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The wave function approach to reaction matrix theory has been" adapted to the K matrix calculation for
potentials which behave like r ' near the origin. The results are used to obtain the Hulthen K matrix in
terms of tabulated transcendental functions.

NUCLEAR REACTIONS Scattering theory, K matrix for singular potentials,
Hulthbn K matrix obtained in closed form.

I. INTRODUCTION II. K MATRIX FOR A SINGULAR POTENTIAL

In the preceding paper" (cited as paper I here-
after) two of us have presented a wave function
method for computing the two-particle K matrix.
The matrix elements for the K operator have been
expressed as a single quadrature over the potential
sandwiched between a plane wave and an appro-
priate off-shell wave function. Similar treatment
can also be made for other important regular po-
tentials like the Morse and Woods-Saxon- poten-
tials. In a forthcoming publication we shall pre-
sent the results for these potentials. Our object
in this paper is, however, somewhat different.
We shall show, in particular, that with some
modifications the wave function approach can be
used to obtainthe fully-off-shell K matrix for
potentials which have 1/r singularity. This mod-
ification will amount to deriving an expression
for the K matrix which does not involve the po-
tential explicitly. The procedure mill naturally
avoid certain integrals which are difficult to
perform because of the above noted singularity.
Such an approach to potential scattering has been
used earlier for T matrix calculations. '

In Sec. II we present the method for computing
the K matrix for singular interactions. Using
these results we obtain in Sec. ID a closed form
expression for the s-wave part of the Hulthen K
matrix. We conclude by noting that the wave func-
tion approach to reaction matrix theory may in
fact form a general framework for K matrix cal-
culations.

Following the notation of paper I we introduce
the wave operator

Q(E) =1+G, (E)K(E).

Therefore

G,'K(Z) = Q(z) —1.. (2)

Taking Egs. (1) and (2) in the mixed representation
we get

(r
~
Q(E)

~
qlm) = (2/w)'~'j, (qr)y, „(r)

+ r G, E r'dr' r' KE qlrn

(k'- P')-'(Pfm ~K(z) ~qfm)

r' rA(&r)[Q&(k, q, r) -A(qr)]. (4)
1T Jo

In writing Eqs. (2) and (4) we have assumed the
potential to be central. The object Q, (k, q, r) is
related to the off-shell wave function @,(k, q, r)
of paper I by

The function Q, (k, q, r) satisfies the differential
equation

1 d, d l(I+1)k'+ —.—r' —— . -&(r) Q&(k, q, r) =(k' —q')f~(qr).d/ (6)

In terms of Jost solutions, the appropriate off-shell wave function is given by

Q, (k, q, r)= ——,'vq(klm~K(z) ~qlm)[e '" 'f, (k, r)+e"'~'f, ( k, r)]+(1/2i)-[e '"~'f, (k, q, r) —e"' 'f (k, -q, r)], ('f)
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where the half off-shell K matrix is

()l )
''f, )-f(,-)

iraq q f,(k)+f, ( k)—

Outside the range of interaction the solution of Eq. (6) is given by

Q, (k, q, r) =j,(qr) +A, (k, q)r!j(kr).

('7a)

(8)
In writing Eq. (8) we have included the spherical Neumann function )!, in order to incorporate the standing
wave boundary condition involved in the E matrix determination.

To facilitate the calculation we now rewrite Eq. (4} in the form

(pjm(E(E)(qlm)=(q/r)(E' —q )f *r'qrj, (qr)E;(q, q)q, (q, r)
0

Using the integral

+ (2/&)(k —p ) Jl r2Crj, (pr)[Q, (k, q, r) j,(qr)-—A, (k, q)q, (k, r)].
0

(9)

(10)pzg, &z =-u-'u2-p' p a
0

in the first term on the right-hand side of Eq. (9), we get
l CO

(qjmlE(E)lqjm)=-(q/r)q ( E~(q &)r(q/r)(q* —q) r'qrj(qr)[jji(q q r) ji(qr) &~(q q)qi(»r-))-
0

The half-off-shell version of Eq. (11) is obtained by substituting P =k. We thus have

A, (q, k) = (-,")k&klmlK(E) lqlm}.

Inserting Eq. (12) in Eq. (11) we get

(Plm lK(E)
l
qlm) = (P/k)'(klm K(E)

l qlm)

(12)

2 (km p&)+ — drpxj j(pr)[jtj, (k, q, r) —qrj, (qr) + ', vq(klm—lK(E) l qlm) kn]j(kr)) .7r Pq (13)

To deduce Eq. (13) we have also employed the
relation (5). Equation (13) represents the basic
formula for computing the off-shell K matrix for
potentials singular at the origin. This equation
does not involve the potential explicitly. The
term inside the squared bracket is singular at
the origin. In fact, as ~-0 this term goes as

,'7rq(klm
l
K(E—)

l qlm)(2E —1)!!(kr} '.
Since

prj, (~r) „-,(~r)'",

y -r/e—

Equation (14) can be solved by introducing the
transformation

g ~-r/a

(14)

(14j)

and using the standard techniques given in Babister
to yield the off-shell Jost solution in the form'

f(k, q, r)=V, ' a~fe„,(A, B,C, e " ')+e'~, (15}
the integrand on the right-hand side of Eq, . (13) is
regular despite this singularity.

