, assuming that the overlap (a~a') is a Hilbert-Schmidt
kernel in the space of weight functions. We show that the equivalence between the diagonalization of the
many-body Hamiltonian in the collective subspace and the solution of the Gri6in-Hill-Wheeler equation is a
dynamical question which cannot be answered by kinematical considerations alone. The treatment gives a
simple picture of well known misbehaviors of the generator coordinate weight functions. An application is

made to the Lipkin model.

NUCLEAR STRUCTURE Properties of generator coordinate representations. Application
to a solvable model.

I. INTRODUCTION

where f(o.), the weight function, is a function de-
fined in the Hilbert space of the complex valued,
square integrable functions. The generator states

a& are a family of many-body wave functions
parametrized by the label ~, the generator coor-
dinate. In the method of GHW the function f(o.) is
determined by the variational method,

~
&f~ff~f&

&f~f&

which leads to the GHW integral equation

(&. Isl"& d(. I"j) f(rx' d"=&D.

(2)

Kong' has investigated the formal correspondence
between the solutions of Eq. (3) and the solutions
found in the diagonalization of the Hamiltonian in a
subspace of the many-body Hilbert space, the
collective subspace S:

(PsHPs —E)P, f) =0, (4)

Kong has put forth-in Ref. 1 the point of view
that the solution of the Griffin-Hill-Wheeler'
(GHW) integral equation can be identified with the
diagonalization of the Hamiltonian in a subspace
of the many-body Hilbert space, the collective sub-
space S. In specific cases one finds difficulties in
the implementation of this correspondence' and
in what follows we will give a brief outline of the
nature of these difficulties.

In the generator coordinate method of GHW' one
considers many-body wave functions generated by
the ansatz

where P~ is the projection operator onto the col-
lective subspace S.

In the work by Wong, the formal correspondence
between the two equations is shown in terms of an
assumed biorthogonal expansion of P~ involving
the generator states:

Ps —— da e n = dan e

where

&n' a&=5(o.' —n).
In this case Eq. (4) reduces to Eq. (3) if we make
the identification of the weight function with the
projection of

I f) on the biorthogonal base':

f(~) =&& If&.

In specific models like the "Gaussian overlap" ap-
proximation' one finds difficulties in the imple-
mentation of this correspondence. ' ' Kong shows
that in this model, Eq. (4) can have solutions
which are not obtained in the solution of the GHW

integral equation, Eq. (3). However, it is well
known that if in the variational principle, Eq. (2),
one varies

I f) in a closed subspace of the many-
body Hilbert space, the solution of Eq. (2) is equi-
valent to the diagonalization of the Hamiltonian in
the above subspace. So the difference found by
Wong leads us to the conjecture that the subspace
generated by the ansatz (1) is different from the
collective subspace S. In order to shed some light
on this problem we investigate the properties of
the GHW integral equation when the overlap &ct

I
a'&

is a Hilbert-Schmidt kernel in the space of square
integrable functions. This is not a purely academ-
ic case. First, projection of particle number and

angular momentum fall in this category. Second,
we can consider weight function spaces with an
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appropriate measure with respect to which the
kernel at hand will be a Hilbert-Schmidt kernel.
Third, in the numerical handling of the GHW in-
tegral equation' we always replace Eq. (3) by

where the Q, 's are a finite, discrete set of points,
and in this ease the kernel (n,. n&& is trivially a
Hilbert- Schmidt kernel. Our treatment generalizes
this case to that of a continuous label Q.

Besides, the interpretation of our treatment lead
us to expect that the main qualitative features of
more general cases are already present in it.

