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We have examined the reaction He(m, vr )4(~) in a model in which there occur two single m-N charge-

exchange scatterings with intermediate off-shell pion propagation between scatterings. Separable m-nucleon t
matrices having off-shell form factors were used with fully antisymmetrized nuclear wave functions. Spin-flip

of the struck nucleons was included. Both angular distributions and total cross sections were calculated and

compared with available data.

NUCLEAR REACTIONS 4He(x, ~'); E= 0-500 MeV calculated 0(E); E =140 MeV

calculated 0 (6=0', Ef); Ef ——176 MeV calculated o.(0=0, E); E=485 MeV calcul-
ated 0 (E&).

I. INTRODUCTION

Pion-~He experiments have been performed"
which have searched for a final four-neutron
bound state. While no evidence for the tetraneu-
tron was found, data mere obtained for the double-
charge-exchange (DCX) reaction 'He(ii, ii')4n.
These data consist of a measurement of forward
positive pions having an energy of 176 MeV while
the beam z energy is varied in 6 MeV steps, ' and
a measurement of the g' energy spectrum at 20
for an incident 140 MeV p beam. ' Also, experi-
ments have been performed'4 in which total cross
section data were obtained for the double-charge-
exchange reaction of incident p' on He at g' ener-
gies of 100 and 486 MeV.

There has been some difficulty in obtaining
agreement between theory and experimental re-
sults. Becker and Schmit' have reported a calcu-
lation in which they considered the reaction to
proceed by a two-step pion-nucleon process en-
tirely in the P»p-N channel. While their calcula-
tion reproduces the Gilly et al. data' well, the
Kaufman, Perez-Mendez, and Sperinde data' is
reproduced only in shape, the theoretical predic-
tion being too large by a factor of 2300. This lack
of agreement is presumably due to the treatment
of the antisymmetry of the nuclear wave functions,
the problems involved in a complete treatment of
the five-body phase space, and approximation of
the effective p-nucleon t matrix. A recent publi-
cation' by Qermond and Wilkin considers the con-
tribution to the double-charge-exchange process
arising from the p-p scattering amplitude in which
the incident pion scatters from a pion in the clouds
'which surround the nucleons. However, this work
does not include Pauli correlations or a complete
treatment of the five-particle final phase space.
In the present work, we report our attempt to make

a realistic estimate of the contribution to the dou-
ble-charge-exchange reaction arising from two
p-N charge-exchange scatterings, which provides
an obvious competition to the mechanism of Ref. 6.

II. FORMALISM

We have used a double-scattering amplitude ob-
tained from two single-scattering p-N charge-ex-
change amplitudes with intermediate off-shell
propagation'.

Z(k, k')
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where r, and r, denote the position vectors of the
two struck nucleons and r» = r, —r, . Separable s-
and P-wave amplitudes having off-shell form fac-
tors were used:

f;(p, q. )= k p f,'(P, q)l'*,.(P)l;.(q),

where

f,'(P, q') = ~l(~)v, (P)v, (q).

The A,'(&u) is a function of the ii Nphase shifts-
which can be written

XI((o) =(exp [2i5,((v)] —l) k/ii, (4)

where id = (ii'+ p')' ' is the pion energy in the ii N-
center of mass frame and the ratio k/ii transforms
the 7i-N amplitude to the laboratory frame. For
the pion-nucleon phase shifts, we have used the
McKinley parametrization. ' The functions v, (q)
= (q/k) '(k'+ o. ,')/(q'+ a,') describe the off-shell
extension of the t matrix and go to unity on shell
(q-k) as they should. . The parameters o.', have
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been estimated previously from fits to z-deuteron
absorption' to be approximately n, = 500 MeV/c,
&, = 300 MeV/c. Factor of 2 variations of n, pro-
duced only 30%%uo variations of the cross sections.

