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The time-dependent Hartree-Fock approximation is applied to "0+ ' 0 and ' Ca+" Ca reactions. An effective
interaction which results in a local Hartree-Fock potential is used. The full time-dependent Hartree-Fock
problem is reduced to two dimensions by treating the relative orbital motion of the ions in the rotating frame
approximation. The detailed dynamics of the nuclear density matrix during these reactions is discussed. The
deflection function, energy loss, fragment charge distribution, and ion-ion potential have been computed for
several reactions and compared with available data. The physical content and limitations of our calculations
are discussed.

NUCLEAR REACTIONS 6O( 6O, x) and Ca( Ca, x} in time-dependent Hartree-
Fock approximation. Fusion and strongly damped collisions.

I. INTRODUCTION

During recent years, there has been renewed in-
terest in the derivation and application of micro-
scopic theories of collective motion for quantal
many-body systems. This interest has been par-
ticularly strong in nuclear physics, for which
heavy-ion reactions are providing a rapidly in-
creasing body of high quality experimental data.
The ultimate goal of any microscopic theory of
nuclear motion is to provide a unified description
of the reaction dynamics over a wide range of
physical phenomena, including large amplitude
oscillations, fission, fusion, and compound nu-
cleus formation. Some of the methods used to
describe these processes include resonating
groups, ' generator coordinates, ' the random phase
approximation (RPA), ' adiabatic time-dependent
Hartree-Fock (ATDHF), ' and fluid dynamics. '
None of these, however, is without its drawbacks.
For example, computational complexities prohibit
the application of the resonating group method to
all but the lightest nuclei. With generator coordi-
nates, it has been found necessary to impose on
the system, a Prior, selected collective degrees
of freedom in order to make calculations feasible.
The RPA is a linearized approximation to time-
dependent Hartree-Fock (TDHF), and is thus ap-
plicable only to small amplitude disturbances.
The ATDHF is certainly limited to the description
of low-lying excitations in the case of large ampli-
tude motion, and there may even be further re-

strictions on the amplitude of excitations. Finally,
the application of Quid dynamics to nuclei depends
upon approximations whose validity can be tested
only by a more complete microscopic theory. '

One method for treating nuclear dynamics that
merits serious consideration is a direct solution
of the TDHF equations, which were first proposed
by Dirac nearly 50 years ago. ' This approximation
consists of assuming that the many-body wave
function can be described by a single Slater deter-
minant. There are many motivations for applying
this approximation to nuclei. " First, TDHF is a
microscopic theory, requiring as input only an
effective internucleon interaction and initial condi-
tions; it is unnecessary to make any assumptions
about the relevant collective or intrinsic coordi-
nates. Moreover, because TDHF is a quantal in-
dependent-particle approximation, it admits to a
semiclassical interpretation, thus offering insight
not obtainable in calculations using more compli-
cated wave functions. The possibility that TDHF
provides meaningful results is enhanced by the
significant successes that static Hartree-Fock
(HF) theory has enjoyed in providing descriptions
of the binding energies and charge densities of
ground states. " Furthermore, the RPA using the
same effective interactions has provided an ade-
quate description of the properties of low-lying
excited states. " Finally, we note that an investi-
gation of the TDHF approach will necessarily lead
to a better understanding of methods based upon
TDHF, such as RPA and ATDHF, and the relation
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between it and fluid dynamics.
The initial application of the TDHF approxima-

tion to reactions between semi-infinite slabs of
nuclear matter" produced a rich collision pheno-
menology which included compound "nucleus"
formation, resonances, and highly inelastic re-
actions. The dynamics were conspicuously domi-
nated by the propagation and reflection of iingle-
particle wave functions in the mean HF potential.
At low energies this single-particle behavior re-

I

suited in a delicate transition between the scission
and fusion of oscillating compound slabs. At
higher energies the single-particle orbitals were
predominantly transmitted with distortion through
the compound system, resulting in the dissipation
of roughly 90%%uo of the initial translational kinetic
energy and significant modulation of the originally
smooth density. Although it was hoped that much
of the underlying physics had emerged in the one-
dimensional geometry, the question remained as
to what extent the single-particle dynamics and
collision phenomenology would persist in a more
realistic calculation. This question, and the
ability to provide a microscopic realization of
heavy-ion reaction phenomena, has encouraged
the further application of TDHF" '~ and motivates
the present work.

This paper presents a systematic study of
"Q+"Q and "Ca+ 'Ca reactions in the TDHF ap-
proximation. " These systems are treated under
the additional approximations that the colliding
nuclei retain an axis of symmetry about the line
joining their mass centers and that the relative
orbital angular momentum is conserved. While
these approximations are rigorously true only for
zero-impact parameter collisions, they are also
sensible for grazing collisions and are related to
a more general variational theory.

The paper is organized as follows. Section II
describes the effective interaction used in the cal-
culations and the axial symmetry approximation.
Calculational details are discussed in Appendixes
A-C. Section III presents the results and makes
comparisons with available experimental data.
Finally, Sec. IV contains a brief summary and
conclus ions.

II. TDHF EQUATIONS

A. Effective interaction

P =H„+IIc, (2.1)

The effective interaction used in our calcula-
tions consists of the modified Skyrme force used
in Ref. 10, plus the Coulomb interaction. The to-
tal energy for a spin-saturated, charge-symmetric
nucleus may be written as

where II„is the nuclear energy and H~ the Coulomb
energy. The nuclear energy has the form

and the kinetic energy density
A

7(r) =g j&0;(r)I', (2.4)

where the g; (r) are the complex single-particle
wave functions of the Slater determinant. The
parameters t„t„V„anda are taken from Table
I of Ref. 10.

For the Coulomb energy, we take

H~ = — d'r d'~' p(r) — -, p( r'). (2.5)

Note that in addition to assuming equal proton and
neutron densities, we have neglected the Coulomb
exchange ener. gy.

