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Influence of the b, resonance on ground-state properties of nuclei
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Brueckner-Hartree-Fock calculations on ' 0 are presented using a one-boson-exchange potential, which
includes the h.(1236}resonance in all partial waves. The repulsive effect from the explicit treatment of the h,

is considerably weaker than for the nuclear matter system. This density dependence of the repulsion leads to
N1V interactions, which may describe the energies of finite nuclei as well as of nuclear matter.

NUCLEAR STBUCTUBE Calculations for 60, one-boson-exchange potentials, '

influence of the & resonsnce, Brueckner-Hartree-Fock approach.

I. INTRODUCTION

'The microscopic understanding of simple prop-
erties of finite nuclei (binding energies, charge
distributions) has largely improved during recent
years due to the development of Brueckner's theo-
ry. ' The solution of the many-body problem for
the ground state of finite nuclei with the inclusion
of short range correlations can be accomplished
numerically with enough accuracy, ' and higher-or-
der corrections can be included. "' Starting from
realistic nucleon-nucleon (NN ) interactions, how-

ever, characteristic deficiencies show up in the
results:

(i) If the binding energies versus charge radii
R,„obtained for different NN interactions are plot-
ted, the results lie more or less on a line, which
does not meet the empirical value. For interac-
tions which yield enough binding energy, charge
radii are predicted which are much too small, and
if the resulting R,„ is comparable to the experi-
mental value, the nuclei are underbound. This
situation for finite nuclei is analogous to the band
obtained in nuclear matter calculations, which is
often referred to as the Coester band.

(ii) For currently used realistic one-boson-ex-
change' (OBE) potentials the Brueckner-Hartree-
Fock (BHF) approa. ch gives results' similar to the
Reid soft-core potentia, l.' The binding for "0 is
about 4 MeV per nucleon too small and this lack of
binding cannot be accounted for by including high-
er-order contributions, like Bethe-Faddeev terms,
in a many-body theory of the A-nucleon system. '

(iii) On the other hand„due to the large density
in nuclear matter these higher-order corrections
are expected to give about 5 MeV per nucleon addi-
tional attraction in nuclear matter. ' Since, how-
ever, BHF calculations for the Reid or QBE poten-

tials predict about 11 MeV binding energy per nu-
cleon, ' these potentials seem to be suitable to de-
scribe the binding energy of nuclear matter but not
in finite nuclei. This inconsistency also shows up
in the case of the super soft-core (SSC) po-
tential, "which lacks nearly 2 MeV in "0, see Ref.
4, but predicts about 16 MeV in nuclear matter al-
ready in first order.

The above deficiencies can be overcome by using
phenomenologically renormalized effective interac-

. tions. We stress, however, that in order to obtain
the correct binding energy for light nuclei, e.g. for
' 0, it is absolutely essential to renormalize the
effective interaction in such a way as to provide not
only the correct binding at nuclear matter density
(k~-1.4 fm '), but also sufficient attraction for
lower densities (k~- I fm '). In fact, renormalized
effective interactions starting from the Reid soft-
core potential predict a nuclear matter binding en-
ergy which, compared to the original result, is
shifted to more attraction by about 5 MeV at nu-
clear matter density, and by about 4 MeV at k~-1
fm '. Thus the shift is nearly density independent,
and it is precisely this behavior which guarantees
(i) consistent results tor light nuclei and nuclear
matter and (ii) correct radii and densities. How-
ever, this procedure is artificial since it is highly
improbable that higher-order contributions from a
many-body theory of the A-nucleon system provide
a shift which is so large for densities relevant for
"Q and, moreover, is nearly density independent.