For kernels having this property we give a meth-
od to construct an explicit orthonormal represen-
tation for the collective subsyace S. This will al-
low us to understand the misbehaviors described
by Kong' and to relate them to yroperties of the
biorthogonal expansion (5). It has often been sug-
gested' that problems could arise in connection
with zero eigenvalues of the overlay kernel
(n in' ). Our treatment shows clearly, however,
that these problems can be trivially. avoided by
means of a suitable restriction of the allowed
weight functions. Problems of a more fundamental
nature, on the other hand, ayyear in connection
with situations in which a sequence of nonzero
eigenvalues approaches zero as a limit point. Our
work is organized as follows: In Sec. II we con-
struct a representation for the collective subspace
S when the overlap (n i

n') is a Hilbert-Schmidt
kernel in the space of square integrable functions.
Furthermore we discuss in detail under what con-
ditions Eq. (3) and Eq. (4) are equivalent. As an
application, in Sec. III we consider the generator
coordinate method applied to the Liykin model
which is a particular case where the diagonaliza-
tion of the Hamiltonian in the collective subspace
S is equivalent to the solution of the GHW integral
equation. In Sec. IV we present some concluding
remarks.

where the u„(a) satisfy the eigenvalue equation

f(n in'&u„(a')da'=X„u„(a) .

If we include the eigenfunctions of zero eigenvalue,
the functions u„(a) form an orthonormal base in the
syace of functions'

u„*(n)u„,(a)dn = 5„„,.

An important yroyerty of the Hilbert-Schmidt
kernels is that if the eigenfunctions of eigenvalue
different from zero span a syace of infinite di-
mension, X„has a limit point for X =0 and this is
the only yossible limit point. ' In what follows we
will denote the subspace of the function space
spanned by the eigenfunctions of zero eigenvalue,
the null space, by L, and, the subspace spanned
by the eigenfunctions of eigenvalue different from
zero, its orthogonal complement, by L,.

It is shown in Appendix A that due to the proper-
ties of the .spectrum of the Hilbert-Schmidt ker-
nels, the many-body vectors produced by the GHW
ansatz

if& = dn in&f(n)

form a linear subsyace of the many-body Hilbert
space which is, however, not closed except in the
special case when L, has finite dimension. In
order to remedy this undesirable feature we note
first that since the functions (u, (n)) form a base
in the syace of functions, the vectors

(n) fu„(a))a)da

form a, complete set in the subspace (in general
not closed) generated by the ansatz (9).

The norm of the states n) is equal to

(nin'& = X„5„„,. (10)
II. OVERLAP (O. ln'& AS A HILBERT-SCHMIDT KERNEL

A. Representation for the collective subspace

Consider the case where the overlap (a in') is
a Hilbert-Schmidt kernel in the space of square
integrable functions, i.e. ,

ndn'i&n in'&i'&

In this case, there is a decomposition of the kernel
in orthonormal eigenfunctions'

(a ia') = Q X„u„(n)u„*(n'),
tea X~AD

The consequences of Eq. (10) are the following:
(a) The eigenfunetions of the overlap kernel (n in')
with zero eigenvalue give rise to vectors of zero
norm in the many-body Hilbert space,

dau„(n) i n) = 0, if A.„=0;

(b) The X„are semipositive definite, since they
are norm of vectors defined in the many-body
Hilbert space.
(c),The vectors
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for A,„w 0, are orthonormal vectors.
It is also shown in Appendix A that the closed

subsyace of the many-body Hilbert space generated
by the orthonormal states ( n&j is, in fact, the
closure of the linear syace yroduced by means of
the GHW ansatz. This subspace, defined by means
of the projection' operator

This is, in fact, sufficient in view of the linear
dependence of the generator states as discussed in
the preceding subsection. Using Eq. (13), Eq. (14)
can be written as

an n n = u„cpu„*~'.

Equation (11) now shows us that

&o l&& = (& )"'~„(~). (15)

is what we call the collective subsyace. When this
space is of finite dimension, the norm of all vec-
tors ln&, Eq. (10), has a lower bound (the small-
est nonvanishing eigenvalue) and as a result of
this the linear space generated by Eq. (9) is closed
and equal to the collective subspace. It is, in fact,
the existence of eigenfunctions of the overlap ker-
nel with arbitrarily small eigenvalue that gives
rise to difficulties in the general case. One im-
portant point that emerges from the above consi-
derations is that if we do not restrict the weight
functions to belong to the subspace L„ the cor-
respondence between the weight functions and the
vectors of the many-body Hilbert space is not
unique. It becomes unique only if f(n) belongs to
L,. In what follows we will restrict f(o.) to L,.