The variation of the energy functional (2.1}with
respect to the single-particle wave functions
straightforwardly yields the TDHF equations"

ik —~- =hg;, j =1, 2, . . . ,A.
9 t/)~

(2.8)

The HF Hamiltonian h is

k2
V'+W(r),

2m (2 7)

and the HF potential 8'is
—fr-r-' f/c

op( )+ p( )+ o
i y p( )

e2

+
4

d 1'
~~ ~1~ p(r ). (2.8)

The effective interaction used, which does in-
clude exchange effects in the nuclear. force, has
been shown to provide a reasonable reproduction
of binding energies, radii, and:densities for ' 0
and Ca. ' The other Skyrme forces, which re-
sult in nonlocal HF potentials, give better fits to
the experimental charge densities. Although the
densities obtained with our local HF potential may
be somewhat improved by a suitable readjustment
of the param'eters, we believe this would be un-
warranted at present since the effect of nonlocality
on nuclear dynamics remains an open question.
We are presently investigating reactions with non-

P„= d'r r(r) +,'- t, p'(r) +~ p'(r)
2m ~

'
16

'

—)r-r 1/e
d'r' p(r}-,—p(r') (.2.2)Jr-r'(/a

The two densities appearing in this expression'are
the particle density

p(r) =Z t A(r }I', - (2 2)
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local Skyrme forces and will report the results in
a future publication.

B. Axial symmetry approximation

I [p] =m d'r p(r)(z' +r,'c os'Q)

dzridri p(r„z)(z'+2r ') (2.14)

If the TDHF equations are to be solved in full,
then it is only necessary to integrate E(ls. (2.6)
with a given set of initial conditions in order to
determine the TDHF wave function. This is not
impossible for the systems we treat here. "'"
However, because of the large amounts of com-
puter time required for even these simple three-
dimensional calculations, we have reduced the
TDHF problem to two nontrivial dimensions by
enforcing the restriction that the colliding nuclei
retain axial symmetry about the rotating line
joining their mass centers. For mass-symmetric
systems, we work in the intrinsic, body fixed
frame and add to tbe energy functional (2.1}the
classical energy of rotation:

L2
O' =z P+-

2I[p]
' (2.9)

Here, I, =(l+2)s is the conserved relative orbital
angular momentum along the rotation axis perpen-
dicular to the scattering plane and the moment of
inertia I[p] is a prescribed functional of the den.-
sity. The presence of this term in the energy
functional results in a corresponding addition to
the HF potential (2.8):

W'(r) = W(r ) ——,
' &u'—

5p r)
dg L,

dt I[p] '

(2.10}

(2.11)

where ~e have defined the rate of rotation of the
symmetry axis ~. Note that the as yet unassessed
effects of Cori'. is forces are neglected in this ap-
proximation, and only centrifugal forces are in-
cluded.

When the colliding nuclei are far apart, as de-
fined by the criterion that the density-at the center
of mass (taken to be the origin} is less than the
clutching density p„the moment of inertia is cal-
culated as that of two point masses:

I [p]= ,mAB', p& p, , —.
where the separation coordinate 8 is

(2.12)

(2.13)

and A. the total mass number of the two ions. When

the density at the origin exceeds p„the nuclei are
assumed to have clutched, and the moment of in-
ertia is taken to be. that of a rigid body:

We have taken (r„z,Q) as the cylindrical coordi-
nates. Variation of the moment of inertia with re-
spect to the density then leads to the result

Iw(r„z)-,'zztz'B(z(, —p(0,0)zp„
J.z

W(r„z)——,'muP(z'+ 2 r, '), p(0, 0) & p, .

(2.15)

Calculations have proven insensitive to the exact
value of p, . We have taken p, =O.O7 fm ', ap-
proximately one-half of the saturation density of
nuclear matter with our effective interaction. With
the replacement of Wby W', E(ls. (2.6) are solved
to determine the TDHF wave function, and Eq.
(2.11) specifying the time variation of &o simultan-
eously integrated to obtain the orientation of the
symmetry axis in space.

The axial approximation we have described above
is clearly valid for exactly head-on collisions and

for noninteracting trajectories. Qne would also
expect it to be valid for grazing trajectories, in

which large portions of the system do not suffer
interaction, and for near head-on collisions which
retain approximate axial symmetry. Qf course,
the validity of these approximations can ultimately
be tested only by comparison with fully three-di-
mens ional calculations. "

It is worthwhile to note that the axial approxima-
tion we have adopted has two distinct aspects. The
fir'st is the definition of I[p], which involves both

the assumption of rigid body rotation and a pre-
scription for clutching. As an alternative to this
treatment of the orbital motion, the problem may
be formulated in a wider variational sense, allow-

ing for the most general determinant with an
axially symmetric density and a common, non-

axial, velocity potential for all of the single-
particle wave functions. " Thus, the approximation
for the moment of inertia we have used is not es-
sential, and the more general variational calcula-
tions are presently being carried out.

The second aspect of our approximation is the
constraint to an axially symmetric density. This
is crucial to the reduction of the problem to two
nontrivial dimensions, and has both macroscopic
and microscopic implications. Macroscopically,
the collision of two liquid drops may lead to a
nonaxial compound system. Here, the restric-
tion to axial symmetry is probably not too serious,
since the energy difference between the true shape
and the nearest axial shape should not be too
large. However, the liquid drop may scission in
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a nonaxial manner, rather than as toroidal frag-
ments which are rotationally invariant about a
specified axis. The fragments in the final state
may then tumble with different amounts of intrin-
sic angular momentum in each. Thus axial sym-
metry limits the range of accessible final states
and loses any information concerning the distri-
bution of final angular momenta.

Microscopically, additional reservations con-
cerning our axially symmetric calculations may
arise in connection with fusion. In TDHF, fusion
occurs if collisions of the single-particle wave
functions with the walls of the HF potential can
randomize and equilibrate the initially coherent
orbitals sufficiently to prevent fragment escape.
This equilibration would be expected to occur
more rapidly in a potential well possessing no
special symmetries than in our axially symmetric
HF potentials. Thus, one may expect that the
freezing of transverse degrees of freedom would
result in an underestimation of dissipation and
equilibration in those collisions for which non-
axial degrees of freedom are important. "

Since we treat mass-symmetric systems, the
initial TDHF wave function is reflection symmetric
through the plane z =0 containing the center of
mass. Because this symmetry and the axial sym-
metry we impose are also symmetries of the ener-
gy functional (2.1), they are conserved by the
TDHF solution. Thus, z parity and m, the angular
momentum projection on the z axis, are good
quantum numbers for the spatial single-particle
wave functions. In addition, the (r„z)dependence
of wave functions having am in the same orbital is
identical. %hen the additional spin and isospin
symmetries are included, only six spatial wave
functions must be evolved for "0+"0: the posi-
tive and negative z-parity combinations of the
1s, 1P „and1P» orbitals for a single "0
nucleus. For "Ca reactions, one additionally
needs the positive and negative z-parity combina-
tions of the 2s, 1d „1d»,and 1d» orbitals.
The definite z parity of all orbitals limits numeri-
cal work to the half-space z~0.