There are, however, some new developments in
the theory of the NN interaction which give rise to
the hope that these deficiencies can be eliminated
in the near future: Recently Holinde and Mach-
leidt" have proposed a new one-boson-exchange
potential (HM2), in which the phenomenological
cutoff of dipole type used so far' has been replaced
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by a form factor obtained from an eikonal approxi-
mation to multiple vector meson exchange pro-
cesses. A good description of the nucleon-nucleon
scattering phase parameters (y'/datum = 2.77) and
deuteron data (E= 2.2246 MeV, Q =0.2864 fm', PD
=4.32/p) is obtained. Due to the rather small value
of PD, a standard first-order Brueckner-Bethe
calculation" wwith HM2 yields —23.5 MeV satura-
tion energy at a Fermi momentum k~ =1.77 fm ',
i.e., much more attraction compared to the em-
pirical value of about 16 MeV. The small value of
PD is partially a consequence of the special struc-
ture of the eikonal form factor and partially due to
the large p meson tensor coupling constant. " On
the other hand, nuclear matter calculations at
smaller densities suggest that HM2 indeed might
provide the correct binding energy for light nuclei,
e.g., for the triton and "Q. Thus we believe that
the second deficiency, too small binding energy,
will be overcome by using HM2.

Qn the other hand, the nuclear matter results for
HM2 indicate that the other shortcomings, wrong
energy-density relation and inconsistent energies
for light nuclei and nuclear matter, will remain.
Since these deficiencies occur independent of the

NN interaction used, they can only be eliminated
by considering the modifications of the bare inter-
action due to the presence of the other nucleons.
These modifications can, of course, only be con-
sidered in a microscopic, meson-theoretical moci-

el for the interaction. Therefore some attempts
have been made to study for example the intuitive
effect, that the exchange of mesons is influenced

by the single-particle field, which is "felt" by the

interacting nucleons. This has been done by an ex-
tension of the standard Brueckner theory with QBE
forces, which also treats the exchange of mesons
within the frame of the many-body theory. ""
This extension leads to different propagators for
the meson exchange in the finite nucleus and in the

two-nucleon system, which is as usual solved to
fix the parameters of the QBE potential. Compared
to standard BHF calculations such a meson-ex-
tended BHF approach applied on "Q yields a larger
charge radius and simultaneously even a little bit
more binding energy. ' Therefore the energy-den-
sity relation is nicely improved.

Another dynamical modification of the NN inter-
action, which should be considered, is the explicit
inclusion of the 4 resonance. Thereby a part of
the contribution from the exchange of a phenome-
nological o particle in normal QBE potentials is
replaced by twice-iterated transition potentials in-
cluding the 4. Due to the Pauli principle, which

restricts the space of virtually excited N4 states
in finite nuclei or nuclear matter, and due to a
change of the propagator going from the two-nu-

cleon to the many-body system, the effective NN
interaction is changed. The inclusion of the 4 res-
onances is the topic of this work.

In a first rough estimate, Green and Niskanen"
found a strong suppression of the intermediate
range attraction when the 4 is explicitly included.
In fact, according to their calculations, the satu-
ration point of HM2 would be shifted from —23.5
MeV; 1.77 fm ' to —14 MeV; 1.38 fm ' when the 4
is included. Since the lack of 2 MeV binding may
possibly be supplied by higher-order cluster con-
tributions, this is a very reasonable value and a con-
siderable improvement especially with regard to
the energy-density relation. Qn the other hand,
according to Ref. 15, the density dependence of this
repulsive effect is so strong that the effect is
small for "Q and negligible for the triton. Thus,
the inclusion of the 4 will possibly not reduce again
the binding for "Q and the triton obtained with
HM2. Therefore one might conclude that in fact
deficiencies (i) and (iii) are at least partly reduced
by introducing the 4. We should note in this con-
text that the saturation point of an QBE potential
HM1 with a phenomenological cutoff (- 11.8 MeV;
1.48fm ') is moved to about —8 MeV at k+ =1.25
fm ', from where it seems impossible to reach the
empirical saturation point. For the Reid soft-core
potential, the situation is even worse.