The existence of eigenfunctions of the kernel
(n lo. '& having zero eigenvalue is a manifestation
of the fact that the generator states are not linear-
ly independent. This is a direct consequence of
Eq. (10). Also using Eq. (11)we have

Using Eq. (15) it is very easy to verify that the
solution for (a n& is

u„(o.)( (16)

Using Eq. (15) and Eq. (16) we can show formally
that

( l,) g u„(o.)u„*(o.')
n, &in ff

(18)

Equation (18) shows that in general l a& does not
have a finite norm since, although u„(a) is a nor-
malized wave function, A.„has a limit point for
A, =O. The only case where lb& is guaranteed to
have a finite norm is when L, has a finite dimen-
sion.

J &(~ = «l~&&~l= ~ l~&&~l (»)
n~ ilail 0

The biorthogonal states K& defined by the Eq. (16),
however, do not in general belong to the many-
body Hilbert space. To see this consider

which can be written as

a) Jda'I'. (a'a) =a'), ,

where

P,(n', ) =oQ u„(n')u„*(o.)
n~ ilff& 0

(13)

C. Equivalence between the solutions of the GHW integral

equation and the diagonalization of the Hamiltonian in the
collective subspace

Even though the
l
n&'s in general do not have a

finite norm they may still be useful if (K f ) is
a well defined function in the space of square in-
tegrable functions, i.e.,

is the projection operator onto the subspace of the
weight function space spanned by the eigenfunctions
of the kernel (n

l
e'& with nonvanishing eigenvalue

L,. This shows that because the generator states
are linearly dependent, they are reproduced by a
kernel which is the restriction of a 5 function to the
subsyace L,.

B. Biorthogonal bases in the collective subspace

In order to determine vectors
l
6& having biortho-

gonal properties with respect to the generator
states la), ' we consider the equation

(u in') = P,(c),n') . (14)

2g(y goo
nz„&0 ~n

(19)

In the case when I„has a finite dimension, lb&
has a finite norm and Eq. (19) is satisfied. In this
case the ansatz (9) generates a closed subspace
of the many-body Hilbert space which is identical
to the collective subspace. Furthermore, the
biorthogonal representation (17) is a well de-
fined representation for the collective subspace.
The consequence of all this is that the diagonaliza-
tion of the Hamiltonian in the collective subspace
is equivalent to the solution of the GHW integral
equation if we make the identification of the weight
function f (n) with (n

l f),
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f( )=( if)

In the case where the subspace L, has infinite di-
mension the a)'s do not have finite norm and we
see easily that not all vectors defined in the col-
lective subsyace, which are such that

P, a p p', a

Defining the quasispin oyer ator s

J,= ~~a„,a, ,=J,t

(21)

satisfy Eq. (19).
This means, of course, that there are vectors in

the collective subspace that cannot be expressed
by the ansatz (9) with a normalized weight function.
In this case the biorthogonal bases cannot be used
for a general vector in the collective subspace.
This has the consequence that the Eq. (4) can have
solutions which cannot be obtained by the solution
of the GHW integral equation. These are the states
which belong to the collective subsyace but not to
the linear space generated by the GHW ansatz
(which is in this case strictly smaller than the
collective subspace). It should be stressed that
the misbehavior of the weight function for cdrtain
vectors of the collective subspace is solely a con-
sequence of the representation in terms of the bi-
orthogonal sets and therefore has a purely kine-
matical origin.