Using the expansions of the scattering amplitudes
given by Eqs. (2) and (3) along with the plane wave
expansion of e"'» and integrating over the magni-
tude of p by contour methods, we obtain

E(k, k') =, .—,Q X,'((u')1', (k')4wi'&), „(~„)2iv&""&',p(&&2|)G,', p ~

(2 7T) 2'k N'g
p

(5)

In this expression

2 ",
d „,, k'+ n, ' k'+ n, ,' j),(px„)
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which, when evaluated, becomes

Z'„,(kr„)=h' (kr„)—,. .., ., (in, )"""(&'+n, ,')h), '(in, r„)—(io', ,)"'"(0'+a, ')I,"(in(~„), ( )

Also, in Eq. (5), the symbol G„'„,„, is

Gi™r = dP 1"r (P)&g.(P)1'i (P)

The expectation value of the double-charge-ex-
change amplitude of Eq. (5) between the initial and
final states must be computed. For the initial 4He

wave function we have utilized the product form
consisting of a purely symmetric space wave func-
tion and an antisymmetric spin-isospin wave func-
tion. This completely antisymmetric wave function
can be thus written

y|.«=[(q..)'/~2][
I
000»

I
»»)+

I
»oo&

I
oooo)j.

(9)

The four indices in the spin and isospin functions
defined in Egs. (82) and (83) denote the spin or
isospin of the coupled pairs of particles 1 and 2,
3 and 4, and the total spin or isospin (and projec-
tion) of the four-particle system.

For the final-state wave functions, we assume
that the four nucleons can be described by a pro-
duct of plane waves along with the appropriate spin
and isospin functions

w

y/, etki ygilL2 |2gik3 r3eik4 ~

Is g siif)&f inal

22 y 22 2 22 3 22 4 ~ (10)

Here S' is the spin of particle pair 1 and 2, S" is
the spin of particle pair 3 and 4, and S and M are
the total spin and spin projection of the four-par-
ticle system. Since the double-charge-exchange
scattering operator, Eg. (5), is symmetric and
the initial-state wave function is purely antisym-
metric, the appropriate antisymmetric components
of the final-state wave' function will be projected
out. This procedure is described in detail in Ap-
pendix 8, and results in two amplitudes, one of
which corresponds to the initial

I
1100) isospin

state and the other corresponds to the
I
0000) iso-

spin state. We can represent these as

A(1100)=~ [2A(k„k„k3,k4)+ 2A(k„k„k„k4)—A(k„k, k„k,) —A( k„k„k,k )

-A(k„k4, k„k,) -A(k,„k„k~,k, ) -A (k„k„k„k,) —A(k4, k„k„k,)
—A( k„k„k„k~)—A( k», k„k„k,)+ 2A( k„k~, k„k,)+ 2A(k4, k„k„k,)],

A(0000) = —,
'

[A( k„k„k„k,) —A( k„k„k„k,) +A( k„k4, k„k,) A( k„k„k„k,)
—A(k, k, k„k )+A(k, k, k, k )+A(k, k„k, k ) —A(k, k, k, k )],
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where the momenta in the first two positions cor-
respond to those associated with the two nucleons
on which the charge exchange occurs. It is appa-
rent how this expression accounts for Pauli cor-
relations. If there is little energy loss by the
pion (or equivalently, little energy to be shared
by the four outgoing nucleons), k„k„k„and k,
will all be small and nearly equal. This implies
that there will be strong cancellation among the
individual terms of Eq. (11) and Eq. (12), and thus
a reduction in the amplitudes due to the Pauli
principle. If, on the other hand, we did not use
proper antisymmetric wave functions, the terms
in Eqs. (11) and (12) would add incoherently, giving
no Pauli suppression. In Sec. III, we shall present
results for both the Pauli and the non-Pauli cases.
Since we are interested in the differential cross
section for pion double charge exchange, it is
necessary for us to perform the integral over the
phase space of the four outgoing nucleons. The
phase space integral can be written as

J( il(gk, .+k' —k)il(g~ —~+~'+E )

I.O

IO

IO

IO

IO

(o)
b)

Ol

+ GAUSSIAN

x o'(k„k„k~, k )dk, dk, dk, dk4, (13)

where e and co are the initial and final pion ener-
gies and E~ is the binding energy which must be
supplied to break up the target nucleus. In practice
E~ was taken to be 28 MeV. The method used for
evaluating the phase space integral by Monte Carlo
techniques is discussed in detail in Appendix A.