However, the repulsive corrections due to the

explicit inclusion of the 4 resonance might in fact
be larger since the calculations of Ref. 15 should
be extended: First, also the effects arising in
higher partial waves (L ~ 1) should be taken into
account; second, in addition to the transition po-
tential with one 4, the possibility of the excitation
of two 4 should also be considered.

This has been done recently by two of the au-
thors. " Part of the phenomenological 0 contribu-
tion in HM2 (and HM1) describing the intermediate
range attraction is replaced by twice-iterated
pion-exchange potentials which couple the NN

channel with the X4 and 44 channels. These mod-
els (HM2+4, HM1+ b) are then used to calculate
nuclear matter properties in first-order Brueck-
ner theory: HM2+ 4 yields about the same value
for the binding energy of nuclear matter as Reid
soft-core potential; however, the new saturation
point, in contrast to the result of Ref. 15, lies only
slightly off the Coester line. The same is found by
Day and Coester. " This is due to the fact that,
according to the calculations in Ref. 16, the densi-
ty dependence of the many-body corrections is
found to be weaker than claimed in Ref. 15. Con-
sequently, there is a reduction of the binding en-
ergy (HM2+ b compared to HM2) also for lower
densities (kz-1 fm '). Nuclear matter calculations
for lower densities show (see Ref. 16) that at k+=1
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fm ' also the binding of HM2+ 4 is reduced com-
pared to HM2, though this decrease is rather
small. In fact, HM2+ 4 gives considerably more
binding than the Reid soft-core potential at kz —-1
fm ', whereas at k~= 1.4 fm ' both models give
nearly identical binding.

We therefore believe that the inclusion of the 4
will strongly improve a simultaneous description
of nuclear matter and light nuclei. On the other
hand, there will be only a slight improvement re-
garding the relation between the binding energy and
charge radius in light nuclei.

The aim of the present paper is to affirm the
above statements by calculating in a realistic way
the ground-state properties of "O. These calcula-
tions have been performed in the framework of the
BHF theory using the same approximations for a
self-consistent solution of the Bethe-Goldstone
equation as described in Ref. 6. In this approach
the nuclear matter G matrix is used for the finite
nucleus calculation employing a suitable local den-
sity approximation for the Pauli operator, but
treating the starting energy self-consistently.
Since procedures of this type have proved to be
rather reliable in comparison to exact BHF cal-
culations, ""we think that our results give some
idea about the structure of many-body corrections
arising from the expli. cit inclusion of the A.

In Sec. II the inclusion of the ~ resonance in a
calculation of a finite nucleus is briefly described
and Sec. III is devoted to a discussion of our re-
sults and a comparison with other OBK forces in
finite nuclei and nuclear matter.

II, EXPLICIT TREATMENT OF THE 6 RESONANCE

IN NUCLEI

P
R=V„«+V,«R,

0

where

(2.1)

P P
elf = Qsz+ ~~ V~g+ Vgg @E—HD

In this chapter we will briefly describe the pro-
cedure of including the & resonance explicitly in
the OBF, frame and the method applied to solve the
Brueckner-Hartree-Fock (BHF) equations for fi-
nite nuclei. For details we refer to Befs. 6 and 16.

The NN scattering parameters are obtained from
the R matrix, which is determined by a Lippmann-
Schwinger- type equation

I.„„,=v'4m g, i 4'ry'O'Q,
(2.3)

I,„„=&4m ""@TED'S,y+H. c.

g, is the pion-nucleon coupling constant, f„~, the
Nhm coupling constant determined by the width of
the b, (f«, ' =0.36), m, is the pion mass; v and T
are isospin operators; 4 denotes the nucleon field
operator, Q the pion field, and 4" the field opera-
tor of the 4.