We see also that there can be no'a Priori
criterion to decide whether the solutions found in
the diagonalization of some Hamiltonian in the
collective subsyace can be obtained by solving the
GHW integral equation. This is a dynamical ques-
tion which cannot be answered without the explicit
use of the specific Hamiltonian. The discussion
above shows that even when the GHW integral equa-
tion is not well defined, the diagonalization of the
Hamiltonian in the collective subspace is always a
well defined procedure.

III. GENERATOR COORDINATE METHOD

IN THE LIPKIN MODEL

As an example of the apyroach discussed in the
yreceding section we study the Liykin model,
which is a case where L, has a finite dimension
and the two equations (3) and (4) are equivalent.
The Lipkin model is extensively studied in the
literature' ' and in what follows we will only re-
view its most essential features.

We have N fermions distributed in two N-fold
degenerate levels seyarated by the energy e. Each
level is characterized by a quantum number 0
which is equal to + 1(—1) for the higher (lower)
level and a quantum number p associated with the
degeneracy in each level.

The Hamiltonian of the model is given by

we can easily see. that they satisfy the following
commutation relations

[J„J]= 2J„[J„J,]= sJ, . (22)

Using the quasispin operators (21) the Hamilto-
nian (20) can be written as

H = EJ', + 2 V(J,2+J ') . (23)

The equation (23) shows us that (H, J2) =0. There-
fore Eq. (23) can be.diagonalized within each mul-
tiplet. In particular, the ground state belongs to
the multiylet J= —,'N which can be seen by noticing
that the unyerturbed ground state

0) = aq, a~2, a~», l& (24)

is an eigenstate of J' and J, with eigenvalues
,'N( ,'N+ 1) —and—,'N, respec—ti—vely.' In order to use
the generator coordinate method we choose for the
family of generator states a family of normalized
Slater determinants belonging to the multiplet
J= —,'N and yarameterized in the following way'.

l
rf&& = cos"—

„'- Q exp(tan —2'Q J',) 0) . (25)

The overlap of two generator states is equal to

(26)

The eigenfunctions of the kernel ( P'
l P& satisfy the

equation

which has the solution

The overlap (26) is a periodic function with period
We therefore choose for the space of functions

the space of square integrable periodic functions
and restrict them to the interval (—g, v). In this
space the overlap (Q' Q& is a Hilbert-Schmidt
kernel,
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1.(4)-
(2 ),(,

The diagonalization of the Hamiltonian in the col-
lective subspace is therefore equivalent to the so-
lution of the GHW integral equation. This tells us
that in the Liykin model the generator coordinate
method with the generator states given by Eq. (25)
gives the exact solutions.

cos"-,'(t& e'"' dp

SAN)

li
2~(-,'N+n)t(-;N n)t

'

~

0, n&-,'N

--N ~n--X1 1
2 2

IV. CONCLUSIONS

0, n&- —'N.

The many-body states

(28)

l 1

( ) i e~"~
i((&&) d(t& =0, n& N i—

have zero norm and the states

2 X

1 1 1

(2 ~)"' e'"~ P)dP N&n—&—N-
) 2 2

are orthonormal vectors in the many-body Hilbert
space of the model and form a base for the collec-
tive subsyace S:

n= -yNI

So we see that the Lipkin model is a case in which
L „and therefore also the collective subsyace,
have finite dimension. In particular the set n) is
related to the usual J, representation by means of
an unitary transformation and therefore the col-
lective subspace is the same as that generated by
the standard multiylet J= —,'N, --,'N& J,&-,'¹The
existence of eigenfunctions of the kernel with zero
eigenvalue implies that the ((&&)'s are not linearly
independent, the linear dependence being expressed
by

The preceding discussion leads us to the following
conclusions:
(a) In the case where the subspace generated by the
eigenfunctions of the kernel (n