Initial conditions for the TDHF wave functions
were taken to be the HF ground states of the re-
acting ions, "separated by a distance far greater
than the sum of the nuclear radii and boosted by a
uniform velocity field corresponding to the initial
relative velocity. Initial values for 0 (the frame
orientation), the initial relative velocity, and the
final values of the scattering angle and fragment
kinetic energies were obtained by matching to
point Coulomb trajectories before and after the
calculated collision. The numerical methods used
to integrate the TDHF equations are discussed in
detail in Appendixes A and B.
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III. RESULTS

A. Time-dependent densities

Figure 1 presents contour plots of the time-deNR

pendent nucleon density p(r, f), for a head-on
"0+"0 reaction at a center-of-mass bombarding
energy per nucleon E/A =2 MeV. " Here E refers
to the total translational energy in the center-of-
mass frame. The bombarding energy in the lab-

FIG. 1. Density contour maps for a head-on Q+ 60
collision at a center-of-mass bombarding energy of
F/@=2 MeV (lab energy=8 MeV/projectile nucleon).
The collision is shown in the center-of-mass frame.
Because of the rotational symmetry about the horizontal
(s) axis and reflection symmetry through the vertical
plane (&=0 plane), onlythe density for &~ 0 is shown.
The contour stripes mark density intervals of 0.04 nu-
cl.cons per fm3. For times later than t=0.65X10" s,
the fragments separate while oscillating in a predomi-
nantly octupole mode. This figure was actually calcu-
lated with no Coulomb or Yukawa forces and harmonic
oscillator initial conditions, using the modified two-
and three-body strengths t 0

=- 1090.0 MeV fma and t 3
=17288.0 MeV fm, respectively. A collision calculated
with Hartree-Fock initial conditions and the full force
of (2.8) yields results qualitatively indistinguishable
from these, except for the slight monopole oscillations
prior to collision.
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oratory frame is twice as great: In this case
E~„=2x32x2MeV=128 MeV. The ions inter-
penetrate at t-0.2X10 "s. Separation then be-
gins, apparently initiated by a surface bulge which
travels outward from the z = 0 plane (t -0.3 —0.5
x10 "s). Finally, a neck forms, and scission
occurs (t-0.6 —0.7x10 " s), with the fragments
moving apart with greatly reduced translational
kinetic energy. Qf particular note are the toroidal
configurations of the nascent fragments
(f-0.5x10 " s), the large octupole amplitude in
the post scission vibrations, and the constancy of
the surface diffuseness throughout the reaction.
It should also be remarked that several features
of the dynamics indicate deviations from the com-
monly assumed irrotational velocity pattern, ' as
discuss ed subsequently.

Because of the importance of single-particle
dynamics in the slab collisions of Ref. 10, it is
important to investigate single-particle effects
in the present, more realistic geometry. Before
proceeding, however, it must be emphasized that
any discussion of single-particle orbitals is high-
ly representation dependent, since the TDHF equa-
tions (and all observables) may be expressed in
terms of the representation-independent, one-body
density matrix. In the present geometry, the
wave functions may be arbitrarily scrambled by
any unitary transformation. For example, since"0and "Ca are spherically symmetric before the
collisions, the angular dependence of the single-
particle wave functions may be referred to an ar-
bitrarily oriented axis, so that phenomena pre-
viously associated with the 1p —p orbital would be-
come a complicated superposition of effects due to the
1P, and 1P „orbitals. Other transformations
would, of course, obscure the physics even more.
Faced with the nonuniqueness of the single-par-
ticle wave functions, our rationale has been to
pick a representation in which the dynamics are
as simple and obvious as possible. The optimal
basis is one which exploits the axial and reflection
symmetries of the system and naturally empha-
sizes the coherencies of the initial determinant.
In fact, this basis is the one in which the calcula-
tion is actually performed. In contrast to the case
of slab geometry, "itisnot practical to graph each
of the single-particle wave functions involved,
and so the following discussion is qualitative in
nature.

In the basis chosen, the initial HF description of
a single "0nucleus requires four orbitals: a 1s
orbital, whose density is approximately Gaussian
about the center of the nucleus; a 1p, orbital,
whose density appears as two lobes on the z axis
on either side of the 1s orbital; and the 1P»
orbitals, each of which has a density which is a

torus'about the z axis encircling the 1s Gaussian.
Before contact, the orbitals for each nucleus are
confined by their respective self-consistent po-
tentials. However, upon contact, the barrier be-
tween the nuclei in the full HF potential disappears.
The wave functions from each nucleus then move
across the z = 0 plane toward the other side. As
the 1p, orbital has the highest momentum com-
ponents in the z direction, it is expected to lead
the other orbitals across the compound system.
This is indeed the case, as may be seen at time
t = 0.35 x10 " s, where the 1p, orbital from the
left hand nucleus is hitting the right wall of the
system, while the 1p» torus from the left side
traQs behind. At t=0.45x10 " s, the m=0 orbital
has bounced and moves leftward through the torus,
which continues moving toward the right wall. The
motion of the 1p 0 orbital causes a reflooding of
the neck at t=0.55x10 " s. Finally, at scission
the 1p» orbitals are on the opposite sides from
which they originated, while the 1p, orbitals
have returned to their original sides. Although the
1s orbitals are not apparent in the plot, they are
expected to move with the 1p» torus. Even
though the single-particle wave functions them-
selves have no physical meaning, owing to the
antisymmetry of the nucle~ wave function, their
dynamics strongly governs the density observed
in the collision process.

From the above discussion, it is evident that
there are deviations from irrotational flow. At
t=0.45 the upper 1P, , torus is moving to the
right while the lower 1P, orbital is moving to the
left. In the region between the torus and the
1p, orbital, s v, /8 r w 0 and since 8 v„/8,= 0, it is
clear that Vxvw0.