The radial wave functions of the initial state in

Eq. (9) were at first chosen to be simply a product
of four 1S-state harmonic oscillator functions.
However, such a Qaussian density for 4He does
not reproduce the measured charge form factor"
for q'~6 fm'. This is shown in Fig. 1, where
the proton charge form factor" has been folded
in to properly convert the body density to a charge
density. We have therefore used a wave function
which includes N-N correlations and which gives
a more reasonable tail to the density than the
Qaussian. This "exponential-hole" wave function
can be written

&-pr ' 0S 8-pr
(=~2p e'"o, U2o ~2p e'"0

S

(14)

where r, r' &ra and p, v, and ro are parameters to
be determined so as to fit the charge form factor
and the rms radius. The coordinates r, r', and s
are defined as follows: r is the magnitude of the
relative coordinate between the two nucleons on
which the charge exchange occurs, r= ~r, —r,~; r'

-I
l2

g (frn )

I

l6

I

20

FIG. l. Experimentally measured 4He charge form
factor (Ref. 10) plotted with that for the correlated
density for three sets of parameters: (a) p=0.3 fm ',
0 =1.0 fm, yo ——1.35 fm; (b) p=0.4 fm, 0.=0.5 fm"

xo ——1.39 fm; (c) p=0.6 fm", 0 =0.3 fm, x()-—1.47 fm.
The charge form factor obtained for a Gaussian mass
density having + = 0.8715 fm ' is also shown.

is the magnitude of the relative coordinates be-
tween the other two nucleons; and s is defined as
—,
'

~
r, + r, —(r, + r, )~. This prescription, therefore,

introduces N-N correlations between particle
pairs (1,2) and (3, 4). We have produced reason-
able fits to the charge form factor (Fig. 1) for
three sets of parameters: r, =1.35 fm, p=0.3 fm ',
0'=1.0 fm"', ra=1'.39 fm, p=0.4 fm ~ 0=0.5 fm ~

and r, =1.4V fm, p=0.6 fm', a=0.3 fm'. We
note, however, that this wave function ansatz is
not truly symxnetric in the nucleon coordinates,
so that our calculation which takes into account
Pauli correlations is not strictly correct. None-
theless, we believe that the reduction is a reason-
able estimate for the Pauli suppression factor.

We have attempted to estimate the effect of the
final-state interaction among the nucleons by
treating the interaction between the spectator pair
within a zero-range wave function model. This
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results in a factor

eeop~rdr , sin(qx'+6) e '"'
~r0

r'

e"v 2p
2P [cos(qr, + 6)+ —sin(q~, + 6)] (15)p'+ q' '

q

multiplying the amplitudes. For 5 we have used
the effective range formula

q cot 5 = —1/a+ ~ q'r, .
It is clear that this produces too large an effect,
since the presence of the other strongly interact-
ing particles modifies greatly the two-nucleon in-
teraction. We emphasize that this is only a crude

estimate intended to indicate just the size of the
effect. There is, of course, interaction among
other pairs of nucleons and it might seem strange,
at first, to include only those interactions among
the spectator pair. This, however, should be the
largest effect, since the spectator nucleons are in
a pure relative s state where the nucleon-nucleon
interaction is strongest at low energy.

The formalism discussed so far has dealt with
non-spin-flip scattering amplitudes as defined in
Eqs. (2) and (3). However, we do include the pos-
sibility of a spin-flip occurring on one or both of
the struck nucleons by adding spin-flip amplitudes
of the form

f(p, q ) = —. X~(&u) {v2 o', [Yii( p ) Yio( q ) + Yio(P )Yi i(q)] + ij 2 o' [Yi~ (p )Y (q) + Y (p )Y ( q )]

+ og [Yii(P )Y»(q ) —Y,*,(P )Y, ,(q )])o,( p)o, (q), (17)

where A.',(~0) is analogous to Eq. (4), but refers to
the spin-flip v-N p-wave amplitude, v, (P) and v, (q)
are the off-shell form factors as previously de-
fined, and o„o, and o~ are the Pauli spin ma-
trices. This spin-flip amplitude is added to the
non-spin-Qip amplitude to give the total g-N
charge-exchange amplitude. We may then write
the v-N amplitudes which enter in Eq. (1) sym-
bolically as

gives a negligible contribution.