The whole calculations have been done in mo-
mentum space to avoid the adiabatic limit. Fol-
lowing arguments of Smith and Pandharipande, "
the propagator of the transition potentials is cho-
sen to be 6'+an, '(b, ' is the three-momentum trans-
fer, squared). As in the original OBEP, the mini-
mal relativity factor" is added to the transition
potentials. A monopole cutoff

A' —m, '
A2+ A2

tial operator which consists of three parts: VQBg
is the usual OBE potentia. l (HM1, HM2); the twice-
iterated transition potentials V„~ and V«describe
the interaction in the NN-N4 and NN- ~& chan-
nel, respectively. Note that in contrast to the
usual coupled channel fra, me, the whole effect of
the 4 is contained in V,«.

This is due to the neglect of interactions between
the NA and b,4 channels, i.e., (i) the process N4
—&N and (ii) the b,4 vertex is omitted. In our
opinion, this procedure is justified at the moment
in order to avoid a full coupled channel treatment
for all partial waves, which would be a horrendous
multichannel program. (A channel-cutoff proce-
dure done, e.g. , by Jena and Kisslinger, " changes
the correlations between the results for different
partial wave phase shifts and makes a quantitative
fit of all scattering phases, which is essential for
calculations of finite nuclei, probably very diffi-
cult. ) Anyhow, the strength of the b& vertex is not
known. Apart from the uncertainty in f~~,', ad-
ditional contributions might arise from the Ahp
and 4~+ vertices, which are as poorly known as
the ~~a vertex. Moreover, since its effect is re-
pulsive in all partial waves, "it should be a suit-
able procedure in the present stage to absorb the
effect of the ~4 vertex into the cutoff at the N4
vertex.

The transition potentials V„~ and V«are de-
termined by the interaction Lagrangians

Here E is the starting energy; H, contains, in ad-
dition to the kinetic energy operator, an operator
which describes the intrinsic structure of the nu-
cleon; F' is the principal value. V,« is the poten-

is chosen at each vertex of the tra. nsition poten-
tials, A being a cutoff parameter (the so-called
cutoff mass).

In a first step the N4 p vertex, which has a
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strong damping effect in certain partial waves, is
neglected. Therefore the cutoff has to be'chosen
rather long ranged (i.e. , A rather small) in order
that the N4 interaction not be too large. For ex-
ample, with a value of A=650 MeV, the twiee-
iterated transition potentials replace about half of
the intermediate range attraction described phe-
nomenologically by the o. In fact, the suppression
of the intermediate range attraction in nuclear
matter arising from these transition potentials
agrees well with the recent results of Day and

Coester, "who use the transition potential of Haap-
akoski" which includes p exchange at the N4 ver-
tex. This means that the effect in "0 should also
be rather independent whether one treats the inner

part phenomenologically by introducing a cutoff or
by adding the N4 p vertex, provided the cutoff pa-
rameter is fixed in such a way that the overall
strength of the transition potentials agrees with
more realistic descriptions including p exchange.
Moreover, our main concern is to study the densi-
ty dependence of the many-body corrections in-
troduced by the 4, i.e., the interesting quantity is
the ratio between the effect in "0 and that in nu-
clear matter. This relative effect will turn out to
be independent from the cutoff parameter A, and it
is highly improbable that it would change when the
N4 p vertex is included explicitly.

Thus V» and V~~ of Ref. 16 are given in the he-
licity-state basis as

4& g ~;(-q')~;*(-q)M. (q'b'u, (q)
(q'A', A,'~VN~ ~qA, A, )—,~' N~'c(I)A E'(A) ' ' ' ' c(0) =0 (1)=q8/2 ~

&& (- q') &',&*(-q) ~,. (q')M", *(q)
(q'A,'A,'~ V„~qA,*A,*)=, ~", c'(I)A A Z'(A)

(2.4)

c'(0) = M2, c'(1)= —,
' v'10.

+ V„,(k„, W)- ~ G„M(k~, W)e(k.)

