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Nonrelativistic classical microscopic (equations of motion) calculations have been made for collisions between
nuclei mostly with 50 nucleons each and for relative velocities of 0.5¢ and 0.8¢ (nonrelativistic laboratory
energies of 117 and 300 MeV/nucleon, respectively). The trajectories of all the nucleons are calculated with
two-body forces between all pairs of nucleons. The potentials are sums of attractive and repulsive Yukawa
potentials of reasonable ranges and are adjusted to give reasonable binding and kinetic energies and to fit the
NN cross section o, appropriate for the viscosity and thus for shock phenomena; o, strongly emphasizes
transverse momentum transfers. Ensemble averages are taken over (10) initial distributions and care is taken
to monitor—the relativelv minor—effects of evaporation of the individual noninteracting nuclei. Central
collisions corresponding t. small impact parameters b (less than about a nuclear radius R) are ‘“explosive”
and seem fairly well equilibrated at maximum compression and subsequently. There is some similarity to
development of shocks.' After an initial penetration of about a mean free path, there is rapid dissipation of the
collisional translational energy with associated large internal energies and large compressions (to somewhat
less than twice normal density), followed finally by an explosive expansion; the angular distributions are
roughly isotropic for quite small b but show some transverse peaking for very small b. For small b (50.5R)
and for v = 0.5¢, but not for 0.8¢, we find large fused residues with 4 ~ 60. Transparency and nonequilibrium
effects develop rapidly with increasing b and are somewhat more important for ¥ = 0.8¢ than for 0.5¢. For
b 2 R (noncentral collisions) the nuclei retain much and for b  1.5R most of their initial identity, suffering
relatively little immediate mass loss with, however, quite appreciable loss of collisional translational energy for
b~R.

NUCLEAR REACTIONS HI classical nonrelativistic microscopic calculations;
mostly A;=A,=50; E=117, 300 MeV/nucleon.
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I. INTRODUCTION
A. Hydrodynamics and nuclear shock waves

The only apparent means of experimentally
producing nuclear matter at densities significantly
greater than the normal density p, (0.2 nucleons
fm=) of nuclear matter seems to be in heavy-ion
collisions at laboratory energies E; 2 50 MeV/
nucleon. At such energies the relative velocities
of the nuclei are greater than the sound velocity
¢,~0.2c¢ in normal nuclear matter or, roughly
equivalent, greater than the Fermi velocity
v%20.3c (c is the velocity of light). Compressible
hydrodynamics, mostly used with the assumption
of zero viscosity (inviscid hydrodynamics), then
implies shock-wave phenomena associated with
characteristic Mach-cone features of the angular
distributions which may then be rather directly re-
lated to the equation of state.!”® Thus, e.g., for
“weak” shocks! (equivalent to sound waves), for
which the changes in the physical quantities across
the shock are small, the Mach cone would deter-
mine ¢, and thus the “compressibility” coefficient
K of nuclear matter at p,, since ¢,>=K/9M, where
M is the nucleon mass. (K is about 200 MeV.)

For relative velocities considerably larger than
¢, one has the possibility of “strong” shocks,
involving large compressions, and hence of ob-
taining knowledge of the equation of state at den-
sities much greater than p,.2”° Thus, e.g., if
there should be density isomers®!! corresponding
to a second minimum in the equation of state at
p> p,, then this might reflect itself in the angular
distributions and, in particular, in their energy
dependence .°*2

For orientation we note that, nonrelativistically,
for an ideal gas, the maximum possible compres-
sion across a shock is (0/Pg)mac =¥ +1)/(y = 1)
where p, and p are the densities in front of and
behind the shock, respectively, and where y is
the usual ratio of specific heats.'> Thus (p/py)max
=4, 6, and 8, respectively, for an ideal mono-
atomic gas (y=2), for a gas of diatomic molecules
with only rotational degrees of freedom (y =),
and for diatomic molecules with both vibrational
and rotational degrees of freedom (y =2). We re-
call that if the nuclei are free to pass through
each other without mutual interaction then p,,
=2p,. However, densities less than 2p, may also
correspond to hot thermalized nuclear matter.
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B. Validity of hydrodynamics

Hydrodynamics as considered in Refs. 1-9
for high-energy heavy-ion collisions is the usual
hydrodynamics as used for normal macroscopic
fluids. Its validity seems to depend on two assump-
tions.

(1) The validity of classical considerations.
These are expected to become more reasonable
at high energies (E> E,) when, e.g., the effects
of the Pauli principle and of exchange effects be-
come much reduced. However, it should be
noted that hydrodynamics, although “essentially”
classical, can include important quantum-mech-
anical effects through the equation of state.

(2) The continuum assumption. This requires
that local thermodynamic equilibrium be attained
in times short compared to the collision time,

i.e., that y=7_,/7,,<1. Here 7,,=L/v is a
typical collision time, L is a characteristic col-
lision length, and v is a typical relative nucleon-
nucleon velocity; 7., =A/v,, is a typical relaxa-
tion time where A is the mean-free path and v,
is about ¢, or v, (possibly better about v for v>vg). In
any case, for v =0(v,,;) the condition x <1 is then
essentially equivalent to A< L, i.e., to% short
mean free path .4
The relevant length scales are as follows:
A =2 fm (appropriate to laboratory energies of
a few hundred MeV/nucleon), L~2-3 fm for “per-
ipheral” or equivalently noncentral collisions cor-
responding (for equal mass nuclei) to impact pa-
rameters b = R where R is the nuclear radius (L
corresponds to about the average overlap distance
obtained in Ref. 15 for fragmentation collisions),
"and L~R~5 fm for central collisions. For sub-
sequent considerations we also introduce the force
range d=1 fm. With v/¢=0.5-0.8, the correspond-
ing time scales are then 7, =7 fm/c (with v
2vp), T.u(peripheral)~3 fm/c, 7., (central)~8 fm/
¢ and 7yy=d/v=2 fm/c for the duration of an in-
dividual NN collision.

Thus x =2 for peripheral collisions and x %1 for
central collisions. The continuum assumption is
thus at best marginally satisfied for central col-
lisions of heavier nuclei while peripheral collisions
especially can be expected to have marked non-
equilibrium features.

We note that a shock would not be instantaneously
formed on contact of the two nuclei but would need
distances of the order of A to be established via
dissipative processes, i.e., through collisional
relaxation. Furthermore, a shock is not a dis-
continuity in a complete microscopic description,
or according to viscous hydrodynamics, but has
structure and in particular a thickness of the order
of A.'*® Since A is not negligible compared with

R, such effects could by themselves significantly
modify the shock-wave predictions of inviscid
hydrodynamics.'® ,

If the continuum assumption is not satisfied,
questions such as the following immediately
arise. How are the predictions of hydrodynamics
modified by the relaxational effects of the colli-
sions, i.e., by mean-free path effects? In par-
ticular, what is the importance of dissipative ef-
fects (viscosity, thermal conduction, etc.)and of
transparency? For what conditions may one expect
approximate thermal equilibrium, shock-type
phenomena, and associated high densities? What
are the characteristics of the corresponding col-
lisions? What can one learn about the equation
of state or about transport coefficients ?