III. RESULTS

We have performed calculations to compare with
the single angle data at E„,,= 140 MeV and at
Eg g y

176 MeV' as well as the angle integra-
ted momentum distribution at 485 MeV. We have
also calculated a total cross section curve.

f,(p, k') =A+ Co i+Do', + Eo' (18) A. E~, = 140 MeV (8 = 20')

f,(k, p ) =A'+D'o", + E'o',
where the coefficient of o~ in f, is zero due to our
choice of k lying along the z axis.

This results in 12 terms which must be averaged
over the spin wave functions:

f,(p, k') f,(k, p) =AA'+AD'o, '+AE'o'

+ Q&'o'+ Cg)'o ~o', + CE'o'~o'

+ DA'cr'+ DD'

+ EA' o'+ ED'a' o', + EE'o' o' . (20)

We then evaluate f,(p, k') f,(k, p) between the ini-
tial- and final-spin'states of Eqs. (9) and (10).
This procedure is discussed in Appendix C. The
incoherent sum of cross sections to the allowed
final spin states give the double-charge-exchange
cross section. In our results, as shall be dis-
cussed in Sec. III, we found that single spin-flip
accounts for anywhere from 20-50% of the calcu-
lated cross sections, whereas the double spin-Qip

Figure 2 shows the result of a calculation using
a Gaussian density. In this case the Pauli correc-
tion is believable and is seen to be very large.
Since the nucleons are bound and therefore moving
(Fermi motion), the precise energy at which to
evaluate the initial phase shifts is not well deter-
mined. Several prescriptions were tried and led
to variations of the order of 20%. The agreement
between theory and experiment is very good con-
sidering the obvious defects in the calculations.
The discrepancy for large final pion ener gy could
well be ascribed to the final state interactions
among the nucleons.

Figures 3 and 4 show variations due to the three
model correlated wave functions described ear-
lier. The "Pauli" corrected curves can riow only
be regarded as estimates of this effect, since the
initial-state spatial wave function is not symmetric
in all of the nucleons. One may observe that a
very strong dependence upon the correlation struc-
ture is exhibited by the double-charge-exchange
two-body operator that is essentially unobservable
with the one-body operator for elastic electron
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FIG. 2. Results using Gaussian 4He density for both
non- Pauli-suppression (solid curve) and Pauli-sup-
pression (dashed curve) cases plotted with the data at
140 MeV of Kaufman et al. (Bef. 2).

FIG. 4. Curves for the paraxneter set (c) (Fig. 1)
for the correlated density. Data are from Ref. 2.
Solid and dashed curves as noted in Fig. 2.

scattering (Fig. 1).
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Figure 5 shows the data of Gilly et al.' com-
pared with our Gaussian calculation. In this ex-
periment the incident beam had a rather poorly
defined energy and included in this figure is a
curve resulting from folding in a Gaussian reso-
lution function with the quoted resolution (8%).
Figures 6 and 7 show the corresponding calcula-
tions with the model correlated wave functions as
before. As may be seen, the "Pauli" results are
quite low.

The effect of our estimate of the final-state in-
teraction is shown in Fig. 8 for one of the model
densities. There are two effects of the final-
state interactions. One is the actual increase of
the matrix elements at low nucleon energies,
leading to an increase of the non-Pauli cross sec-
tion in tPis region. The second effect comes from
the phase factor multiplying each of the matrix
elements in the sums in Eqs. (11) and (12). This
additional varying phase tends to reduce the Pauli
cancellation.

FIG. 3. Curves for two sets of parameters (a) and (b)
for the correlated density as defined in Fig. 1, plotted
with the 140 Me& data (Ref. 2). Solid and dashed curves
as indicated in Fig. 2.

C. E~& = 485 MeV

A comparison is made with the momentum dis-
tribution measured by Carayannopoulos et al. ' and
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FIG. 5. Results for Gaussian 4He density with the
data of Gilly et al . (Ref. 1). Solid and dashed curves
are as in Fig. 2. Curves marked "R"have the resolu-
tion function discussed in Sec. III folded in.