0
(2.5)

is solved in nuclear matter (NM) for different val-
ues of the starting energy 8". In this equation
Q(kz) stands for the Pauli operator, which allows

Here, q (q') is the incoming (outgoing) momentum
of particle 1 in the c.m. frame; u~(q) denotes the

appropriate positive-energy spinor describing the
nucleon; N~~ is the Rarita-Schwinger spinor de-
scribing the A; c(I) and c'(I) are isospin factors.

The nucleon-nucleon scattering phase shifts from
the empirical Livermore analysis" have been fit-
ted using for Voss [Eq. (2.2)] the version HM2" and

separately A =450, 550, and 650 MeV as cutoff
mass in the transition potentials. For each A, the
parameters in Vo~E were appropriately changed in
order to get a quantitative fit of the data. In addi-
tion, version HM1' together with A =650 MeV was
also used. It is obvious that the o parameters
(which phenomenologically describe the intermedi-
ate range attraction) mainly had to be changed
compared to the original QBEP: The o contribu-
tion has to be chosen smaller and also shorter
ranged in order to compensate somehow for the

long range of the transition potentials. A suffi-
ciently accurate fit of the NN data (scattering and
bound state) was obtained.

As a first step for a description of finite nuclei,
the Bethe-Goldstone equation

G„(k„W)= V.„(k„W)

only plane wave intermediate states with momenta
larger than the Fermi momentum k~. In contrast
to Eq. (2.2), the effective interaction for the nu-
clear system V,« is defined as

0'(k, ) 1
V, (k, W)=Vo +V

W + V +V
0

(2.6)

ln this equation the Pauli operator Q'(k~) restricts
the intermediate scattering state for the nucleon
only.

Thus, there are mainly two modifications of the
effective potent. ial V,« to be used in the nuclear
system compared to V,«occurring in free NN
scattering: first, the Pauli correction due to the
Pauli projector Q' in the twice-it:crated V„~ and
second, the dispersive correction due to the change
in the starting energy. Both effects reduce the at-
tractive part of V,«compared to V,«. Therefore,
the potential energy will be less attractive com-
pared to usual treatments in which the unmodified
potential V is taken for the two-nucleon system as
well as in the many-body system. Moreover,
mainly due to the Pauli effect, V,« is now strongly
density dependent.

Using the approximation that the effective inter-
action of two nucleons occupying the single-parti-
cle states ~ij) is the same as the G matrix G„M in
nuclear matter with a Fermi momentum kz(ij), the
interaction for the finite nucleus can be written as

(ij ~G(z, ,) ~ij) =(ij ~G„M(k~(ij), z„.) ~ij). (2.7)
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Hereby the starting energy z,-,. is still treated self-
consistently and in the Bethe-GoMstone equation
some local density approximation is used only for
the Pauli operator. In contrast to the normal local
density approximation, however, the Fermi mo-
mentum kz(ij) is not related to the local density at
the c.m. of the two interacting particles, but we
take an averaged value

(2.8)

Further details about this approximation, like the
choice of k~ for nondiagonal matrix elements of G,
which are needed to define the single-particle po-
tential, and a discussion of the numerical accura-
cy, are given in Ref. 6.

Beside the usual BHF choice for the self-con-
sistent single-particle potential we also use a pre-
scription which has been derived from a variation-
al method in analogy to the HF equations for densi-
ty dependent forces. ' Since the Brueckner ap-
proach for the effective interaction G depends via
the starting energy W and Pauli operator q on the
single-particle wave functions, the expression for
this single-particle Hamiltonian h„contains in ad-
dition to the BHF term ha~" two rearrangement
terms:

9(H) snr BG BW BG BQ
( 9)

Bpq,
' BW Bp~ BQ Bpq,

Here. p„stands for the single-particle density ma-
trix. The graphical representation of the corre-
sponding single-particle potential U is displayed in
Fig. 1 considering only the leading terms. The
definition of the potential U by Eq. (2.9) means that
all diagrams, which contain, e.g. , an insertion of
the type displayed on the right-hand side of the
equation in Fig. 1, are canceled by the diagram
which contains the corresponding U insertion.
This direct compensation of a wider class of dia-
grams, however, does not necessarily mean that
the convergency of the whole many-body perturba-
tion expansion is improved. Therefore, in order

FIG. 1. Graphical representation of the single-par-
ticle potential (-—x) in Eq. (2.9). The BHF definition
compensates the first diagram of the right-hand side
of the equation only. The RBHF prescription also con-
siders the second diagram due to the definition of self-
consistent occupation probabilities. In the BHF approxi-
mation all terms are included.