Figure 2 displays contour plots of the density
for a head-on "Ca+ "Ca reaction at a center-of-
mass bombarding energy of 2 MeV per nucleon
(E„b=320MeV). At t=0, the nuclei are well
separated and interact only through the Coulomb
potential. At t=0.16x10 "s, the densities of the
two nuclei have just begun to overlap strongly.
Their speeds at this point have not been greatly
diminished. By t =0.32 x10 ' s, the nuclei have
completely coalesced. The centers of the two
mass distributions are now moving apart with a
speed approximately equal to & the initial speed of
approach. In the time interval from t =0.48 x10 "s
to t=0.80x10 " s, the nuclear mass is greatly
elongated, a neck has formed, and shape oscil-
lations are apparent. At t =0.96 x10 "s, the
necking has become quite pronounced, and by
t=1.12x10 " s, the nuclei have separated, and
move apart with a relative speed equal to approx-
imately —,

' of the initial speed of approach.
As can be seen, single-particle effects are not
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collision at a laboratory bombarding energy of 8 MeV/
nucleon. This figure and all those subsequent have been
calculated using (2.8).

as strong in "Ca+"Ca as they are in "0+"0.
This is so because the greater number of occupied
orbitals in the "Ca reactions clearly minimize the
importance of any single orbital. This result lends
credence to the idea that for very large systems,
the dramatic clustering effects and density-r ipples
seen in these and three-dimensional calculations'
will be minimized.

In Fig. 3, we plot density profiles for the head-
on "Ca+"Ca reaction at a center. of mass bom-
barding energy E/A=1 MeV (E„,=160 MeV). In
this case, the nuclei fuse, with the separation co-
ordinates 8 [defined by (2.13)] undergoing four
damped oscillations in the 4x10 " s portrayed.
The oscillations are approximately harmonic with
a period of 0.8x10 "s. Similar results are ob-
tained for "0+"O at E/4= 0.5 MeV (E!,b =32 MeV).
In this case, R undergoes six damped oscillations
in 4x10 " s, with the period decreasing from
Oe6x10 "to 0.4x10 "s. In both cases, we feel
we have observed what operationally may be de-
fined as fusion in a TDHF calculation.

Some additional features of the density distri-
bution at finite angular momentum are displayed

in Fig. 4, where we have plotted the density in the
region z ~ 0 for the reaction "0+"0 at a center-
of-mass bombarding energy of 3 MeV per particle
(12 MeV/nucleon lab) for several values of the
relative angular momentum. In each case the
solid line denotes the density at the time of closest
approach as a function of z for fixed r = 0, while
the dashed line represents the uniformly displaced
initial density of one of the "0nuclei. The dashed
line has been reflected through z =0, to assist the
eye in distinguishing the difference between the
calculated density and the sum of the densities of
the two noninteracting "0nuclei.

In the TDHF approximation, the Pauli principle
is mediated by the HF potential, in the sense that
the reason the originally orthogonal wave functions
remain orthogonal is the fact that they are all
propagating in the same mean field. %hereas in
a semiclassical description, the Pauli principle
and potential interactions appear to produce dis-
tinct physical effects which can be considered.
separately, they are necessarily unified in the
present theory. As is clear from Figs. 7, 9, and
17 in Ref. 10, simultaneous evolution of ortho-
gonal single-particle wave functions in a common
mean field in low energy collisions yields negli-
gible increase in central density consistent with
the semiclassical Pauli principle description.
This same phenomenon dominates the small im-
pact parameter collisions (!=0to l =25). At
larger impact parameters, i =42, /=45, the cen-
tral density plays a secondary role and the sur-
face density is significantly increased relative
to the noninteracting density by the attractive
nuclear potential in the overlap region. The dra-
matic effects of the mean field that we have ob-
served here will disappear as the ratio of the ion
bombarding energy to the depth of the mean field
is increased. "

In order to make contact with the results of
macroscopic calculations, "Fig. 5 shows several
reaction trajectories in the R-o plane. The frag-
ment elongation coordinate a, is defined as"

(I —((Z2) &~2)1/2

where (z') is taken over the whole system. Note
that this differs from the definition of Ref. 20 by
a factor of 2. In no case does the system ever
reach the liquid drop model single sphere con-
figuration, although at the higher energies and
lower angular momenta, there is greater pene-
tration through the single spheroid line and toward
the single sphere configuration. After penetra-
tion, there is a greater tendency toward prolate
shapes for the higher energies at the lower angular
momenta, so that scission occurs with more
elongated fragments. In macroscopic terms, the



15 gK gAL&U ~ NS FORHAR TREE -F oDEPENDENT

' co+ co
L=o
E/4=1 P I

p.25 r

(365

p, 25—
lO

E 0.20

&. 0.15—I-
p.lo—Z~ o5-

p.25—
P.2P

E~ p.l5—
+ P.lp
lAx p.5—

rIME ~ P.665

I I

15 -IO -5
z(fm)

rlME ~1.155

I

lp 15

p.20
E~ 0.15—
+ p.lo—
Z 05
O

0

p.25—
0.20

—0.15—

~ p. lp
Z 0.5O

0—

IME ~ 2.5

I I I

15 -10
z(fm)

rIME 2.

I

15

I

1O
I0 5 0

z(fm)

I I

lp 155 -lO -5
z(fm)

p.25—
A 020

E
0.15—
p. 10—

Ol

o5—
O

rlME m 3.185

p.25—
020

E~ p. l5—
+ O.lo-
th
Z p5
O

0

rlME ~ 1 64

0

I

&0
I

p 5
z (fm)

I

15 -10

r
ip 1515 -10

z(fm)
p.25—

p. 15

Z
0.5O

rIME 5 640

p.25—
p.20

p. l 5

~) p.10
Z

Q, 5O

rlME

0

I

lp

0

I

(}15 -10 -5
z (fm)

I

lO
I

,5 -1O -5
z(fm)

HF pptentlis«pns «

t«on thro gh tth t longjtud«nal
trsverse dirl.y eguilibrate

ure tp deform
ed into the

the
s ow

no pr ssu
F sys-

result there
.

mppund TDH sell transverse y~ . Figs. 3 ~d ~.
d the co

T»srolate, as in
et, since

tems rema«n p .' t f axial sym
' ac o

~ ree di-'of te impact par .
dency toward P

ameter c cu
ro],ate

«ni
imilar ten'pns shpw a s . represents a

drop apprpache
tal pbservablestermine expeto

'
d jfference.d' ting ish this

po

th fus «on valley, ando "Ca nucle«ent
ion the f«ssioemerge

and h«gher ~P'
a more

Th lpwer ene gy
tructur

e
a richer s

rma-
trajec tories show a

at«pn and de«between sepint erplay
tipn modes . .

5 su, cinctly lasaThe g-o plot of g
' ctipn between t

drpp and TDH .
mp]icjtlyThe «9u

o ic ].Peal equ»
id drpp theory

'l bration of thet taneous isot ~p
h density tendll ding nuclepns,

ter fusion.ward a sphe . takes place on y

rical shape @
l via col-'l ibrationhowever

Thebpmbarding ene gy
chpsen to cprres-

at a labpratory
2 s, have been

40 40ga reaction
~ unjts of

a head-pn Ca+
imes, labele

rpfiles «r a
lane The tim

he fused system.