FIG. 7. Results using correlated density with
parameter set (c). Dashed and solid curves are as de-
fined in Fig. 2. Data are from Ref. 1.
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FIG. 8. Results using correlated density with para-
meter set (b) with and without the final-state inter-
actions (FSI) discussed in Sec. II. Dashed and solid
curves are as defined in Fig. 2. Data are from Ref. l.
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FIG. 9. Histogram of (k'/k) data of Carayannopoulos
etal. (Ref. 3) plotted with our Pauli (dashed) and non-
Pauli (solid) curves. The theoretical curves have been
renormalized.

it is very difficult to understand how any calcula-
tion can reconcile these data with the Kaufman
et al. data. ' If one makes a comparison of our
calculation with the data of Gilly et al. , it is
tempting to say that something additional is re-
quired. However, we do not believe our calcula-
tion is good enough at this energy to allow us to
make this claim.

With regard to the calculation by Becker and
Schmit, ' we believe that the main difference lies
in the off-shell t matrix. In their calculation, it
would appear that the pion-nucleon amplitude for
the second charge exchange is evaluated at an
energy only slightly less than the incident pion
energy, independent of the actual final energy,
while we evaluate the phase shifts at the on-shell

shown in Fig. 9. The shape is quite reasonable
although the magnitude has been arbitrarily re-
normalized by a factor of 10.

IO

D. Total cross section

A summary of the total cross section is given in
Fig. 10, including the recent data of Falomkin
et al.' Included also are the curves of Becker and
Schmit' and Germond and Wilkin. ' Pur total cross
section curves were calculated without any esti-
mate of the final-state interaction.

I.O

IV. CONCLUSIONS
el

10

As may be seen from Fig. 10, questions of com-
pa, risons in this reaction involve orders of magni-
tude.

We expect our calculations to be best at low en-
ergies, since we include only s- and p-waves in
the pion-nucleon interaction. The fact that we are
far below the total cross section at 485 MeV is
certainly to be expected, and this same restriction
probably accounts for a large fraction of the dis-
crepancy with the Gilly et al. data. ' (Recall that
the cross section measured at 250 MeV is strongly
affected by the actual cross section at 300 Me7
due to the resolution function. ) These cross sec-
tions can be increased by the true d- (and higher)
waves and relativistic effects which look like
higher partial waves.

Thus, we believe that the (essential) agreement
with the Kaufman et al. data, ' the evident disagree-
ment with the Gilly et al. data, ' and the somewhat
larger disagreement with the Carayannopoulos
et al. data, ' offer no surprises when account is
taken of the deficiencies in our calculations. The
disagreement with the Falomkin et al. data~ is
more serious since we expect our calculation to
give reliable answers at those energies. In fact,

b

IO

IO

(o+
IOO 400

T (MeV)

FIG. 10. Total cross section results of Becker and
Schmit (Ref. 5) (dark band), Germond and Wilkin (Ref.
6) (dashed curve), and our results for Pauli and non-
Pauli cases. Solid data points are from Ref. 4; open
circle point is from, Ref. 3. Arrow at 140 MeV indicates
position of 20' energy spectrum of Ref. 2. Wide arrow
indicates range of incident energies for energy spectrum
of Ref. 1.
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energy for each scattering. This difference alone
is enough to account for about one order of magni-
tude of the discrepancy. The remainder of the
difference is presumably due to their treatment of
the momentum dependence of the t matrix, the
final space, and 'He wave functions. At 140 MeV
they are too high by a factor of 2300 while we are
in essential agreement with this data.

The calculation of Qermond and Wilkin' did not
include the effects of Pauli suppression in the final
state, the five-body phase space, or form factors
at the vertices. In addition, the estimate of p- p
scattering is somewhat uncertain. Even with the
reductions (and possible reductions) implied,
their calculation will give a reasonably large cross
section. It would appear (assuming only that our
calculation gives a reasonable extrapolation from
single angle data to total cross section} that the
140 MeV data of Kaufman et a/. ' rule out a contri-
bution even as large as 10% of the one given by
Germond and Wilkin at this energy. Of course,
this also implies a disagreement with the data of
Falomkin et al. ,~ which would tend to confirm a
p- p coritribution of the order predicted. Clearly,
additional experimental information is needed

APPENDIX A: MONTE CARLO INTEGRATION

In order to calculate the cross section per unit
volume of phase space of the pion alone i,t was
necessary to do the 12 dimensional integral over
the coordinates of the four nucleons in the final
state. With the definitions

q=-k'-k, (A1)

the integral can be written as

around 140 MeV'. At the higher energies measured
to date, we cannot rule out contributions from
g-7r scattering of the predicted order.