IH. RESULTS

In order to investigate the effects from an ex-
plicit inclusion of the 4 resonance in nuclear
structure calculations of finite nuclei, we apply the
BHF scheme described in Sec. II to "Q. Results
for the binding energy per nucleon versus the ra-
dius of charge distributions are displayed in Fig.
2 for different NN interactions. To show that the
general features of our conclusions are indepen-
dent of the choice of the self-consistent single-
particle Hamiltonian k„[Eq. (2.9)], we not only

2.8-
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C9
~ 2.6-
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X

—--- HM2
"- — — HM2+ h, (450)

HM2+ &(55Qj-- OBEP
—"—OBEP+ MEC

I

-4 -5 -6 -7
ENERGY I NUCLEON {MeV)

FIG. 2. Total energy per particle versus radius of
charge distribution for BHF (cross), BBHF (triangle),
and DHF calculations (dot). Results of calculations
using the same effective ~& interaction are connected
by a dashed line (HM2, eikonal form factor), a dash-
dotted line [OBEP, phenomenological form factor (Ref.
5)1, a dashed line (HM2+&, A=450 MeV), and a solid
line (HM2+&, A =550 MeV}. To show the influence of
a dynamical treatment of meson exchange correction
(MEC), we also include the results from Ref. 14 for an
OBE potential using the phenomenological dipole cutoff
(dash-dot-dot line) .

to see how far our conclusions are independent of
the choice of the single-particle potential, we used
the BHF prescription, the so-called renormalized
BHF (RBHF) single-particle potential, ' which con-
tains the first two terms in Eq. (2.9) only, and the
full expression. The calculations which consider
all terms of Eq. (2.9) are denoted by "density-de-
pendent" HF (DHF).

The self-consistent single-particle wave func-
tions are expanded in an oscillator basis (k&u = 14
MeV) assuming spherical symmetry and including
all states up to 2n+l =6 (n=0, 1, 2, . . .). The fact
that the t -matrix elements are nearly linear in k~
(see Ref. 6) has been utilized by calculating the
actual value G(k~) from the corresponding matrix
elements of G(k~= 1 fm ') and G(k~ = 1.2 fm ') via
an interpolation linear in k~. In all the calculations
presented in this paper the Coulomb interaction be-
tween protons is taken into account.
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.. HM2+ 6(450)

HM2
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FERMI

FIG. 3. Binding energy in nuclear matter for different
Fermi momenta (&~). The saturation curves are dis-
played for HM2 (dashed line), for HM2+& (& =450 MeV)
(dotted line), for OBE using phenomenological cutoff
(dashed-dotted line), and for HM2+& (& =550 MeV)
(solid line).

2.0

give the results of normal BHF calculations, in the
figure denoted by a cross, but show also the result of
renormalized' BHF (RBHF, triangle) and of density-
dependent HF' calculations (DHF, dot). For the
bare QBE interaction HM2 defined in Ref. 11 using
a form factor which is derived from an eikonal ap-
proximation to multiple meson exchange, those
three results are connected by a dashed line.
These results should be compared to the points
connected by the dashed-dotted line which are ob-
tained from a: typical OBEP' using a phenomeno-
logical form factor. For all three calculations one
obtains an increase of binding energy by about 3