G 3 Dens&ty p
abppe th ~~i' p

psci&].ations o
l tted ~crt'c y

nd mi»ma P
density j.s p o

'

o the maxj. ma aprp„imately "



i366 S. E. KOONIN et ul.

0.2

/o. i

/

)6O &6

L=O 8
r =5.9-fm

0—
0.2

O. f
/

I

0
0.2

L=25 8
r =4.5 fm

E 0.1

/
/

/'~

58
,6 fm

0
0.2

0.1 2.5 8—
6 fm

0
0.2

0.)

0

z (fmI

)0

FIG. 4. Density profiles at the time of closest approach
for 60+ ~60 at a laboratory bombarding energy of 12
Me V/nucleon.

B. Experimentsl observables

%bile the mean field approximation serves as an
adequate starting point for the systematic evalua-
tion of the expectation values of few-body opera-
tors, it need not provide sensible information
about the full many-body wave function or expecta-
tion values of many-body operators. Indeed, it
would be absurd to expect information concerning
multinucleon correlations from a theory that is
fundamentally one body in nature. Fortunately,
the few-body properties of isolated nuclei such as
the density, binding energy, or spectroscopic
factors are well reproduced by the mean-field
wave function. However, the computation of re-

action cross sections requires S matrix elements,
which are the overlap of the full many-body wave
function with the relevant channel states. Conse-
quently, one should not expect TDHF to provide
cross sections to specific final channels, but
rather to yield information concerning the average
or most probable properties of reaction processes.
It is therefore important to formulate the compari-
son between TDHF and experiment in terms of
expectation values of few-body operators in the
TDHF wave function, such as the moments R and

cr, the mean fragment translational kinetic energy
or angular momentum, or the nucleon number and

charge operators. Vhth this caveat, we proceed
to compare our calculations with experiment.

In Fig. 6 the 8-6 trajectories for "0+"0 col-
lisions at a center of mass bombarding energy of
3 MeV per nucleon (Ehb = 192 MeV) and the tra]ec-
tories for 'Ca+ 'Ca collisions at a center-of-
mass bombarding energy of 1.738 MeV per nucleon
(F.„b=27S MeV) are displayed. Each of the trajec-
tories is labeled by l, the relative orbital angular
momentum of the trajectory 8~, the final center-
of-mass scattering angle, and E~, the asymptotic
value of the total translational kinetic energy in
the center-of-mass system. Qualitatively, the
"0+"0and ' Ca+ Ca trajectories are quite similar.
Both systems exhibit what appears to be backs catter-
ing for low angular momenta. This is an artifact of the
definitionof the coordinately, which cannever go
through zero. Indeed, it is not unreasonable to
expect that the majority of the single-particle
wave functions are transmitted through the com-
pound system in these head-on collisions. For
larger values of the angular momentum, the tra-
jectories take on a skimming characteristic and
then begin to orbit. As the angular mon entum is
further increased beyond the orbiting value, the
attraction of the nuclear potential is almost coun-
terbalanced by the centrifugal and Coulomb re-
pulsion. For / above grazing (-45 for "0,
-100 for "Ca), the trajectories are nearly pure
Coulomb.

In Fig. 7, the energy loss and scattering angle
are plotted as a function of the angular momentum.
Note that the plateau of severe energy loss cannot
easily be associated with a characteristic type of
trajectory. The angular momentum at which or-
biting occurs stands out quite dramatically in the
deflection function.

In the event that TDHF were to account for the
full dissipation observed experimentally, it should
be possible to directly compute the fusion cross
section from the energy-L plot of Fig. 7. For low
l up to the maximum fusion angular momentum
l g„„the energy loss should be either undefined
(the system sticks together) or equal to the differ-
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ence between the initial energy and the Coulomb
repulsion energy of the stretched scission con-
figuration in the event that the fragments scission
with no relative velocity. Above lf„„butbelow
the very peripheral L for which the energy loss is
zero, a direct comparison of the TDHF results
with the experimental deep-inelastic events should
be possible. Unfortunately, the present calcula-
tions show too little dissipation in the region
i=30 to i=90 of the "Ca+ Ca system. For ex-
ample, no fusion is ob'served in-this region. In
addition, with the assumption of two-body kine-
matics, the total fragment center-of-mass kinetic
energy extracted by Colombani et al."is ap-
proximately 60 MeV at l in the range 70-90, show-
ing roughly twice the energy loss we calculate
with TDHF.

C. Charge distributions

As we have discussed, the TDHF wave function
is a Slater determinant at all times. Initially, the
determinant may be written as the antisymmetri-
zed product of two nonoverlapping determinants
describing the separated ions. Thus, at t =0 the
wave function is an eigenfunction of the operators
N~ and X~ which count the number of nucleons in
the region z ~ 0 and z& 0, respectively. Of course,
N„+5i~=N, the total number operator. After the
reaction, the wave function is no longer an eigen-
function of the separate operators N~ and N~, , but
rather only of their sum N. That is, at any later
time t, the wave function will in general be a wave
packet containing states with a diverse number of
particles in the half space z & 0 (z &0). Asymp-
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totically, the distribution in particle number llel wi
e time independent, and we may therefore cal-

culate the probability [P(A„)]that the final state
contains A ~ particles in the right half space, and
A. l. =A-A ~ particles in the left hand space. For-
mally, we may write

0
AZl '

GAZA
OQ

dz„ ~ ~ dzI.+ j. A (3.1)

where coordinates other than z:"re assumed to be

integrated out.
As described in Appendix C, we have analyzed

the final TDHF wave functions using (3.1) for
40 C +40'Ca+' Ca at a bombarding energy of 278 MeV in
the laboratory for several values of the angular
momentum. The results of the calculation are
presented in Table I, which gives the standard
deviation I of the charge distribution following the
collision. The width is a maximum for head-on

~ ~collisions, decreases to a minimum thas e impact
parameter is increased, and then undergoes a
slight increase as the impact parameter is fur-
her increased to a value corresponding to the
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The deflection and energy-loss functions for th
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unc ions or the reactions of Fig. 6. The d tt d lo e ine represents elastic
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TABLE I. Standard deviation of the charge distribu-
tion, I', for reaction products of Ca+ Ca at E&

, =278 MeV in various partial waves.