We have seen that this reaction is very sensi-
tive to correlations in the nuclear wave function
but our present inability to treat the remainder
of the problem in a totally believable fashion (pre-
dominantly the five-body final state) render this
method impractical for their study. It does ap-
pear, however, that such calculations and experi-
ments might make statements about the importance
of "exchange current" contributions to the double-
charge-exchange reaction.

2
i= f I! — ' —E)l!'(Q k,.!!i)!!(k„k„k„k,)dkdkdk, dk, .

2M
(A2)

Making the transformation

k,.+ —,
'

q
gI

where E' —= [2M(E, —q'/SMj]' ', we see that

1=2ME" J( ii(Q i—1)i! (Q t,.)(k„k„!!k„k)dtdt dt dt (A4)

This can be converted to an average over the volume in t space by recognizing that

4

I = 5 tf'-1 6 t. tl+t2 "dtldt2dt3dt4= 3 5 7

is

27(4/105 for n=0.

Thus

I= 2~E'7(2m4/105}(o(k„k„k„k,))„, (A6)

where the points in the averaging procedure are

chosen uniformly dense under the condition that
they satisfy the 6 functions. This was accomplished
as follows. First a set of 12 random components,
in the range 0-1, was chosen. Next a constant
vector (equal to the average of the original vec-
tors selected) was subtracted from each t,. so that
resultant t,.'s have sum zero. Finally, the vectors
were normalized by a constant such that g t, '= 1.
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The k,.'s were then computed so that the appropriate
cross section could be calculated.

In order to check this procedure and insure that
no biases had been introduced, values of I„/I, were
calculated for n= 1 and 2. Agreement with the
analytic result to better than -I%%uo was obtained.

APPENDIX 8: PAULI PRINCIPLE EFFECTS

P,. = y( r„r„r„r,) ~2 (I 0000)
I
1100)

+
I
1100)

I
0000)), (B1)

where p is a totally symmetric space state and

IT'T"TM)=g (2m, am, IT'M')( m~, 2m IT"M")

x (T'M'T "M"
I
TM)

2m' gm2 qm3 qm (B2)

While the results of this section can be deduced
from the permutation group (in fact, the final re-
sult is nothing more than the enumeration of the
basis states of various representations), we obtain
the expressions here by using spin-space-isospin
expressions, letting the Clebsch-Gordan coefficients
provide the relative weighting.

With a symmetric operator, we need only anti-
symmetrize the initial state. The ground-state
wave function of 'He is taken as

IS'S"SM) =g (-,' 1,—,'m, IS'M')( —'m, —,
'

in IS"M")

&& (S'M'S"M"
I
SM)

X P ml gm2 2m3 Qm4

Note that I) are isospin states and I) are spin
states.

Since in the present calculation only two particles
are affected by the operator, it can be expressed
as a sum of two-body operators:

(B4)

The final state can be taken to be any product
wave function which is complete in spin indices:

I

—,—,')
I

s's"sM) e'""' .

The appropriate linear combination of matrix ele-
ments is then determined by whether one starts
from the first term in (Bl) (called I) or the second
term (called II), and by the final spin structure.
The object of the present endeavor is. to reduce
the matrix element tg a sum of matrix elements
in which charge exchange takes place on particles
1 and 2 and spin-flip may occur on neither, on 1,
or on 2. Note that the non-spin-flip can lead only
to S =0 final states and the single spin-flip only to
S= 1 states, and thus they are incoherent (although
the two spin-flips are coherent). The contributions
from the two initial pieces can be written

TABLE I. Weighting of various matrix elements in their contribution to the whole. The
numbers in parentheses to the left denote whether spin-flip takes place on the first (1) or
second (2) nucleon. All matrix elements for I are to be multiplied by 2; all elements for
II, by 1/(2~3).