MeV per nucleon, replacing the force OBEP' by
HM2. " Simultaneously, however, the radii de-
crease and therefore the experimental values can-
not be reproduced in this frame. The same be-
havior can also be observed in BHF calculation of
nuclear matter. This can be seen from Fig.'3,
which shows the nuclear matter binding energy as
a function of the Fermi momentum k~ for the two

OBEP. Here the use of HM2 leads to a very large
binding energy but also to a larger saturation densi-

ty. Therefore the saturation point is still within
the Coester band. Nevertheless, the use of the
more realistic eikonal form factor and the larger p
meson tensor coupling constant for the OBEP leads
to more binding in nuclear matter as well as in
finite nuclei.

The explicit inclusion of the 4 resonance in the
way discussed in Sec. II diminishes the binding en-
ergy due to the Pauli corrections and dispersive
correction in the effective NN interaction [Eq.
(2.6)j. The exact amount of this energy shift de-
pends strongly on the strength of the transition po-
tential characterized by the value of the cutoff
mass A. Therefore, we give in Fig. 2 results for
"O using A=450 MeV (dotted line) and A=550 MeV
(solid line). There are arguments that a value of
A=550 MeV, which corresponds to a replacement
of about one-third of the whole attraction by tran-
sition potentials including the 4, might be the most
realistic one. " [According to Ref. 25 relativistic
effects reduce the strength of the transition poten-
tials compared to the usual choice (static limit),
e.g. , Ref. 23, which corresponds to a strength of
A = 650 MeV. ]

For this choice of A the total energies for "O
are reduced by about 2 MeV per particle. Even if
only 20% of the intermediate range attraction is
replaced by the transition potentials, that corre-
sponds to A =450 MeV, a reduction of about 1 MeV
per particle is obtained. These diminutions of
binding energy in light nuclei, however, are rather
small compared to the effects in nuclear matter, for
which energy shifts of about 13and 7 MeV per particle
are obtained for A = 550 and 450 MeV, respectively
(Fig. 3). This shows that the relative effect (be-
ing about l5% in '~O compared to that in nuclear
matter) is practically independent of the cutoff
mass used, i.e., does not depend on the strength
of the transition potentials. It thus will probably
not change when the N4 p vertex is included.

This behavior, that the explicit treatment of the
4, resonance yields strong repulsion for the large
densities in nuclear matter but a smaller effect in
light nuclei, is also indicated by the fact that the
corresponding curves in Fig. 3 approach each
other at the small densities, which dominate in
light nuclei. This strong density dependence of the
repulsion, however, leads to microscopic NN in-
teractions, for which "reasonable" binding ener-
gies in BHF calculations are obtained simulta-
neously for nuclear matter and finite nuclei. One
finds, for example (see Fig. 2), for HM2+ A (550
MeV) a larger binding energy than for OBEP' in
"Q, while the situation is reversed in nuclear mat-
ter. In this context "reasonable" binding energy
means that an inclusion of higher-order terms in
the many-body theory may shift the energy close
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to the experimental value.
To study the effects of the 4 resonance in the

-ground-state properties of finite nuclei more in
detail we also give in Table I single-particle en-
ergies

~,. =&i Jf [f &+ g &fj [G ff~&s,
pcs

(3.1)

of BHF and RBHF calculations. The self-consis-
tent occupation probabilities are defined to be P,.
= 1 in BHF and

FIG. 4. Contributions to the self-consistent HBHF
single-particle potential, which arise from the energy
dependence of the effective interaction when the & re-
sonance is explicitly considered. The double lines denote
a virtual excited & resonance.

(3.2)

TABLE I. BHF and RBHF calculations on '60 using
the NN potentials HM2 and HM2+ 6 (A = 550 MeV).
Single-particle energies (c) and occupation probabilities
(P) for the proton states are given. The total energy per
nucleon (E/A) and the radius of the charge distribution
(8) are corrected for c.m. motion. For the particle
states spectrum pure kinetic energy is assumed.