I' (charge units) I' (charge units)

0
20
25
30
40
50 .

60
70

2.02
1.92
1.878
1.81
1.655
1.41
1.43
1.48

72
73
74
77
78
95

100
120

1.616
1.180
1.127
0.602
0.55
0.243
0.117
0.111

orbiting value of the angular momentum. Further
increase in the impact parameter results in an
abrupt drop in the width, which goes to zero for
the noninteracting traj ectories.

To compare these results with the charge dis-
tributions measured in Ref. 21, it is necessary to
account for the effects of evaporation in the frag-
ments. In Fig. 8 we have reproduced the charge
distribution of Ref. 21 measured at 6I, =30, for
which the assumption of two-body kinematics ap-
pears justified. Evaporation calculations" for
excitation energies of the "Ca nucleus of 31
and 42 MeV, which should bracket the excitation
energies in strongly damped events, evidently ac-
count for only a small fraction of the observed
charge dispersion. Thus, combining the TDHF
charge distribution calculated above with subse-
quent fragment evaporation would yield a total
dispersion signif icantly smaller than that observed
experimentally. It is possible that th|: TDHF width
will be increased in calculations which treat neu-
trons and protons separately.

Since (3.1) represents detailed multibodied pro-
perties, it might be suspected that it is demanding
too much many-body information from the TDHF

wave function. Roughly the same information,
however, may be obtained by evaluating the num-
ber (or charge) dispersion, (N~') —(N„)'as des-
cribed in Ref. 10. Thus, Table I really deals with
the. expectation value of only a two-body operator.
It remains an open question as to how meaningful
expectation values of many-body operators are in
ihe TDHF theory.

d'R d V(R) (3.2)

where p. is the reduced mass. Equation (3.2) may
be integrated to give

(3.3)

with the integration constant, E, the center-of-
mass bombarding energy. By taking dR/dt from
our calculations, V(R) may be computed. Note that

)60

(40

I I I I I
I ) I

C

EIab
= 278 Mev

)20

)00

D. Ion-ion potential

Using the results of our calculations, it is pos-
sible to define an interaction potential between col-
liding ions to facilitate comparisons with other
theories. In order to do this, we define the ion-
ion potential V(R) by the requirement that the mo-
tion of the relative separation coordinate R [cf.
Eq. (2.13)] as the ions approach one another be
given by

1.0— 80

(X)

0.3—

M

CL EXPT (30'c,m, )——EVAP. (42 MeV)--- EVAP. (31 MeV)0.1—

I I I I I I I I

14 18 22
Z

FIG. 8. Fragment charge distribution relative to
& = 18 for final states measured in Ref. 21 and calculated
due to evaporation.

60

40

'IO

6
4 10

r (fm)

FIG. 9. The TDHF ion-ion potential V(&) for various
4 Ca+ Ca and 60+ 0 systems.
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although (3.2) does not allow for dissipation or a
coordinate-dependent mass, it may easily be gen-
eralized to allow the determination of these quan-
tities from TDHF calculations. '

In Fig. 9, we plot V(R) for several "Ca+ "Ca,
systems at a laboratory bombarding energy of
278 MeV and for a head-on "0+"0 collision at a
laboratory energy of 32 MeV. Of course, these
potentials include Coulomb and centrifugal forces.
We note that the 60+ 0 barrier height of 11 MeV
is in excellent agreement with the experimentally
determined barrier.

The elastic scattering of heavy ions empirically
determines the real part of the nuclear potential
at the strong absorption radius R = 1.5 fm (A, ' '
+A, ' ') to be approximately —1 MeV for all sys-
tems. " Subtracting the point Coulomb energy
from the "0potential in Fig. 9, the nuclear po-
tential at R =7.6 fm is found to be -1.1 MeV. A
similar calculation for the 1=0 curve of "Ca + "Ca
gives -1.0 MeV at R =10.3 fm, in good agreement
with the empirical result.

The curves in Fig. 9 and their interpretation de-
serve some comment. Recall that the crucial as-
sumption is that Eq. (3.2) provides an adequate
description of the dynamics. This may not be true
for several reasons. First, as has already been
mentioned, we have omitted dissipation and a
variable mass, features which will undoubtedly
modify V(R), especially for small R. Second,
since heavy-ion reaction dynamics may require
the explicit dynamical treatment of several macro-
scopic variables, the dynamical form of (3.2) may
be inadequate. Indeed, while Fig. 7 has been cal-
culated using the approaching portion of the re-
action, the use of the receding portion would yield
a different V(R). Third, all of the collective kine-
tic energy may not be accounted for in (3.3). Fin-
ally, the definition of R itself is not unique, and
would be expected to be most deficient for fused
shapes. Since the above considerations apply most
strongly to deeply penetrating trajectories, we be-
lieve V(R) most accurate for R greater than or
equal to the barrier radius. In future studies, in-
vestigation of the energy and angular momentum
dependence of V, which automatically includes ion
polarization and nonadiabatic effects, will be of
great interest.

1V. SUMMARY

We have presented TDHF calculations which use
an effective interaction resulting in a local HF
potential. Our calculations were constrained to
axial symmetry, and relative orbital motion trea-
ted in a rotating-frame approximation.

We discussed the details of the time-dependent

densities and showed how they were related to the
dynamics of the single-particle wave functions and
the effects of the Pauli principle. We computed
finite impact parameter collisions for "0+"0 and
"Ca+"Ca and obtained deflection functions and

energy loss as a function of impact parameter.
While the deflection functions appear consistent
with experiment, we obtain too little dissipation.
It is an open and essential question as to whether
this lack of dissipation arises from the rotating
frame approximation, axial symmetry, the freez-
ing of spin-isospin degrees of freedom, the form
of the effective interaction used, or is, in fact, in-
trinsic to the TDHF approximation itself. In this
connection, it should be noted that three-dimen-
sional calculations for "0+"0result in fusion
for angular momenta for which no fusion occurred
in the axially symmetric calculations, " although
the near head-on collisions and orbiting behavior
appear to be at least qualitatively described by the
latter calculations. Further calculations are in
progress to determine the role of axial symmetry,
spin-isospin modes, and the effective interaction.

We presented a brief discussion as to how frag-
ment charge and mass distributions may be ex-
tracted from the TDHF wave function. The cal-
culated charge distribution for "Ca+ "Ca at E
=278 MeV appears to be narrower than experi-
mental results. We also discussed the determina-
tion of an ion-ion potential from TDHF calcula-
tions and found the potentials for "0+"0 and
'Ca+"Ca to be in agreement with phenomeno-

logical results. In addition, the calculated "0
+ "0 interaction barrier was found to be in agree-
ment with experiment.