~'S ~M [1,2] [2, 1] [1,3] [3,1] [1,4] [4, 1] [2,3] [3,2] [2,4] [4,2] [3,4] [4,3]
I

1100 0
(1) 111+1 0
(2) 111+1 0
(1) 011+1 0

(2) 011+1 0
(1) 1P1+ 1 0
(2) 101+1 0

0
0
0
0
0
0
0

+ 1
+ 1
-1
+1
-+1
+ 1
—1

+1
—1
+1
+1
—1
+ 1
+1

—1 -1
—1 +1
+1 —1

—1 +1
—1 +1
—. 1 —1

-1. ' -1
—1 +1
+1 ' 1
+1 -1
-1 —1
—1 —1
+1 —1

+1
+ 1

-1
+1
+1
+1

+1
—1
+1
+1
+ 1
—1
+1

0
0
0
0
0

0

0

0
0
0
0
0

0000 +2
(1) 111+1 +2
(2) 111+1 +2
(1) 011+1 +2
(2) 011+1 +2
(1) 101+1 +2
(2) 101+1 +2-

+2
-2
—2.
+2
+2
-2
—2

—1
—1
—1
+1

- —1
—1

—1
+1
+1
—1
-1
—1
+ 1

—1
—1
+ 1

—1
-1
+1
+1

-1
+1

—1
+1
-1
—1
+1
+1
—1

—1
+1

—1
+1
+1
—1
-1

. +$
—1

—1 '+2
—1 —2

+1 +2
-1 +2
—1 +2
-1 +2

+2
+2
+W

—2
-2
+2
+2
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(I)= ~ Q ~(~ ~ 7'ir~joooo)p, ;~,
f, j 0=1

(II)=~,(-,' —,'lr', 7', l. 11.00))7,.„
, j 0=1

where

TABLE II. Contribution of the various types of spin-
flip amplitudes to the different final states.

S'S"SM

0000

~

~
~ ~ ~

p,

r d r d r d r gi(Ry r&+k2 ~ r2+k3 r3+k4 r4).
1 2 3 4

~ij

x y( r„r„r„r,)(s'S"SM
l

101-1

1010

[-',AD' ,'DA=' + —,
' CD']

[——,'AE' + ,' EA' + ——,
' CE']

1 ~ 1 ~ 1+ ~~ED

llloo&
x e,~(r, , r, )

0000&
(B7) 1100

v 2 692 692

The coefficients in E(Is. (86) can be evaluated in a
straightforward manner and are tabulated in Table
(I) under I-1100 and II-0000. For non-spin-flip
the operator in (B7) is diagonal and there are no
changes in the coefficients. Since the spin opera-
tor is assuined to operate on particle 1 or particle
2 there are additional signs which come from per-
muting i -2 or j-1. These are reflected in the
remainder of the table.

The table may be generated by using the follow-
ing rules:

0111

011-1

2v 3 3/5 3v 2

1, 1 ~ 1~AE'- ~EA'+ ~CE'

1 1—AE' +—EA'
W6 &6

&s's"SMI~, I11oo&=(- 1) &s s SMl~illloo&,

(S'S"SM
l
o',

l
1100&= (- 1) ' (S'S"SM

l
c',

l
1100&,

(s's"sM$4j1100&=(-1) ' "(s's"sMjo', l11o0&,

oooo&=( 1)'&s's"sMI~ loooo&,

(S'S"SMl()' l0000&=(-1) ' &S'S"SMlc, loooo&,

(s's "sM
l

Ti'
l
0000& = (- 1) ~(s's "sM j-;

j
oooo& .

0110

1122

1120

1, 1—~CA' -~DE' + ~ED'

—~ CD'

~ fDE'+ED']

Having removed the specific spin and isospin de-
pendence, one is left with an operator which is
a function of space coordinates. Let q denote one
of these operators (i.e. , non-spin-flip, spin-flip on
first particle, or spin-flip on second particle).
Then

112-1

l 1—EE&
W6

q d r~d r~d r~d r i( yerkkr)(q r2rk3 rg+)(4 4)q( r. r )y( r, r r r ) .fj 2 3 4 i& j

Change variables: r, =r&, r, =r, , r, =r„and r4=r, where l and m are chosen from the set 1,2, 3, 4 but
not equal to i or j or each other. Then

q r—- Jdr dr dr dr r" r"' i'"'r'"' '" 'q(r, r )q(r, r, r, r )=q(k;, k)—= [i j], (B10)
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since i and j are sufficient to specify the entire
matrix element.