~

n') with eigenvalue
different from zero has finite dimension, the GHW
ansatz (9) generates a closed subspace of the many-
body Hilbert syace. Furthermore, the subspace
generated by Eq. (9) is identical to the collective
subsyace S and there is a mell-defined representa-
tion for S in terms of states biorthogonal to the
generator states. In this case the diagonalization
of the Hamiltonian in the collective subspace is
equivalent tothe solution of the GHW integral equa-
tion.
(b) In the case where the subspace generated by the
eigenfunctions of the kernel (n

~

n') of eigenvalue
different from zero has infinite dimension the sub-
space generated by the ansatz (9) is not closed. Its
closure is the collective subspace S. In this case
it can haypen that the diagonalization of the Hamil-
tonian in S leads to state vectors which cannot be
obtained by solving the GHW integral equation. To
understand this behavior in the case of infinite
dimension one may, following Ref. 9, first consider
the case where S has finite dimension. In this case
Eqs. (3) and (4)' are equivalent. When the dimen-
sion of S increases there are solutions of Eq. (4)
such that the norm of the weight function f(n),

Q)= dp' g e'"(~ "ly')
fi= -2NI

The states biorthogonal to the states ~((&&), on the
other hand, obey the equation

and are thus given by

$N

(29)

As discussed in Sec. III [see Eq. (29)], ~(l&&) has a
finite norm in this case and we can construct a
representation for P~ in terms of the. biorthogonal
states:

f~( I (»(( I f~( I(»((==

f(n)=&n f),
increases without bound even though

~
f) has a

finite norm. In the limit when the dimension of
S becomes infinite the norm of f(n) diverges
These are the solutions which cannot be found by
solving the GHW integral equation. Note, however,
that the divergence of f(n) does not mean that the
corresponding many-body vector also diverges.

It is important to notice that the question whether
the two equations have the same set of solutions
cannot be decided without the explicit use of the
Hamiltonian. This fact tells us that there is no
guarantee a Priori that the GHW integral equation
can have solutions with a square integrable f(n)'.
This difficulty can be avoided by noticing that the
diagonalization of 8 in S is always a mell defined
procedure.

Finally we have shown hom to construct an expli-
cit orthonormal representation for the collective
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APPENDIX A

We show that (a) the linear space generated by
the GHW ansatz Eg. (9) is in general not a closed
subspace, and that (b) the closure of this space is
the collective subsyace S. This can be done easily
by considering a normalized many-body vector in
S written as

)g&= Q g„f~&, Z fg /2=l.
n= &~)tn~ o n, )t„&0 '

(Al)

We also introduce the sequence of vectors

which clearly converges to ~g) as N- ~. It is
easy to check that each of the vectors ~g") can
be generated by means of the GHW ansatz with the
square integrable weight function g'") (n) given by

N

+(N)(&) g gn n(

=x, )„ao (&) ~
(AS)

subsyace S. This allows us, in yrinciyle, to solve
Eq. (4) and to investigate the definition of appro-
priate collective dynamical variables.

The generalization of the present treatment to
general overlay kernels is under investigation and
will be the. subject of a separate publication.

x.e. ,

Iz") fd-'(~") ~) «. (A4)

n= &~ X~& 0 n

(A5)

the convergence of which is not guaranteed by
(Al) in view of the decrease of the X„ for large n.

We see thus that, by means of Eqs. (A2), (AS),
and (A4) we can generate a sequence of vectors
each of which has a well defined weight function
that will converge, in the collective subsyace, to
any preassigned vector g). This proves (b). The
corresponding sequence of weight functions, how-
ever, will not in general converge in the weight
function space L „so that not every vector in S
can be associated with a weight function. In this
case, the Cauchy sequence (A2), which lies in the
linear space generated by the GHW ansatz, Eq.
(9), does not converge in this space, thus proving
(a)

The desired results now emerge when we consider
that the eigenvalues X„have zero as a limit point.
In fact, there are vectors satisfying Eq. (Al) and
that are such that the corresponding sequence of
functions g'")(o.), Eg. (AS), diverges in the weight
function space as N- ~. The norm of these func-
tions is, in fact,
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