C. Classical microscopic (equations-of-motion) approach

To avoid the limitations of hydrodynamics and
to attempt to answer some of the above questions
we have made classical nonrelativistic equations-
of-motion (EOM) calculations where all the nucleon
trajectories are computed with suitable two-body
forces between all pairs of nucleons.!'’?° Meson
production is not included and the nucleons are
taken to be spinless.

The following are some aspects—and, in parti-
cular, advantages—of a classical microscopic
EOM approach, including its relation with other,
also essentially classical descriptions (see Fig.
1). These descriptions include, in particular,
hydrodynamics, discussed above, and a micro-
scopic approach using the Boltzmann equation or
equivalently cascade calculations.?

(1) Classical considerations may be expected to be
reasonably good for laboratory energies E; = 250
MeV/nucleon and qualitatively reasonable for
E,z 100 MeV/nucleon. Thus the nucleon wave-
lengths (s1 fm) are then comparable or small-
er than the force range d or the mean inter-
particle distance; the classical and quantum
mechanical results for the cross section ¢,
appropriate for transverse momentum trans-
fer (Sec. IID) become quite close to each other for
E; =250 MeV; degeneracy effects expected to be of
order E/E, are expected to become quite small.
Also, classical approximations are expected to be
better as a result of averaging over final states (gen- .
erally no definite final states are observed and
the reactions are of the inclusive type, e.g., as
in Ref. 15).

(2) The classical N-body problem is computationally
feasible for quite large N.2*

(3) All3A translational degrees of freedom of the
nucleons are included. Thus, e.g., collective



1344 A. R. BODMER AND C. N. PANOS 15
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FIG. 1. Classical descriptions of high-energy heavy-ion collisions. See Sec. IC for discussion.

effects, insofar as they are important at high
energies, are included. Binding-energy effects,
including surface effects, are allowed for; in
particular, the possibility of final bound fragments
is included.
(4) Equilibrium, near equilibrium, or partial
equilibrium is not assumed and the relaxational
effects of elastic NN collisions are included.
Thus highly nonequilibrium situations can be de-
scribed and all dissipative and transport phenom-
ena due to elastic NN collisions are included.
(5) The use of the Boltzmann equation or equivalently
of cascade calculations® is included as a limit
when A>>d or equivalently 7,,<<A/v, i.e., if the
duration of individual NN collisions is short com-
pared to the time between collisions. Correspond-
ingly, there is no overlapping between successive
collisions involving a given nucleon and one has
straight-line undeflected trajectories between
collisions. This limit then implies a dilute gas
‘with the ideal-gas equation of state. The Boltz-
mann-equation and cascade approaches make
direct use of the NN differential cross sections
(in the Boltzmann equation these enter through
the collision term) and thus implicitly include
quantum mechanical aspects of the individual
NN scattering process, but otherwise they are
classical. These microscopic approaches can
also describe arbitrarily large deviations from
equilibrium, such as shock waves (but only if
the full nonlinear collision term is used in the
Boltzmann equation or if in cascade calculations
-the cascade is completely followed in time).??
However, because of the implied ideal-gas equa-
tion of state, the shock relations—and in particular

the maximum compressions—will be those appro-
priate to an ideal gas. However, some account
can be taken of forces in cascade-type calculations
as in Ref. 19 where hard-sphere NN scattering is
considered; such calculations are then intermedi-
ate in nature between EOM and cascade calcula-
tions. Itisclear thatthe condition A > disnotwell
satisfied in high-energy heavy-ion collisions.

(6) Inviscid as well as viscous hydrodynamics is
contained in the EOM approach in the limit of lo-
cal, or approximately local, thermodynamic equi-
librium, i.e., T,y < T, (Or A< L)2*** At the
other extreme, when A > L, the case of large
transparency (a Knudsen gas) is also included.
High-energy heavy-ion collisions may have as-
pects characteristic of both these limits. Thus
noncentral (peripheral) collisions for which L <R
(L ~2 fm), correspond to large transparency and
strong nonequilibrium conditions, whereas suffi-
ciently central collisions (L ~R) may be fairly
well equilibrated (especially for heavier nuclei)
and correspond perhaps more closely to a hydro-
dynamic regime. A microscopic approach thus
seems to be needed for a unified description of
heavy-ion collisions.

D. Twofold role of nuclear forces

For high-energy heavy-ion collisions one may
then conveniently distinguish two roles for the
forces.

1. For determining the equation of state. This
in turn determines the relation between the physi-
cal quantities before and behind a shock. This
aspect of the forces is the only one which enters
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into (inviscid) hydrodynamics and which gives the
hydrodynamic predictions their relative simpli-
city. In particular, we note that “strong” shocks,
involving large increases of density, are probably
only possible because nuclear matter is rather
dilute with respect to the repulsive core and thus
rather readily compressible.

2. For determining the collisional relaxation
effects. These are the mean-free path and dissi-
pative effects which are completely neglected in
inviscid hydrodynamics. It is these aspects of
the forces which are essential for the formation of
the shock and for shock structure. Their impor-
tance is characterized by the ratio 7.,/ 7., .?°

The EOM approach is the only classical descrip-
tion which can take account of both roles of the
forces. I nuclear matter were very dilute, and
thus approximately an ideal gas, then the primary
role of the forces would be their relaxational one.
The Boltzmann equation or cascade calculations
would then be expected to provide an adequate de-
scription.

II. CALCULATIONAL PROCEDURES AND NUCLEAR
FORCES

A. Trajectory computations

For two nuclei with A, and A, nucleons the A=A,
+A, trajectories corresponding to a set of initial
conditions are obtained by integrating Newton’s’
equations of motion with use of two-body poten-
tials and the corresponding forces between all
pairs of nucleons. Conservation of momentum,
angular momentum, and energy are checked. The
first two, being linear in the momenta, are very
accurately conserved. A time (integration) inter-
val of 0.1 fm/c was found to mostly give adequate
energy conservation (to about 1%) and reasonable
computing times.*

B. Initial conditions, averaging

For given collision conditions, specified by A,,
A,, impact parameter b, and laboratory energy
E,, one must (ensemble) average over initial dis-
tributions of positions and velocities in each nu-
cleus. The impact parameter b was varied from
0 to 2R in steps of 0.25R with the nuclei initially
almost touching. .

Our distributions of positions correspond to nu-
clei of radius R =7,4 '/ with »,~1.15 fm. With
repulsive-core potentials (see below), random
distributions of positions inside a sphere of ra-
dius R are generally very hot, i.e., energetically
very unfavorable, since, in particular, nucleons
may be sufficiently close to each other for the
short-range repulsion to be very large.

