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Wave function approach to reaction matrix theory. P
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A wave function method for computing off-shell It: matrix elements is presented, Certain computational
advantages are derived thereby. The formalism developed is used to relate the K matrix elements for the
exponential potential to tabulated functions.

NUCLEAB REACTIONS Scattering theory, a wave function approach to K matrix
theory.

I. INTRODUCTION

In recent years a number of investigators' have
used the reaction matrix (K matrix), as the basis
for nuclear reaction calculations. These studies
conclude that the K matrix formalism represents
an effective way to evaluate the collision matrices
for nuclear reactions. In a typical cross section
calculation one usually computes the K matrix
elements by means of an iterated. version of the
Shakin-Hufner- Lemmer method. ' Keeping in mind
the usefulness of K matrix elements in the studies
of scattering reactions, the integral equation for
the K operator has been studied in some detail
by Tobocman and Nagarajan, ' by Ernst et al, '
and by Kouri and Levin. '

The integral equation for the K operator is given
by

K(E) =V+ VGo~(E)K(E),

with

G "(E)= = — +E Ho 2 E Hp+i& E —H, —i&

Q+ (2)

In Eqs. (1) and (2), V is the two-particle potential,
E the energy parameter, and H, the kinetic energy

K(E) = V + V V = Re T(E),

where

H =H +V.

In Eq. (2) Re T(E) denotes the real part of the
transition operator

T(E) = V+ V(E —Ho+i&) 'T(E)

(4)

The on-shell, half-off-shell, and off-shell matrix
elements of K are related' to those of K by

Re&k
I
T (k') I» =&k K~(k') I»

=cos'5, (k)(klK, (k') lk&,

Re(p I T$(k ) I k& = (p I
K, (k ) I

k&

= cos'5, (k)(p IK, (k') lk& (7

(8)

and

operator.
It has been observed that the formal solutions of

Eq. (1) are not given in any simple form containing
P/(E —H) since this operator does not have a Lipp-
mann-Schwinger iteration. ' Kouri and Levin have
obtained the elements of the K operator in terms
of an altered K matrix, which they denote by K.
The Hermitian operator K is defined by

Re&p I
T~(k') l~&

= &p IK (k') l~&
= &p IKi(k') l~&+ „'.. .tan&i(k)& p IK~(k') I»&k IK~(k') l~&

where 5, (k) is the phase shift for the lth partial
wave. We work with units in which k'/2m is unity.
Relations (8), (7), and (8) show that a determina-
tion of the matrix elements of E together with the
phase shift 5, (k) leads to an evaluation of those of
K itself. Thus in this approach one is not required
to solve Eq. (1).

The present paper is directed towards the imple-
mentation of a wave function method for computing
the K matrix, which might serve as an alternative

, to the integral equation method described above.
The wave function approach of van Leeuwen and
Reiner' has been found very useful to calculate the
T matrix in closed form. ' In their approach the
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T matrix is obtained from the solution of an in-
homogeneous Schrodinger-like equation which sat-
isfies the outgoing wave boundary condition, It is,
therefore, expected that the solution of such an in-
homogeneous equation with a standing wave boun-
dary condition could be employed to calculate the
matrix element of the K operator.

In Sec. II we derive the formal method for com-
puting the off-shell K matrix by the wave function
approach. The results outlined in Sec. II are ap-
plied in Sec. III to obtain a closed form expres-

. sion for the fully off-shell K matrix for the expon-
ential potential. In Sec. IV we summarize our out-
look on such a calculation.

and

(E-a, —v)n(z) =E-a, .

In a mixed representation Eq. (11) reads

[E—&' —v(r)](r
~
n(E) ~qlm) =(E —q')(r

I qlm),

(12)

where

2 ~/

(r ~qlm) = — j,(qr)y, (0).

K(z) = vn(z) (10)

II. OFF-SHELL K MATRIX

Following van Leeuwen and Reiner we define a
wave operator

n(z) =1+a,'(E)K(z).

Combining Eqs. (1) and (9) and neglecting squares
and higher powers of E we obtain

The objects j,(qr) and y, (0) represent the usual
spherical Bessel function and spherical harmonic.
It may be noted that Efimov and Schulz' have re-
cently computed the off-shell K matrix for a Jas-
trow-type potential, l by imposing certain boundary
conditions on the solutions of Eq. (12).