It is interesting to see the interplay of the avail-
able phase space (as supplied by the Monte Carlo
technique described in Appendix A) and the
strength of the Pauli effect. If there is little phase
space available then all of the nucleon momenta
are approximately equal (= 0) and the terms all
cancel. If the phase space expands so that all
momenta are (usually) very different, then only
one term in each Pauli sum will survive and all
will enter incoherently. Thus one may observe
that for large amounts of energy given to the nu-
cleon system the effect of the Pauli principle auto-
matically vanishes.

i
oooo&

~11OO&

(C 1)

Xfinat= IS S (C2)

In Eq. (Cl) the S'=S"=0 piece corresponds to the
initial (1100) isospin configuration; likewise, the
S' =S"= 1 piece goes with the (0000) isospin con-
figuration. We must evaluate Eq. (18) between
these spin functions. This procedure yields (using
the fact that S' =S"=S"):

APPENDIX C: SPIN AVERAGING OF DCX AMPLITUDE

From Eqs. (9) and (10) we can write the initial-
and final-spin functions as

&f,(p, k')f. (»p)&.„-.
=A A'5(S, 0)5(M, 0)[5(S', 1)5(S', 1)+ 5(S', 0)5(S', 0)]

+AD'5(S, 1)5(M, 1) ~ 5(S', 0)5(S', 1) — 5(S', l)5(S', 0) — 5(S', l)5(S', 1)

+A+'5(S, 1)5(M, 1)
2

5(S', 0)5(S', 1)+
~&

5(S', 1)5(S',0)+ ~3
5(S', l)5(S', 1)

+ CA'5(S, l)5(M, 0)
2

5(S', 0)5(S', 1)+
~5

5(S', 1)(S', 1) —
2~3

5(S', 1)5(S', 0)

+DA 5(S 1)5(M 1) — 5(S', 0)5(S"', 1)+~ 5(S', 1)5(S',0) —~ 5(S', 1)5(S', 1)

+ EA'5(S, 1)5(M, —1)
2

5(S', 0)5(S', 1) —
~5

5(S', l)5(S', O)+ ~3 5(S, 1)5(S', 1)
1

+CD'5(M, 1)
2

5(S', 0)5(S', 1)5(S, 1)+
5

5(S', 1)5(S',0)5(S, 1) —~3- 5(S', 1)5(S', 1)5(S,2)

+ CE'5(M, 1) 5(S', 0)5(S', 1)5(S', 1)+ 5(S', 1)5(S', 0)5(S, 1)+~ 5(S', 1)5(S', 1)5(S,2)
2

+ DE~ 5(M P) 5(S', 0)5(S', 0)5(S, Q) — 5(S', 1)5(S', 0)5(S, 1) —
2

5(S', 0)5(S', 1)5(S 1)

+ —5(S', 1)5(S', 1)5(S,0) —3~ 5(S', 1)5(S', 1)5(S,2)

+ED'5(M, O) ——5(S', 0)5(S', o)5(S, o)+ ~ 5(S', 1)5(S', o)5(S, 1)+
2

5(S' 0)5(S' »5(S»1, ], , 1
2

+
5

5(S', l)5(S', 1)5(S,0) —
3~2

5(S', 1)5(S', l)5(S, 2)
1

EE' aD'
+ — 5(S', l)5(S', 1)5(S,2)5(M, —2)+ 5(S', 1)5(S', 1)5(S,2)5(M 2)

v'3
(c3)

where the coefficients A, A', etc. , are obtained
from the expressions for the scattering amplitude,
Eqs. (2), (3), and (15). These coefficients depend
on p and must be used in Eq. (1) to obtain an ex-
pression analogous to Eq. (15) involving the Z
functions, the radial coordinates, and the pion
momenta for the full spin-dependent amplitudes.

We must calculate the cross sections to all of
the allowed final states and add them incoherently
to obtain the total result. In Table II we show the
combinations of amplitudes along with the final
states labeled by S', S", 8, and M, where we have
included the 1/v2 factor from Eq. (9).
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