The individual nuclei which are used for the
initial distributions in the collision calculations
have then been prepared in three stages as fol-
lows. :

1. A random distribution of (A,) particle positions
is generated in a sphere of radius R.

2. With the initial particle velocities equal to
zero, this distribution (which is very hot) is al-
lowed to dynamically evolve with use of repulsive-
core potentials. However, the particle velocities
are reset to zero at predetermined time instants
(the corresponding time intervals are very short
during the early very hot stages); thus the initial
velocities are zero for the succeeding interval of
the evolution. Various quantities (see also Sec.
IIC) are monitored, in particular the density p,
various moments of p, the potential energy/nu-
cleon V, and the kinetic energy/nucleon. After

V has decreased from its initial very large value
and has settled down and is very slowly varying,
and also before the density distribution has
changed very much from its initial value, the cor-
responding particle positions are used as the ini-
tial positions for the initial nuclei used in the col-
lision calculations. The result of this stage is to
dynamically cool the initial random position dis-
tributions without allowing too much change in p
although these distributions do have somewhat too
large densities.

3. The velocities for the distributions obtained in
stage 2 are reset such that the particle velocities
correspond to random velocity distributions ap-
propriate to a Fermi sphere with an average kine-
tic energy of about 22—-25 MeV/nucleon. Minor
adjustments are made to the kinetic energy such
that for the potentials used in the collision calcu-
lations the average binding energy/nucleon is 8
MeV for each distribution; the average potential
energy/nucleon for the ensemble is then about-

30 MeV .26

These classical nuclei have a finite temperature
not only because of the kinetic energy (which plays
an important role as discussed especially in Sec.
IIF) but also because (with the kinetic energy
equal to zero) the potentials give a minimum en-
ergy (as a function of p) at densities considerably
larger than p,. (Such a minimum with the nucleons
at rest corresponds to “frozen” nuclei of zero
temperature for which the nucleons are arranged
approximately in a lattice.) - Nevertheless, our
nuclei are probably as cold as possible, consis-
tent with a reasonable density, kinetic energy,
and binding energy for static repulsive-core po-
tentials with the required scattering properties
(see below) and, furthermore, with pair distribu-
tions which do not correspond to “frozen” nuclei
but are appropriate to the nucleons being allowed
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to move freely consistent with the dynamics.

The nuclei are thus not stationary and simul-
taneously condense and evaporate. However, the
time scale for these changes is sufficiently long,
relative to the collision time, that the mutual in-
teractions of the nuclei dominate during the colli-
sion. (To minimize the effect of changes due to
evaporation, the nuclei are initially almost touch-
ing.) Nevertheless, for any set of collision condi-
tions, it is important to obtain as a standard of
reference and for purposes of normalization the
results without mutual interaction, i.e., when only
the interactions in each nucleus separately are
operative.?” Some further considerations and rele-
vant results are given below (especially Sec. I
A).

Our most extensive results are for A, =A,=50
where we used an ensemble of 10 different initial
distributions.?® Because A is rather large there
is effectively considerable averaging even for
each initial distribution.

In fact, our results for averages involving a
reasonable number of particles are fairly smooth
and well-behaved functions of the time or of any
relevant spatial coordinate. Of course, the varia-
tions are larger for averages of “more local”
quantities, e.g., populations and the corresponding
densities for volume elements containing only a
few particles.

The physical quantities will not be unique
at each instant but have some distribution
with a corresponding dispersion about the mean.
One must be careful not to miss interesting infor-
mation such as clustering by looking only at the
averages where such information may be largely
lost.

C. Analysis

The A trajectories are analyzed to give kinetic
and potential energies, populations, position and
velocity moments, hydrodynamic-type averages
such as densities, average (collective) velocities,
etc., as well as some quantities (especially per-
taining to angular distributions) involving both the
position and velocity distributions, all as a func-
tion of time. Analyses were made, in the center
of mass (c.m.) system, both in cylindrical polar
coordinates and in spherical polar coordinates
with the incident direction as polar axis.?® The
former is especially appropriate for the earlier
stages of collisions with small or moderate im-
pact parameters, while the latter is more appro-
priate for the later stages and, in particular, for
the angular distributions. The latter are obtained
from the distribution of particle positions.

D. Nucleon-nucleon potentials

These have the form Vzrexp(-p z7)

-V vrexp(—-p 7). The ranges and strengths are
“reasonable” based on potentials of Bethe and
Johnson,®® but are adjusted to satisfy the following
requirements.

1. The binding energy should be B ~8 MeV/nu-
cleon. It seems important to have B correctly
since this, for a given laboratory energy E,, de-
termines how much energy is available to blow
the system completely apart, i.e., to separate all
the nucleons outside the range of the forces. The
value of B =8 MeV is obtained by minor adjust-
ments of the kinetic energy as already discussed.
It should be remarked that it is important also to
have reasonable values for the initial internal
(“Fermi”) kinetic energies since these can be ex-
pected to have an important effect, especially on
the final (double differential) angular and energy
distributions (Sec. III G). As already pointed out,
our forces do not give a mimimum of the energy at
Po- The implications of this are discussed below
(especially Sec. IVB). It is our belief that this de-
fect could perhaps be most serious for the binding
of large final fragments produced in central colli-
sions (Sec. I D).

2. Ideally, the N-N differential cross sections
for E; ~50-300 MeV should be reproduced in a
classical two-body calculation since our many-body
calculations are classical. Since this seems not
possible for a local potential (because of diffrac-
tive and exchange effects) we took as the most es-
sential feature to be reproduced, in the above en-
ergy range, the cross section

T
0v=21rf 0(0)sin?0d(cos0)
0]
=27 ; sin26b db
fo ,

where o(f) is the c.m. differential cross section.
The second expression may be used in a classical
calculation where 0 =6(b) is the deflection function.
On the one hand, the cross section o, is appropri-
ate for the viscosity and thermal conductivity as
determined from the Boltzmann equation for near
equilibrium conditions,* while on the other hand,
the viscosity is most appropriate for shock struc-
ture in a viscous-hydrodynamics description.*?
0, emphasizes transverse momentum transfers
more strongly than the total cross section. [o, is,
in fact, to a good approximation proportional to
a(90°).]

We did not include the Coulomb interaction or
distinguish between neutrons and protons. These
approximations are expected to be good at the en-



ergies and for the nuclei (A, =A, =50) mostly con-
sidered. The appropriate average is then o,
=3[0, (np) +0,(pp)] with the Coulomb peak removed
for o,(pp). The empirical values are G,=86.5,
39.2, 26.5, and 25.0 mb at E; =50, 100, 200, and
300 MeV, respectively.?* The corresponding cal-
culated values are 83.3, 42.0, 25.2, and 20.5 mb
for the potential (I) which we mostly used and
which has the parameter values u, =2.618, u,
=3.990, V,=2040, and V,=7922 (yx in fm™, V in
MeVim.) As a measure of the repulsive core we
have V(7)=0 and 300 MeV for »=0.99 and 0.665 fm,
respectively. [For the Bethe-Johnson potentials
the corresponding values are 0.99 and 0.62 fm for
the average of their even and odd 7 potentials
({=2); however, their S-state potentials have
considerably smaller core radii.] Another poten-
tial (I) is considered below.

It should be noted that the calculated quantum-
mechanical values of o, for our potentials are, in
general, considerably less than the classical val-
ues although they approach the latter at the higher
energies (E; 2250 MeV). It should also be re-
membered that at lower energies the effect of the
exclusion principle will be to reduce the effective
cross section and to correspondingly increase the
mean-free path and the transparency.