The boundary conditions for large x on the solu-
tion of Eq. (12) are obtained from Eq. (9). We
have

X/2

(r )A(E) )qlm) =(— j(v')y, „()')+f (r)G (R)
~

r')dr'(r' K(z))qlm).

In Eq. (14) we now insert the representation for the standing wave Green's function

(r
~
6,'

~

r') = —k Q j,(kr()q, (kr, )y, „(r)yg (0')

(14)

(16)

(16)

and let z become large. We thus find

j. /2
(r~n(E) ~qlm) ~ — y, „(1)(qr) '[sin(qr--, 'lw) —2vq(klm~K— (E)~ lq)m cso( rk- ,'l )v]-

r--
In Eq. (16} (klm ~K(E}~qlm) represents the half-off-shell K matrix elements. By comparing the on-shell
version (q = k) of Eq. (16) with the asymptotic solution'0

2 j/
)1)(r) ~ — y, „(F)(kr) '[sin(kr--,'lw)+tan6, cos(kr -,'ln)]-

c)o

of the Schrodinger equation with standing wave
boundary condition, we see that the on-shell K
matrix elements have the normalization

(klm IK(z) Iklm) =- —tan6i(k)
2

(16)

2 ~/
(r

~
n(E)

~
qlm) = — (qr) 'p, (k, q, r)y, „(P) .

Since the potential in Eq. (12) is central we can
write

Substitution of Eq. (19) into Eq. (12) yields

d' l(l+ 1}k'+, , V(r) y, (k, q, -r)

=(k'- q')~&(qr), (2o)

where u, (qr} is the Ricatti-Bessel function. " The
solutions of Eq. (12) have been shown to be related"
to the solutions of the equation

da l(l+ 1)k'+, —,—V(r) f,(k, q, r)

(19)
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where (d', (qr} is the Ricatti-Hankel function of the
first kind. The solution of Eq. (21) which is of
interest has the asymptotic normalization

this function goes over to the Jost solution"

f, (+k, r) =f,(k, ak, r). (23)

f, (k, q, r) e"". (22)

From Eqs. (21) and (22) we see that when q =+ k

Using Eqs. (19), (22), and (23) in (16), it is easy
to see that for finite r the object p, (k, q, r) is
given by

&f&,(k, q, r) = —,'mq&k—lK,(E) lq)[e '" 'f (k, r)+e"" 'f (-k, r)]+(1/2i)[e '" 'f, (k, q, r) —e'" 'f, (k, -q, r)], (24)

where

&k IK (E}lq&
= &kE~ IK(E}lqf~&. (25)

We have also used

f,(k, -q, r) =fa('(k, q, r)

and

(28a)

k' 2I f(kq)
q wqlf, (k)lcos5, (k)

' (26)

In deducing Eq. (26) we have used the following
definition for the off-shell Jost function":

We note that (t), (k, q, r) represents the off-shell
wave function" regular at the origin. The behavior
of Q, (k, q, r) for small r will determine the half-
off-shell E matrix elements. We have

f,(k, q} =ff(k, -q). (28b}

In Eq. (26) 6,(k) is the negative of the phase of the
Jost function f,(k) which by definition is the phase
shift '

The off-shell K matrix can be obtained by com-
bining the relations (10), (13), and (19). We have

2
&p IKI(k2)

I q) = ~((pr)~(r) y((k, q, r)«.
P& o

(29)
q(e '(q/2(2-I ~ 1)f,(k, q) =

( 1„, lim r'f, (k, q, r)
r o

(27) With the help of Eq. (24), Eq. (29) reduces to

(('la(&')lq)= „ I «~, («))'8) (),(r)-(—),™', ', ~, (~) I, (30)

where

o,(r) = cos 2l& Ref, (k, r)+ sin 2'l7(Imf, (k, r), (31a)

p, (r) =cos2'l&Imf, (k, q, r) —sin-,'lv Ref, (k, q, r),

(31b)
and

v, (r) = cos 2'lvlmf, (k, r) —sin 2'l2' Ref, (k, r) (31c).
Equation (30) represents the basic equation for
computing the off-shell K matrix by the wave func-
tion method. A useful check on the validity of this
equation is that one can relate Eq. (30) with the
real part of the T 'matrix given by Fuda and Whit-
ing [Eqs. (2.18) and (2.30) of Ref. 12] to obtain
the relations (6), (7), and (8) between K and K.