Besides demonstrating that large-scale TDHF
calculations are feasible, we have shown how the
TDHF dynamics originally investigated for col-
liding slabs generalize in a more realistic geo-
metry and. reproduce many of the essential fea-
tures of heavy-ion reactions. With our present
technology, it is possible to perform realistic
axially symmetric calculations for such systems
as "Kr+"'Bi using a nonlocal Skyrme interaction
and allowing for isospin degrees of freedom.
Since systems larger than "Ca+ "Ca do not pre-
sently appear to be tractable in a fully three-di-
mensional calculation, continued exploration of
axially symmetric calculations seems vital.
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APPENDIX A: NUMERICAL METHODS FOR THE TDHF

EQUATIONS

and preserve the stationary nature of the TDHF
action, we derive the finite difference equations by
the discrete analog of the variational form of the
Schrodinger equation:

[(e*(ie(s/af))e) —&e*)H(e)] =0,

In this appendix, we outline the numerical pro-
cedures employed for solving the TDHF equations.
For simplicity, we treat the motion of a single-
particle in a time-dependent potential 8'. We take
%to be axially symmetric and work in cylindrical
coordinates (2, z, (t)). The expressions we derive
are directly applicable to the TDHF equations, pro-
vided W is taken to be the self-consistent HF po-
tential.

In order to derive unitary evolution expressions

where the Hamiltonian functional is

(A1)

52
(v )2)v) f d rv"(r) — v'rrr(r, r) v(r).

2ttE

Letting 0 (r, t) = (e'"~//21()g(r, z, t), where jj, is the
conserved azimuthal quantum number, (A1) be-
comes

6

5q+(r, z)
Bg 12 Bg ' 8' Bg

' h j2. j2
rd~dz (i)*ih —— — — — —f* W +

Bt 2m br 2m Bz 2mr2 (A3 )

Of the various possible discretizations of (A3), which differ with respect to mesh choices and integrations
by parts, it is particularly convenient to use the mesh

r, =(j ——,')ar, j=l, 2, . . . , N„„z=(t'—2 1)j(z, I2= —N , —I(i +1., . . . , 1V,

and to discretize (AS) as"

2
p

2
—Pk (%.+

2mr-

where (C)jk
= p(2 j,z, ), Wjk =W(r, , z„).In writing this

expression, we have assumed the boundary condi-
tions (t)„j=0, P,„=P;„=0,and have included'- 2
the factor rj„~,/rj in the radial derivative term to
account for the fact that ( B(I)/Or ~' is approximated
midway between the radial mesh points. Perform-
ing the variation in (A5) and introducing g»
=v'r, P;„22we obtain

8
i. gjk-(Hj(f)1k+(Ve)jk)

where the Hermitian horizontal and vertical Hamil-
tonian operators H and t/' are defined by

(Hjv)jk 2
r r2 (jjk+) + jjvk-) 2gvjk) + 2Wjkgjk )2m(Az j

(A7a)

(Vg)jk 2 r+ r2 (~j jj+(k+r~j-lgj-(k gjk )

+ 2~ja+ ~
2- gpss ~

2&Erj
The coefficients Cz are

C)=
(j —.-) (AB)

Equations (A6) and (A7) represent a spatial dis-
cretization of the single-particle Schrddinger
equation. To perform the time discretization, we
temporarily suppose %' time-independent, and de-
fine a time mesh

x 1- —y g[&, (A9)

where 1 is the unit operator. As can readily be
seen by expansion, this expression approximates
the exact time evolution operator exp[-i (H+ V)b f/ff]
through terms in (ht)', even if H and V do
not commute. F, Chermore, as can be seen by

t„=nAt, n= 0, 1, 2, . . . .

Given the wave function at time t„,g;"~, we evolve
to t„„bythe Peaceman-Rachford method":

(k+ () 1 ~ 1 i(kf/25 )H'
1 +(id, f/2')V . 1+i (bi/2' )H—
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applying (A9) for several time steps, it results
in almost unitary evolution. The advantage of (A9)
is that it involves only operations with sparse
matrices. The exact evolution operator is a dense
matrix containing some 10' nontrivial complex
elements for typical mesh sizes, and is so far
too large to handle simply. However, the ma-
trices representing H and V are tridiagonal, so
that the inversions requires by (A9) may be per-
formed very rapidly by Gaussian elimination. "
It should be added that since we need only con-
sider the z )0 half of the system for symmetric
collisions, the operations in (A9} are truncated
at z = 0 utilizing the (conserved} z parity of the
wave function.

An alternative to the Peaceman-Rachford method
would be evolution by the operator

i&t1-= (H + V)—
2ri

1+ (H+ V)
i4t

APPENDIX B: EVALUATION OF THE YUKAVfA AND

COULOMB POTENTIALS

In order to determine the Yukawa potential [cf.
Eq. (2.8)]

which requires inversion of a symmetric band
matrix of half band width N~+1 instead ot' width 2

in the Peaceman-Rachford method. Although this
alternative would be exactly unitary, it is only
accurate to order (b, t)' and the additional band
width does not appear warranted.

In the TDHF problem„ the operators H and V are
time dependent due to W. In that case, they should
be evaluated at t„„j2in Eq. (A9). To accomplish
this, we have used the double stepping method des-
cribed in the Appendix 8 of Ref. 10. However, in-
stead of averaging h to get &"" ', we have aver-
aged p to get p""'~' and then constructed h"" ' from
this. This distinction is impor tant only for the three-
body term. Other methods of extrapolating the den-
sity to p""' were investigated, such as utilizing the
equation of continuity or polynomial extrapolation
from previous time steps, but these were not as
stable as the double stepping.

Typical mesh spacings were 4x=hz =0.4 fm,
with N~ =20 and N~ = 60 or 80 for "0 and "Ca, re-
spectively (30 or 40 points for z ~ 0). The time
step At was 2.5 x10 '4 s. The results of our cal-
culations are insensitive to these parameters.
The total energy of the system is conserved to
within-1. 5 MeV out of several hundred during the
course of the collision (and better if b. t is made
even smaller). The normalization of the single-
particle wave functions is constant to within one
part in 10'.