III. RESULTS

A. Definitions; effects of evaporation

Most of our results are for A, =A,=50 and for
the potential I quoted above, and these are the only
ones we discuss except in Sec. IIH. Two labora-
tory (relative) velocities were considered, namely,
v=0.5 and 0.8 (velocities are relative to c¢) corres-
ponding to nonrelativistic energies of E; ~#117 and
300 MeV /nucleon, respectively. We discuss al-
most only average values.

Time # is in units of fm/c (0.33 X102 g). T(¥)
denotes the “collisional” translational energy/nu-
cleon of the c.m. motion of all the nucleons belong-
ing initially to either nucleus in the total c.m.
system.® I(t)=[T,- T()]/T; is the “inelasticity,”
where T;=T(0)=4E, is the initial collisional trans-
lational energy; I, is the final inelasticity after the
collision. I,=1 if 7'; has all been dissipated during
the collision. W(¢) denotes the magnitude of the
average potential energy/nucleon. F(t)=W(t)/W,
where W,;=W(0) and F,;=W,/W, is the ratio of the
final to the initial potential energies per nucleon.
F, is a measure of the proportion of nucleons
finally bound in fragments. Thus W,=F,=0 if all
the nucleons are finally well separated outside the
range of their forces; F,=1 if they remain bound
as initially, e.g., if the two nuclei pass through
each other without interaction; also F,;~1 if the
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two nuclei completely fuse with the fused nucleus
having moderate excitation energy. The final ve-
locity asymmetry is characterized by w,=(v2)*%/
(A2, where (v,2)/2 and (v,2*/2=(3(v,2 +v 2))* 2
are the final values of the rms velocities in the
incident and perpendicular to the incident direc-
tions, respectively.

What is meant by “final” in the above needs some
explanation. This does not in general imply ¢=
because of the problems of evaporation and con-
densation already mentioned. Since 7'(f) is con-
stant when there is no mutual interaction (and
equal to T;) and becomes constant for the inter-
acting case after quite short times when the colli-
sion is effectively over, the values of 7, and
hence of I, can be identified with #=«. The non-
interacting values Wy, and wy, of W and of w, re-
spectively, vary quite slowly and are quite close
to the initial values. Thus (for both »=0.5 and 0.8)
Wyr~34 and 32 MeV for £=50 and 70 fm/c, re-
spectively, compared with W,=W,,(0) =30 MeV;
and, for v=0.5, wy(¢=50 fm/c)=2.06 and wy(¢
=70 fm/c)=1.99 compared with w;=w;(0)=2.20.
The values of W, and w; correspond to le =50 fm/c
and have been corrected by scaling, e.g., W,
=W(L)[W/W yi(t,)] where W, /W y(£,)=0.93, and
similarly for w;, where w;/wy(¢;)=1.07 and 1.06
for v=0.5 and 0.8, respectively.?

The time scale for evaporation is indicated by
the variation of the (ensemble average of the) ra-
dius R, of the individual nuclei. Here R,
=($274,72/AY'? and is the root-mean-square
radius of the uniform distribution with the same
mean-square radius as that of the A (=50) nucle-
ons. R,~4.2, 4.2, 4.2, 4.8, 5.3, and 6.5 fm for
t=0, 10, 20, 30, 40, and 50 fm/c, respectively.
On the other hand, for central collisions with
small b effectively all the nucleons of the two nu-
clei have strongly interacted when /~ 30 and 20 fm/
¢ for v=0.5 and 0.8, respectively. The effective
collision time decreases as b increases and be-
comes zero for very peripheral collisions with
b =2.3R. The time scale for evaporation is thus
sufficiently longer than that of the collisions for
these not to be affected significantly by the effects
of evaporation.

B. Densities

p{™(¢) denotes the mean density inside a sphere
of radius » with c.m. as origin, p{(¢) is the value
without mutual interaction. In all cases the initial
rise of p‘”(¢) and p{7}(¢) is almost identical (e.g.,
Figs. 2, 3, and4)up to a time ~10 fm/c consistent
with the mean-free path as obtained from o,. The
maximum value of p”’ is never significantly larg-
er, for any value of b, than the maximum value of
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FIG. 2. Time-dependent results in the c.m. system
for A;=A,=50, v=0.5, and b =0. 0¥ is the average
density inside a radius 3 fm withe.m. as origin; p{} is
the value in the absence of mutual interaction. W is the
magnitude of the average potential energy/nucleon;

T is the collisional translational energy/nucleon of
either nucleus (see Sec. IIIA).

p'7 which is just twice the initial central density

(Fig. 5). Note that p{(¢) after having reached its
maximum falls off rapidly because of the increas-
ing separation of the two noninteracting nuclei. It
is seen (Fig. 4) that for larger impact parameters
the values of p(f) and p,(f) are almost identical,
indicative of rather little mutual interaction.

C. Central collisions (b <R)

These are “explosive.” After an initial weakly
interacting, or “transparent” stage lasting about
10 fm/c, the initial collisional translational energy

1.0 T T T T T T 80
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FIG. 3. As for Fig. 2 but for v =0.8.
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FIG. 4. The density p‘® in the c.m. system (see
caption for Fig. 2), for Aj=A,=50 and for b =R and
1.5R as a function of time.

T; is rapidly dissipated and randomized during a
short “critical” period of about 5 fm/c, of the or-
der of A/v, when the A nucleons become complete-
ly intermingled (Fig. 6) with high internal energies
at maximum compression (Figs. 2, 3, and 6). Sub-
sequently, in the final stage, there is an explosive
expansion involving large, approximately radial,
velocities. This is illustrated by Fig. 6 which
shows, for v=0.5, the radius R, for the whole
system (A =100) vs ¢, where R, was defined above.
For both v=0.5 and 0.8 one has dR ,/d¢~3v in the
final stage, corresponding to final velocities con-
sistent with an explosive final stage.’®* Further-
more, as discussed below, there are a substantial
number of nucleons with final speeds significantly
greater than 0.5v.

For A, =A, =50 the final angular distributions

I I T I

0.5 ~</NO MUTUAL INTERACTION -
~~

—
—_—

b/R

FIG. 5. The maximum density p{3) attained during a
collision vs b/R for A {=A,=50.
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(fm)

0 1 1 1 1
[o} 10 20 30 40 50
t (fm/c)

FIG. 6. Time-dependent results in the c.m. system
for A;=A,=50 and v =0.5. Rj) denotes the radius of the
equivalent uniform distribution (see Sec. IIT A) of the nucle-
ons belonging to either initial nucleus, R 4, the correspond-
ing radius for all the nucleons. Z 5;denotes the displace-
ment, intheincident direction, of the c.m. of the nucleons
belonging to either initial nucleus; the straight dash-
dotted line represents the displacement if the nuclei con-
tinue moving with their initial velocity (0.25inthe c.m. sys-
tem). Note thatRgyand R 1oybecome equalat ¢~15fm/c, in-
dicating that the nucleons from the two nuclei have then
become completely intermingled. Note also that Zj,
becomes constant for ¢ = 20 fm/c, -consistent with all
the initial collisional translational energy T'; having
been dissipated.
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FIG. 7. Angular distributions in the c.m. system for
A {=A,=50 and for v =0.5 for nucleons of all final velo-
cities vs /R. The labels 1,...,5 denote the following
intervals of cos6: 1-0.8 (1), 0.8-0.6 (2), 0.6-0.4 (3),
0.4-0.2 (4), 0.2—0 (5). N denotes the number of nu-
cleons, the normalization being such that the total num-
ber of nucleons for 0 =cosf=1 is 50 for each value of
b/R. The values for Figs. 7, 8, 11, and 12 are averages
over the corresponding forward and backward intervals,
the angular distributions being symmetrical about 90° to
within the expected small fluctuations.
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FIG. 8. As for Fig. 7 but for » =0.8.