III. EXPONENTIAL POTENTIAL-AN EXAMPLE

For the exponential potential

the s-wave part of Eq. (23) is given by

d zok'+ d, + 4', e "/' f(k, q, r) =(k' —q')e"" (32b).

In writing out Eq. (32b) we omitted the subscript
l =0. We now change the variable by substituting
z =roe " "and arrive at the equation

1 d
dg2 g dg, + ——+ (1 —+/2 ') f(k, q, 2)

4+2(k2 q2)2 2iaq+-2-2iaq (33)

The particular solution of Eq. (33) is given by"

I/(r) = — ' e "/'g'
4a2 (32a) f(k, q, 2) = 4a 2(k 2 —q 2)s,""s„„, (34)
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where s,„ is the Lommel function written as

(p, + v+ l)(p, —v+1)

&&,E2(-,'p, ——,'v+ —,', —2'p+ —,'v+ —,
' i- —,Z ), (35)

with

p, =-1—2iqa, v =2ika . (35')

The function, E2(:::ig) is a special case of the gen-
eralized hypergeometric function defined by
Luke. '0 Inserting E(l. (35) in E(l. (34) We have

f(q, q, q)=z,*'"q ""q =,'z')' 1 —ika- iqa, 1+i@a-iqa
(36}

It can be easily shown that in the asymptotic limit

f(k, q, z) ~e"" . f(k) =(2z,)" 'I'(1 —2ika)J 2;«,(z0) . (41)

E(luation (3V) represents the correct asymptotic
limit prescribed for the off-shell Jost solution.
The on-shell Jost solution f(k, z) is given by

f(k, z) = lim f(k, q, z) =(—,'z, )""'I'(1—2ika)J,„,( z) .
q~k

(38)

In writing E(I. (38) we have used

In terms of the Jost solutions and Jost function,
the off-shell wave function p(k, q, 2} regular at the
origin can be written as

(f)(k, q, 2) =A(k, q)[c(k)J „.,«(z)+ c*(k)Z„.,«(z)]

+B(k, q) [z0""s,„„„„(z)

zI'((2+1) — J„(z)=+,(n+ 1;- ez2) (39)

f(k, q) =,F2
1.

1 —ika —iqa, 1+i@a—iqa

(40}

From E(ls. (36) and (38) the off-shell and on-shell
Jost functions are obtained in the forms

where

A(k, q) = ,"q(k iXiq—),

c(k) = (,'z, )""'I'-(1—2ika),

ce(k) = (-,'z, )~'"I'(1+2ika),

B(k, q) = -2ia2(k2 —q'),
with

(43a)

(43b)

(43c)

(k i''i q}
( q }[ 0 1 2 lee 24«e( 0} 0 1+2(ee,2l«e( 0}]

i)Tq[c(k)J „«.(z0) + c*(k)Z„„(z0)]
2

With the help of E(ls. (29), (32a), and (42), the s-wave part of the off-shell E matrix is obtained in the
form

(P iIf'iq) = . [A(k, q)I, +B(k, q)I ],
where

[(z/z )"'"2—(z/z )' '"«][c(k)J (z)+c*(k)J (z)]dz

and

(44)

(45)

(46)

(4V)

Fortunately, the integrals in E(ls. (46) and (4V) can be related to the tabulated integrals" given by

q(q, q) f( / )"'q&,q(=) —, q
0 0

(2/z, )" F 2(~ —v+ 2)
(X —v+2)I'(1 —v) ' ' 1 —v, 2(Z- v+4) (48)
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and

2 (p, —v+1)(p, +v+1)I'(@+2) 2 ' —,'(((( —v+3), —,'(@+v+3), n +2
(49)

with X = 2iPa, o. =ia(P —q), and p, and v given by Eq. (35').
Combining E(is. (45}, (46), (47), (48), and (49) we obtain the expression for the s-wave part of the ex-

ponential potential K matrix in the form

(5o)

IV. CONCLUSION

Based on the van Leeuwen-Heiner approach to
off-shell scattering we have presented a straight-
forward method to compute the matrix elements of
the K operator. We have expressed the K matrix
elements as a single quadrature over the potential
sandwiched between a plane wave and an appropri-
ate off-shell wave function. It is seen that the re-
sults for the off-shell K matrix element for the
exponential potential can be expressed in closed
form involving functions whose series representa-

tions have infinite radii of convergence. It should
therefore be possible to sum the series on a com-
puter and use it as a check on programs which
evaluate K matrix elements by numerical methods.
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