HM2
BHF H, BHF

HM2+4
BHF HBHF

7t's&i2 e (MeV) -53.81 -47.41 -45.51 -38.52
P 1.0 0.906 1.0 . 0.875

7tp3g2 e (MeV) —24.62 21.00 20.38 16.32
P 1.0 0.928 1.0 0.900

xP)i2 e (MeV) —20.80 —18.06 —16.92 -13.92
P 1.0 0.925 1.0 0.896

Z/~ (Mev)

Z,„(fm)

-6.68

2.356 2.417

-4.41

2.398

-5.28

2.490

in the RBHF approach. Comparing the RBHF oc-
cupation probabilities in Table I for the bare HM2

potential and for: the HM2+ 6 (A = 550 MeV) poten-
tial, it is conspicuous that these are smaller in the
latter case. This can partly be understood as a
consequence of the smaller single-particle ener-
gies: These single-particle energies define smal-
ler self-consistent starting energies 5', at which
the derivative BG/BW has to be taken, and for
these 9' the values of the derivative are more neg-
ative. Qn the other hand, these values of the de-
rivative are also more negative for HM2+~, be-
cause the effective interaction V,«[Eq. (2.6)] it-
self depends on 5". Therefore, using self-con-
sistent occupation probabilities in this case one
not only considers the third diagram in Fig. 1 but
also those displayed in Fig. 4.

Comparing the BHF single-particle energies one
can see that on average they are more bound by 5.2
MeV for the bare HM2 potential than for HM2+ 4

(550'MeV). The difference in the total binding en-
ergy per nucleon is less than half of this value.
Therefore the larger potential energy for HM2 is
accompanied by a larger kinetic energy, which
corresponds to smaller radii. So, parallel to the
binding energy the radii of "0 obtained for the dif-
ferent interactions changein such a way that the re-
sulting points in the energy versus radius diagram
of Fig. 2 are still within the band obtained for other
phenomenological interactions. The same is also
true in the case of nuclear matter, where the sat-
uration points do not move off the Coester band
(Fig. 3).

A possible way to get rid of this strong connec-
tion between binding energy and radius is indicated
in Fig. 2 by the points connected by the dash-dot-
dot line. These results are taken from the cal-
culations of Ref. 14, which try to treat the ex-
change of mesons within the many-body theory.
Since for these calculations a dipole form factor
was used for the OBEP, they should be compared
to the dash-dot line. The inclusion of those meson
exchange corrections seems to improve the de-
scription of ground-state properties of "0because
both the binding energy and the radius are in-
creased.

For all calculations reported in this paper so
far we used pure kinetic energy for the spectrum
of the unoccupied states. Since, however, an esti-
mate of three-body clusters for "0 has shown that
their contribution can be minimized by shifting this
particle spectrum down by a constant C -8 MeV, '
we also used this prescription. To summarize the-
results of such calculations, it can be said that
compared to C =0 on average about 0.7 MeV per
nucleon additional binding energy is obtained ac-
companied by a slight decrease of the radius.

In conclusion, we would like to point out that the
use of a form factor obtained from an eikonal ap-
proximation to multiple meson exchange leads to
an OBE potential, which gives too much binding
energy, —23 MeV per nucleon, in nuclear matter,
and —7 MeV per nucleon for "Q. The explicit
treatment of the 4 resonance yields a repulsion for
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both nuclear systems. Since, however, this re-
pulsive effect is strongly density dependent, it is
much larger for nuclear matter than for "P.
Therefore, with the inclusion of the 4, binding en-
ergies can be obtained which give rise to the hope

that after consideration of higher-order terms in
the many-body theory and a dynamic inclusion of
meson exchange corrections, "a realistic descrip-
tion of ground-state properties of light nuclei as
well as nuclear matter could be obtained.

*Also: Institut fur Theoretische Kernphysik der Univer-
sitat Bonn, D-5300 Bonn, West Germany.
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