are roughly isotropic for b <0.3R as shown by
Figs. 7 and 8 which show the angular distributions
vs b/R. The same feature is also indicated by the
results for the final velocity asymmetry w, vs b/R
(Fig. 9). For small b one has w;~1, indicating
approximate isotropy of the final distributions.
However, it is important to note, as shown by
Figs. 7 and 8 that even for small b there are sig-
nificant deviations from isotropy and that these
deviations change quite rapidly with b. Thus for
very small b, and in particular for b =0, there is
a “sideways” or transverse peaking of the angular
distribution with ¢(90°)/0(0°) ~2 and 1.3 for v=0.5
and 0.8, respectively. This is reminiscent of
some hydrodynamic predictions.>® However, even:
for quite small b ~0.2R, this sideways peaking
changes over to a forward peaking which becomes
quite pronounced for b 2 0.5R. Since it is the small
impact parameters which are associated with

) V-O.Bl

30~ NO MUTUAL
INTERACTION

v=0.5
2.0

wg

1.0 v=0.5 %
0 1 1 1
[¢} 0.5 1.0 1.5 2.0
b/R

FIG. 9. The velocity asymmetry ws= (v z2) %/ (v, 2) 1/2
in the c.m. system vs /R for A;=A,="50; w; has been
corrected as in Sec. IITA.
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large compressions and shock-type phenomena, it
may thus be necessary to have quite detailed in-
formation about the angular distributions as a func-
tion of b in order to obtain significant information
about the equation of state.3®

The general behavior so far discussed is quite
similar for v=0.5 and 0.8. For central collisions,
on the average, enough of the nuclei traverse each
.other, relative to the mean-free path, that these
collisions seem fairly well equilibrated at the
stage of maximum compression and subsequently.
Consistent with this is also a large relative dis-
persion of 7, and W, for the central collisions.
The density, although conditions do become fairly
well equilibrated in central collisions, never ap-
preciably exceeds the maximum density without
mutual interaction (i.e., 2p0) and is considerably
less than the density expected for a fully developed
shock (i.e., not too much less than the 4p, for an
ideal monoatomic gas, in view of the rather small
repulsive core).

D. Fusion

A notable difference between v=0.5 and 0.8 is
that for v =0.5 there is considerable fusion for
b <0.5R, involving a fused residue of about 50-70
nucleons, whereas for v =0.8 there are no large
final fragments, but only indications of a few
smaller ones. Final here means ¢~ 30-70 fm/c.
(For large times, the effects of condensation and
evaporation will become substantial.) By fusion
we do not necessarily imply a fused residue of
mass A but only a persistent residue of appreci-
able mass number and reasonable density, which
may be moderately excited and is approximately
at rest in the total c.m. system.

The fused residues are indicated very clearly by
the results for the populations and density (in both
cylindrical and spherical polar coordinates) and
by the corresponding values of the internal energy.
By inspection of the results for the population one
may also readily estimate the mass of the resi-
dues. Since the residues are “observed” at a time
of order of the collision time 7., and since they
are excited (by several MeV /nucleon) evaporation
will occur (on a longer time scale than 7.,). The
final asymptotic fragments would therefore have
a smaller mass then those we “observe.”

The presence of the fused residue is reflected
and supported by the behavior of p‘”(#) and W().
Thus even allowing for the fact that to a first ap-
proximation the collision for v =0.5 proceeds only
2 as fast as that for v=0.8, the falloff of p‘”(f)
is much slower for v =0.5 than for v=0.8 (Figs.

2 and 3). This is because the fused residue is
approximately at rest in the c.m. system and

leads to a persistence in p‘"(¢). The quantity
F,=W,/ W, is, as already mentioned, an indica-
tion of the proportion of nucleons finally bound in
fragments. Figure 10 shows that for v=0.8 one
has F,~0.15 for b <0.5R, consistent with only
afew small final fragments. However, for v=0.5
one has F,=0.55, reflecting substantial fused re-
sidues. The total fusion cross section for v=0.5
is fairly small (<100 mb) because fusion occurs
only for small b.

That there is less fusion at higher energies
may be understood most simply because more
energy is then available to blow the system apart.
(For both energies collisions with small b are
highly inelastic, i.e., I;~1, and T; is effectively
all dissipated). Nevertheless, it seems surprising
that even for v=0.5 there is any substantial fusion,
since T;~30 MeV is much larger than the binding
energy. Since during the “critical” period the
system is highly excited, there must be some
mechanism by which a substantial number (= 60)
of nucleons can very rapidly lose much or even
most of their energy to the other nucleons and
finally remain as a fused fragment. We conjec-
ture that this can occur because for small b the
central parts of the nuclei interact somewhat
earlier and also thermalize more completely
(because the relevant dimensions are larger rel-
ative to the mean-free path) than the outer parts
and, moreover, are perhaps “held in place” to
some extent by the latter. This may then allow
the inner nucleons to lose their energy sufficiently
rapidly (via heat conduction) to the outer nucleons
to enable the inner nucleons to remain as a fused
residue, the outer nucleons being explosively
blown off. It should be noted that the unfused
nucleons are blown off with explosive velocities

1.0

0.5

%05 o 5 2.0
b/R

FIG. 10. The inelasticity I; and the ratio F; vs b/R
for A;=A,=50. W;, T; are the initial values; Ty, Wy
are the final values after the collision; Wy has been
corrected as discussed in Sec. IITA.
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as indicated by the final value of dR ,/d¢ of about
0.25 (Fig. 6) and also by the large number of final
nucleons with velocities greater than 0.25 (Sec.
OIG).

Although our forces give the correct binding at
normal densities, they do not give a minimum of
the energy (as a function of p) at p,, i.e., they do
not give the correct “saturation properties.”
However, we believe that our conclusions about
the occurrence of fused residues are significant
since these residues do have a reasonable binding
energy (*3 MeV/nucleon) and density (*0.15 fm™).
Of course, it would clearly be most desirable to
have forces with more adequate “saturation pro-
perties.” It is, however, a highly nontrivial
problem to reconcile these properties with ade-
quate scattering properties and reasonable re-
pulsive cores. These and related problems are
discussed further, especially in Sec. IVB. In
any case, our results show that there is an ef-
ficient mechanism for the rapid cooling of a large
number of nucleons in central collisions.