~-] I I I /0

e(r) =v, fa'~'p(r') 'i

and the Coulomb potential

@c(r)=
4

~2~'p(r')= -, ,r-r' (B2)

we must solve, respectively, the Helmholtz equa-
tion

-V2C (r)+(1/a2)C (r) =4v a V, p(r),

and the Poisson equation

-V2cc(r) = 4w,'-ekp(r).

(BS)

(B4)

The latter equation is, of course, a special case
of the former. In particular, we may obtain Eq.
(B4) by taking the limit of Eq. (BS) in which

0-0

It therefore suffices to discuss the numerical
solution of Eq. (BS). We will, however, have to
treat the boundary conditions at infinity in a dif-
ferent manner in the two cases.

Since the solution of (B3}is axially symmetric
about the axis x = 0, we work on the mesh defined
by (A4), with

4 jk ~+j @(+j~ zk)~

S,k
= vt2 j 4ma Vo p(2'j, zk).

(B6)

Equation (BS) may then be approximated on the
mesh by

[(H + V)&t&]jk = S (B6)

(B7b)

and the coefficients C,. are defined by (A8). The
solution to (B6) is given iteratively by"

y-"=„„-— [(~„„-V)y +S],
m+J

~ m+ 1 [(Jt H) pm+
1/2 +g ]

1
V+A +,

(B8b)

The R „areacceleration parameters, whose
selection is discussed below. As in the case of
the Schrddinger equation, the operators H and V
are tridiagonal, so that the inversions may be per-

where the Hermitian horizontal and vertical Helm-
holtz operators are defined by

1 1.
(HA)jk (t )2 ( 4k 14+jk-1 24jk) 2 2

(B7a)
1

(VQ)jk ——
(&z}2 {CjQj+»+Cj,Pj» —2pjk)
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formed by Gaussian elimination. Again for sym-
metric systems, the symmetry of Q restricts the
actual numerical work to z ~0.

The boundary condition for the Yukawa potential
may be taken to be &f& =0 on the outer edges of the
mesh because of the short range of the Yukawa
force. However, the long range of the Coulomb
potential forces an explicit evaluation of Eq. (82)
for r on the outer mesh edges. Performing the
azimuthal integrations, (82) becomes"

p(r', z')x(k)
ec(r, z) =e' r'«' «' [(,). (,).],s, ,

(89)
where a is the complete elliptic integral

with y=(nP)' ' [ (n+P)]' '. Although it is possible
to use a one-step iteration with A„=Vo. P for all
m, we have found its convergence poorer than the
two-step method.

APPENDIX C: EXTRACTION OF MASS TRANSFER IN TDHF

Using the ordinary probability interpretation of
the many-body wave function 4, Eq. (8.1) straight-
forwardly gives the probability of finding any AL
nucleons in the lefthand fragment (z & 0) and any
A~ =A -Ai, nucleons in the righthand fragment (z & 0),
assuming [0 ~

'to be asymmetric function of all its ar-
guments. Using the fact that the TDHF wave function
is a Slater determinant, (3.1) may be written in
terms of the single-particle wave functions g„,as

z(k) = dx
(1—k'sin'x)'~ (810)

+(AB)
A tA t Z( ) ~~P1P'1 NPA+~A&I ' Rt PP'

and k =4rr'/[(z —z')'+(r+r')']'~'. We have evalu-
ated (89) on the mesh edge by Simpson's rule using
fourth degree polynomial approximations to (810)."
Ke note that for the Coulomb potential, a direct
evaluation of (82) over the whole mesh would re-
quire-N„~ Nz foldings of the form (89), whereas
the determination of P~ on the boundaries requires
only N„+N~ foldings. The additional numerical
work of then solving (88) is negligible. We have
found it necessary to recompute (89) on the mesh
edge only once every four time steps. When this
is done, we solve (88) to m=6 to assure adequate
convergenc e.

Because Eqs. (88) determine the potential itera-
tively, a proper guess for the solution will speed
the convergence process. At time t =0, any initial
guess for the potentials will do (e.g. , the zero-
range solution &f&,, =a'S,

„

for the Yukawa) and con-
. vergence is achieved by iterating (88) to m-20.

After the first time step, an excellent guess for
the potential at time t„+,is the potential at time t„.
Thus, during the evolution, (88) need only be
iterated to m= 2.

The values of the acceleration parameters 8
are taken as in Varga. ' The eigenvalues of EI are
bounded from below by

1i2

4(Nz- 1)'(b,z)' 2u2

while the eigenvalues of V may be approximately
bounded from above by

I
(zr)' 2a' '

xN P(AR+1) P'(A@+1) ' ' '+PAP A &

(C1)

where the left and right overlaps are defined as
(all other integration variables suppressed):

OO 0
N „8= «y*(z)yg(z) N 8

= «4*(z)08(z)

N no+&as=&aeR L (C2)

P and P' are permutations of the A indices and
Pi denotes the action of P on the index i. For
fixed P, the sum over P' results in the term

NRPl 1
N"

P12

(-) det N ~(ga„), NL
&(~R+ 1)2

' &S (ZR+ 1)~~ ~ ~ L

The various P permutations may be viewed as in-
terchanging the ARR and the AL L labels with the
appropriate sign. However, for any combination
of AR rows labeled R and AL rows labeled L, there
are AL fARt different P which result in no change in
the value of the determinant. Thus (Cl) takes the
form

The optimal values of A for a two-step iteration
are then

y —(y' —n P)'~', m 'even,

y+(y'+n P)'~', m odd,
l

combinations
ofAR 8 rows
and Al L rows

det

N + N o o ~
11 12
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I max

s( ~)-g (tp n„,~„)
f+ p$ P = P max &= &max

P„(n„),

(cs)

where P„(n„)is the determinant giving the proba-

Note that+„",P(As) =det[N„&+N„sj= 1, as ex-
pected.

Because our wave functions possess good angular
momentum projection along the z axis, p, , each
determinant in (C2) factorizes into a product of
determinants for each value of p, . This property
facilitates the numerical evaluation of P(A„):

bility of finding n& nucleons with orbital angular
momentum projection p, in the right-hand fragment
and p, ,„

is the maximum azimuthal quantum num-
ber in the system.

For the special case of. spin-saturated, charge sym-
metric systems, P& is block diagonal, the blocks cor-
responding to the various spin-isospin states of a
nucleon. Furthermore, for a given number of
right-hand nucleons, the value of each block is in-
dependent of spin-isospin state. In addition,
P„=P „,and for reflection symmetric systems,
P„(n„)is symmetric about half the maximum value
of its argument.
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