III. SmWAVE HULTHEN E MATRIX

The s-wave Lost solution f(k, q, r) for the Hul-
then potential satisfies the inhomogeneous dif-
ferential equation

A =-ika+ ia(V, + a')'/'

B = -ika —za(V, + a )'/',

C =1 —2ika,

(16)
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a =i(ka —qa).

The quantity f, is related to the generalized hyper-
geometric function~ (18)

by

x a
'''

m Z g(&,)~((]'2)„' (c'„)„Z"
a.o (&i4(i~24 "(P.)a k!

(17)

The series in Eq. (18) converges when ~Z &1; it
converges when ~Z~ =1 provided that Re(c-A B-}
&0, which from Eq. (16) is true in our case.

Using Eq. (15) and its on-shell version. i.e.,
when q-k in the s-wave part of Eq. (7}, we get

Q(k, q, r) —sinqr+ ~ mq&k]]E(Z) ~q&coskr = (Vo—a'.e'~[f„,(A, B,C, e "~') f~„(A—, B,C, e "~')]

where

o'=i(ka+qa) .

,' vqv, a'—&k~lf~q&[f (A, ,B,C, e ")e'-~+f (A, B,C, e- ~'e ""]j-
(19)

In Eq. (19) we have omitted the subscripts I and m. Specializing Eq. (13) for the s waves and using Eq,
(19},we obtain the off-shell Hulthen If matrix in the form

&pifC(B) (q&=&kiZ(E) iq&

k'-P' V a'
+ ' dr e '"~'[f „(A,B,C, e "~'}-f~ „(A,B,C, e "~4)]

0

dre ~'"'[f (A B C, e " ')-f„,(A, B,C e "~')]

oo 00—q (k~Z(E) ~q&
dre-'" 'f (A B C e "') — -dre-'"'f, (A, B,C;e- I )

g 0 0

OO OO

+ dre ~'""
f~(A B,C;e "~ ) —. dr e ~"I )f (A B C. e re)

0 0 , e

where

(20)

p =i(P k)a, -
p' = -i(P+ k)a,
pal pl

plat p

If we now make the change in variable given by Eq. (14 ) in the integrals arising in Eq. (20), all the in-
tegrations can be performed by using the result

1
dZZ"'f (a, b, c;s}=[(lime(]1)(a+p)] F''' , ,

+ ' +
1)P+ 1, P+e, n+P+1 (22}

We thus obtain
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(piK(E) iq) = '~ ~ fx(p, k) —x(-p, g)+x(p, —k) —x(-p, -p))

—~.~'f ~(p, q, -~) —y(p, -q, -~) -y(-p, q- I )+y(-p, -q, -f 0, (23)

where we have used the value of the half-off-shell K matrix

(~ ()~) (, )-(,-)
iraq f(k) +f(-k)

The functions x(p, k} and y(p, q, k) are given by

(24)

x(p, k}= p ',F,(A, B,p; c, p+ 1;1) (25a)

() )) ( i)., (
. ).,( i)., 1, tr+A+1, tt+8+1, p+v+1

)a+2, o+c+1, p+c+2 (25b)

We have performed several checks on this fairly
complicated result for the off-shell K matrix. We
have seen that Eq. (23) yields the correct on-shell
limit. We have tied Eg. (23) with the real part of
the T matrix given by Bahethi and Funda' to get
the relation given by Kauri and Levin. '

Pf. CONCLUSION

The wave function approach to K matrix theory
presented in papers I and here appears to repre-
sent an effective way to calculate the off-shell K
matrices for a number of realistic N-N potentials.
The results for the Morse potential, which we

propose to communicate in a forthcoming publica-

tion, will be of particular importance for studying

N-N scattering reactions. The Morse function

represents a static soft core potential and can be

used to account for the behavior of 's, phase
shifts at high energies. The calculation of the K
matrix for the Morse function will be facilitated
by using the results of our work on the Morse T
matrix. 6

Recently we have derived the off-shell T matrix
for the Woods-Saxon potential in terms of elemen-
tary transcendental functions. The Woods-Saxon
potential is one of the most important phenomeno-
logical nucleon-nucleus potentials. The off-shell
X matrix for this potential can be obtained in close
analogy with our work on the T matrix. '

The next logical step of our work will be to ex-
amine how one could introduce the effect of tensor
forces in the wave function approach. More am-
bitiously, one might then like to use the results of
such calculations in nuclear reaction studies.
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