E. Noncentral (peripheral) collisions (b > R)

These are nonexplosive and much less dramatic
than those for small b. Less of the initial col-
lisional translational energy is lost than for cen-
tral collisions and I; is considerably less than
unity (Fig. 10). W(?) varies less with ¢ and the
differences between p and py; are much less than
for small b (Fig. 4). For larger b there is increa-
sing persistence of the initial velocities and the
two nuclei increasingly retain their identity and
increasingly remain intact. Thus for v=0.8 al-
ready for b=R (and even somewhat less) about
40 nucleons of each nucleus “finally” remain to-
gether, whereas for b~1.5R the “final” nuclei
have lost only about five nucleons each. This is
also consistent with the values of F, (Fig. 10).
Thus F, is large for b =R and approaches unity
for b=2R. For very peripheral collisions with
b= b.,,,~2.3R there is no mutual interaction and
F,=1. Similar remarks apply for the long-time
behavior of the fragments produced in peripheral
collisions as for the fused residues formed in
central collisions. Thus the fragments which we
“observe” at times of the order of 7., and which
are excited may be termed prefragments in the
terminology of Hiifner (Ref. 22). The actual final
fragments will result from these prefragments by
evaporation and will have smaller masses.

The increasing persistence of the initial veloc-
ities for larger b/R is illustrated in Fig. 9; thus
the final velocity asymmetry w, approaches the
no mutual-interaction value for large b. Another
aspect of this (Figs. 7 and 8) are the increasingly

forward peaked angular distributions (of nucleons
of all final kinetic energies) for larger b. It is

to be noted that although the mass loss is relative-
ly small, the inelasticities are quite large for
R<b=s1.5R.

Nonequilibrium and transparency effects are
seen to develop quite rapidly with increasing b,
as is evident from, e.g., the dependence on b of the
inelasticity I, and of the angular distributions.

On the average, so little of the nuclei traverse
each other that only quite partial (b=R) or almost
no equilibrium (b 2 1.5R) is attained; the nuclei
retain much or most of their identity suffering
relatively little mass loss and the relative dis-
persion, e.g., of T}, is much less than for small
b. Clearly, the final state has little resemblance
to equilibrium conditions for b = R. However, the
inelasticities are still very appreciable even for
quite large values of b; in particular the appro-
priately weighted values (i.e., bI;) peak around
b~R. Compressibility phenomena are hardly ap-
parent for larger b (=R).

F. Inelasticity and transparency

I, is consistently less for v=0.8 than for 0.5
for all b (Fig. 5). A measure of the average in-
elasticity is I;= [ "™=L,bab/ [ ™bdb. (=1 if I,
=1for all b.) I:b peaks at b~R. For v=0.5,0.8,
one obtaing I, =0 ._41,0.32, respectively. The de-
crease of I, and I, with increasing energy is con-
sistent with the expected greater transparency
(smaller o, and viscosity) at higher energies.’”
This increasing transparency is also consistent
with the following results. The final velocity
asymmetry w; (Fig. 9) increases more rapidly
with increasing b for v=0.8 than for v=0.5. [Re-
call that w,=1 corresponds to complete randomiz-
ation of the initial incident velocity and w,=w(0) to
complete transparency.] The angular distributions
(Figs. 7T and 8) become more rapidly forward
peaked as a function of b/R for v=0.8 than for
v=0.5. '

It should be remembered that the exclusion prin-
ciple will be more effective in reducing in N-N
cross sections, and thus also o,, at lower ener-
gies. Since this will lead to a relatively greater
increase of transparency at lower energies, the
net effect is expected to reduce the differences
in transparency between v =0.5 and 0.8,

G. Angular distributions

The c.m. angular distributions of nucleons of
all final energies as a function of b/R (Figs. 7
and 8) have already been discussed. Angular
distributions are obtained by integrating such dis-
tributions over b (with weighting proportional to
b). Figure 11 shows results for 0=<cosd =1 for



1352 A. R. BODMER AND C. N. PANOS 15

©40 L. NO MUTUAL —
5 INTERACTION
w
330 .
oo ]
P-4
Lc..>20- -
« WITH INTERACTION
1o+ —
Z o 1 —— S —

IO 08 06 04 02 O

cos 8

FIG. 11. Angular distribution in the c.m. system for
A(=A,=50 and » =0.5 for nucleons of all final velocities.
Shown are the number of nucleons in intervals of 0.2 of
cos# for 0=cosf#=1, and normalized to a total number
of 50. '

v=0.5. The values are averages of the numbers

in the corresponding forward and backward angular
intervals, the angular distribution being in fact
symmetric about 90° to within the expected small
fluctuations. The angular distributions correspond
to ¢,~50 and 70 fm/c for »=0.8 and 0.5, respec-
tively. Because the size of the individual nonin-
teracting nuclei increase with ¢ due to evaporation,
the angular distributions without mutual interaction
spread out of the forward direction. (Recall that
the angular distributions are obtained from the
particle positions and not the velocities.)

Comparison with the results for no mutual in-
teraction then shows that the large forward (and
backward) peaking in the overall c.m. angular
distribution is due to the relatively minor effect
of the collision for the heavily weighted large-b
collisions. The most interesting part is thus the
large-angle distribution which has important con-
tributions from the small-b “explosive” collisions.

Table I shows the c.m. angular distributions for
three ranges of vf/v where v, is the final radial
nucleon velocity. The values are normalized to
50 for nucleons with v,=0 (also equal to the num-
ber of nucleons of all final energies) and 0= cos@
=1. The scattering is more forward peaked for
v=0.8 than for 0.5 for all ranges of v;, consistent
with greater transparency at the higher energy.
Comparison with the no-mutual-interaction values
shows that there is a significant and appreciable
flux of high-velocity nucleons (with v;> 0.5v and
even with v,> 0.7v) at large angles (arising from
central collisions). The initial internal (“Fermi”)
kinetic energy seems animportant factor forthese
high-velocity nucleons. Thusthereisasmaller
number of nucleons with large v, /v (e.g., 20.7)
for v=0.8thanfor v=0.5, sincefor a (fixed) Fermi
velocity v (~0.3) given values of the atiov,/v are
closerto (0.5v+ vz)/v for v=0.8thanfor v=0.5.
[Thus for v, > (0.5v + v;) the flux is expected tobe
zero in the absence of multiple scattering effects.
These latter could give final speeds greater than
0.50 +v gl

TABLE I. Number of nucleons in the c.m. system, for A;=4,=50, in intervals of 0.2 of
cosf and for three ranges of v;/v, where v is the final radial nucleon velocity and v the lab-
oratory velocity. The numbers are averages over the corresponding forward and backward
intervals and are normalized to 50 for the number of nucleons of all v; in the range 0< cosf
<1. Int. denotes the actual interacting case, No Int. the case of no mutual interaction.

NO<vy/v<0.5)

N(0.5<vy/v<0.7)

N@/v=0.7)

cosd Int. No Int. No Int. Int. No Int.
v=0.5
1-0.8 18.78 20.54 9.26 11.23 6.83 11.26
0.8-0.6 3.40 2.12 1.88 1.68 1.31 1.10
0.6-0.4 2.13 0.67 0.82 0.19 0.53 0.39
0.4-0.2 1.49 0.56 0.59 0.19 0.52 0.00
0.2-0 1.56 0.7 0.50 0.00 0.42 0.00
1-0 27.36 23.96 13.05 13.29 9.59 12,75
v=0.8 .
1-0.8 21.47 24.21 13.37 18.20 4.01 4.77
-0.8-0.6 2.95 1.26 1.29 0.76 0.44 0.37
0.6-0.4 1.81 0.31 0.69 0.11 0.18 0.00
0.4-0.2 1.22 0.00 0.55 0.00 0.24 0.00
0.2-0 1.21 0.00 0.41 0.00 0.15 0.00
1-0 28.66 25.78 16.31 19.07 5.02 5.14
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H. Results for other potentials and for 4, =4, =200

We discuss some (much less complete) results
for some other potentials and also for A, =A,=200
which are of interest.

Another potential (II) which we used for A, =A,
=50 also gives B=8 MeV and similar values for
0, as does potential I which was considered pre-
viously; however, II has a repulsive core about
0.05 fm larger than I. Thus the transport and
collisional relaxation properties should be sim-
ilar for both potentials. The parameters of II are
V,=2570, Vp="1057 (MeV{m), p,=2.402, u,
=3.328 (fm™), and the values of o, are 88.4, 44.9,
28.1, and 23.2 mb for E; =50, 100, 200, and 300
MeV, respectively. V(7)=0 and 300 MeV for
7=1.09 and 0.70 fm, respectively.

Calculations with II were made for v =0.5 and
0.8 but for only two impact parameters, b=0 and
R. The corresponding results for I and II are
generally quite similar but show some interesting
and suggestive differences. The inelasticities I
are very similar for I and II. Since the inelastic-
ities are presumably mainly determined by the
viscosity, this result is consistent with the sim-
ilar values of ¢, for I and II. The values of W,
and hence of F,=W,/W, are quite similar for I
and II, but somewhat smaller for II. For II when
v=0.5 one again has F,=0.5 for b = 0.5R; also,
for 6=0, p( 3) (¢)again shows the same persistent
behavior as for I. Both these features are again
consistent with substantial fusionfor v=0.5, where-
as for v=0.8, just as for I, there is no indication
of any substantial final fragments.

The values of p$), for II are less by about 0.25
fm= (for both b=0 and R) than those for I (shown
in Fig. 5). This is consistent with the larger re-
pulsive core for II. The values of the velocity
asymmetry w, are generally very similar but are
slightly less for II, especially for b=0; thus
w;(b=0)=0.96 for I instead of 1.06 as for I, im-
plying that the final transverse velocities are
somewhat greater than those along the incident
direction, reminiscent of hydrodynamic predic-
tions. The c.m. angular distributions for both
b=0 and R are very close for I and II when v=0.5.
However, for v=0.8 there are some moderate but
significant differences, especially for b =0 for
which there is more pronounced sideways peaking
for II; thus ¢(90°)/0(0°)~1.9 for I as compared
with 1.3 for I; this is consistent with the results
for w,.

We also made some exploratory calculations for
the extreme case of a Lennard-Jones potential
with a very large and steep repulsive core, and
which gives a very incompressible liquid of close-
ly packed nucleons with density p, and B=8 MeV.

For A, =A,=50, v=0.5, and b=0 the collision
then has the splashing features expected in a
head-on collision of two incompressible drops;
thus transverse jets develop very rapidly and there
are no noticeable transparency effects and no
appreciable increases in density.

For A,,A,>50 shock phenomena may be more
prominent relative to transparency effects because
the nuclear dimensions then become larger relative
to the mean-free path. Some of our first rather
preliminary calculations are pertinent to this
question. These were for A, =A4,=200, v=0.8,
and b =0 but for a potential which gives somewhat
too small values for o,, and hence somewhat too
large A. It is noteworthy that in spite of this,
the c.m. angular distribution (Fig. 12) shows a
strong sideways peaking with ¢(90°)/c(0°) ~3 and
the maximum densities are about 3p,. Both these
features indicate possibly a more fully developed
shock situation than for A, =A, =50; however, this
must be qualified by the fact that the repulsive
core is somewhat smaller than for potential I.

IV. DISCUSSION, PROBLEMS AND EXTENSIONS

A. Transparency and hydrodynamic phenomena

For small impact parameters b, i.e., for cen-
tral collisions, there is some similarity with the
development of shocks: “explosive” collisions with

60 T T L T 1
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a0 4
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FIG. 12. Angular distribution in the c.m. system for
A{=A,;=200, v=0.8 and » =0. N denotes the number of
nucleons in intervals of 0.2 of cosf, normalized to a
total number of 200.
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an initial weakly interacting (transparent) stage;
subsequent rapid and almost complete randomiza-
tion of the translational energy during a time in-
terval of the order of A/v (*5-10 fm/c), and
associated large compressions and internal en-
ergies, with finally an explosive expansion; the
c.m. angular distribution is roughly isotropic

for small b but shows some characteristic trans-
verse peaking for very small b. Thus for central
collisions, on the average, enough of the nuclei
traverse each other, relative to the mean-free
path, that these collisions seem fairly well equil-
ibrated at the stage of maximum compression and
subsequently.

Nonequilibrium and transparency effects develop
quite rapidly with increasing b, as is evident from,
e.g., the dependence of the inelasticity and the
angular distributions on . On the average so
little of the nuclei traverse each other that only
quite partial (b=R) or almost no equilibrium
(b = 1.5R) is attained; the nuclei retain much or
most of their identity suffering relatively little
mass loss. However, the inelasticities are still
very appreciable even for quite large values of
b. Compressibility effects are hardly apparent
for larger b (2R). Clearly, the final state has
little resemblance to equilibrium conditions for
b=R.

Significant information about the equation of
state must presumably come from the “explosive”
central collisions. Since our calculations show,
at least for A, =A,=50, that mean-free path effects
have an important effect even for small b, this
will make it considerably more difficult to obtain
information about the equation of state than is
suggested by hydrodynamic considerations. In
particular, our results suggest that it will be
necessary to determine the (rather strong) de-
pendence of the angular distributions on the im-
pact parameter for quite small impact parameters.
Since b is not directly observable it may be quite
difficult to obtain this from experiment.3¢

Significant information about transport coef-
ficients may, in fact, be more readily obtainable
than information about the equation of state. Thus,
e.g., the viscosity may be determinable from the
inelasticity and its dependence on b. Of particular
interest is the possibility of large fused residues
whose properties and production cross section
may be relevant for the thermal conductivity.

Our present results cannot be directly compared
with experiment—in particular because of the
energies and nuclei we have considered. However,
some features of our results show a strong re-
semblance to aspects of the data.

Thus our noncentral nonequilibrated collisions
have a strong general resemblance to the fragmen-

tation collisions at GeV/nucleon energies. These
collisions are characterized by large transparency
(persistence of projectile and target) with an av-
erage overlap distance between the nuclei of about
2 fm and associated properties of factorization
and limiting fragmentation.!® In fact, our more
peripheral collisions, for which we found only
slight mutual interaction in our calculations,
correspond to b = 1.5R which with R~4 fm (for

A =50) just gives an overlap distance of about 2 fm.
A Glauber-approximation treatment (Ref. 22)
seems to give a reasonable description of these
collisions and such a treatment is closely re-
lated to classical microscopic approaches, in
particular to the cascade and Boltzmann-equa-
tion approaches, for large transparencies, i.e.,
A>L (Sec. IC). There is also evidence (for %0
+298Ph) of nonequilibrated peripheral collisions

at lower (but not too low) energies of about 20
MeV/nucleon.?® The relative cross sections for
the production of various final nuclei are sur-
prisingly similar to those at 2.1 GeV/nucleon,
strongly suggestive of a common reaction mech-
anism for the whole span of energies. (However,
at still lower energies, not far above the Coulomb
barrier, the reaction mechanism seems to be
quite different and to be determined by partial
equilibrium phenomena, e.g., Ref. 39).

In future calculations it will clearly be of great
interest to obtain the distribution of mass and
momentum of the final fragments as well as of
their average loss of momentum (with respect
to the appropriate initial nucleus) and to compare
such results with experimental ones.

Explosive-type central collisions have been .
seen both at energies of a few hundred MeV /nu-
cleon as well as at GeV/nucleon energies .*°
There is evidence®® that the cross section for these
central collisions is about the same as at much
lower (20 MeV /nucleon) energies (and also agrees
with the high-energy limit for the estimated fusion
cross sections—the equilibrated fusion reactions
at lower energies presumably correspond to the
equilibrated explosive collisions at higher ener-
gies).

B. Problems and extensions of the equations-of-motion approach

We discuss some of the more fundamental limi-
tations of our calculations and possible ways of
overcoming these.

At higher energies (2250 MeV /nucleon) relativ-
istic effects are expected to become significant.
The problem is that there is no unique way of in-
cluding retardation effects for a static potential
unless some assumptions are made about the
field-theoretic origin of the potential.** An ap-
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proach currently being investigated® is to consider
the short-range repulsive Yukawa potential to be
due to a vector field (w-meson field) and the long-
er-range attractive potential to be due to a scalar
field (0-meson field). The effects of retardation
to order v2/c? are then uniquely determined in
terms of the static potential.*®* No additional
parameters are introduced, but the parameters
(V 4, ba, Vg, g) of the potential inclusive of re-
tardation corrections must, of course, be re-
adjusted to fit the cross section o,,.

Also at higher energies (=400 MeV/nucleon lab
energies) pion production is expected to become
important. Pions could perhaps be included in an
EOM approach on lines used in cascade calcula-
tions (via A production and decay and A-N inter-
actions).*

We remark that both hydrodynamics and cascade
calculations can readily be made relativistic. In
particular, cascade calculations can readily in-
clude relativistic kinematics and particle produc-
tion.

The neglect of quantum-mechanical effects es-
pecially for the equation of state could be an im-
portant limitation. We recall that hydrodynamics,
although classical, can include important quantum-
mechanical effects through its use of the equation
of state. In particular, this ensures a reasonable
compressibility and sound velocity near the nor-
mal density p,. However, the role of the equation
of state is not so clear in the absence of local
thermodynamic equilibrium and thus especially for
the initial stages of central collisions, or for
most or all of noncentral collisions. A more ade-
quate equation of state may, in fact, be most im-
portant for a better description of large final frag
ments (such as we found for v=0.5 in central col-
lisions).

There are several possibilities for obtaining a
more adequate equation of state within the frame-
work of EOM calculations. One isthe use of momen-
tum-dependent potentials,* or possibly of three (or
more) body forces. A problem is that of maintain-
ing both a reasonable repulsive core as well as the
scattering properties necessary for an adequate
description of the collisional relaxation proper-
ties. ‘

Another approach which, in principle, can dis-
tinguish between the effect of the forces on the
equation of state and on the relaxational proper-
ties, is to include degeneracy effects and other
possible modifications of the equation of state via
pressure-type (i.e., one-body) forces of the form
-V ,p (per unit mass on the ith nucleon) where p(p)
(which may also depend on momentum and the
thermal excitation energy) is chosen to reproduce
the required equation of state. Exploratory cal-

culations for spherical distributions show that
pressure-type forces are capable of giving quali-
tatively reasonable effects.*® There are two funda-
mental problems with this type of term. Firstly,
one must be able to make a reasonable separation
between the two-body forces and the average-field
effects represented by the one-body pressure
terms; in particular, one must avoid “double
counting.” Furthermore, for heavy-ion collisions
the one-body terms must allow for the effects of
the relative momentum of the two nuclei (especial-
ly in the initial stages of the collision) and for ex-
citation of the nuclear matter (especially for the
later stages of central collisions). These prob-
lems are clearly related to that of the role of the
equation of state in heavy-ion collisions. It should
be noted that pressure-type terms have their
equivalent in the Boltzmann-equation or cascade
approaches. Thus in cascade calculations,? they
occur through the use of a single-particle potential
(usually related to the density in a simple way to
achieve approximate self-consistency), while in the
Boltzmann equation they occur through a corres-
ponding force term.*’

Classical descriptions cannot adequately—if at
all—describe the behavior for times much longer
than 7.,,. This long-time behavior, associated
with evaporation, relates the fragments formed
immediately after the collision (i.e., the “prefrag-
ments”’) with the final nuclei to be identified with
the experimentally observed ones. This long-time
behavior must be obtained by special considera-
tions, e.g., on the lines of Hiifner et al. (Ref. 22)
involving use of evaporation-type calculations.

The light composites (A =2, 3, and 4) observed
in central collisions also cannot be obtained from
a classical approach. Fortunately, it seems that
the cross sections for these composites can be re-

. lated to the cross sections for the nucleons (which

is effectively what classical descriptions can cal-
culate) by use of a simple phenomenological, one-
parameter, momentum-space coalescence mod-
el

We remark that if an adequate description of
heavy-ion collisions should need the full solution
of the quantum-mechanical N-body problem (pos-
sibly relativistic) then it would seem almost hope-
less to obtain a theoretical understanding of such
collisions. At higher energies (=100 MeV /nucleon)
an essential simplification is the possibility of a
classical description. Because of large trans-

- parency effects, a microscopic description (EOM

or Boltzmann-equation and cascade approaches)
is needed for a unified description of both central
and peripheral collisions. We recall the twofold
role of the nuclear forces—for the equation of
state and for the relaxational processes-—and that
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among classical descriptions only the equations-
of-motion approach, or a modified cascade ap-

- proach such as that of Ref. 19, can hope to include
both roles.

Finally, we remark that energies in the few
hundred MeV /nucleon range seem particularly in-
teresting. Thus on the one hand they are suffi-
ciently high that compressional effects can be ex-
pected to be large and thus that hot dense nuclear
- matter can be obtained in central collisions, and
that, furthermore, classical considerations are
expected to be approximately valid. On the other
hand, such energies are still low enough that rela-
tivistic and pion-production effects may be rela-

tively unimportant and that a theoretical under-
standing in terms of more-or-less conventional
low-energy concepts, in particular that of nuclear
forces, may still be possible.
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