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Effect of vacuum polarization on the solar p-p reaction rate*
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%'e have put very tight upper and lower bounds on the effect of vacuum polarization on the proton-proton
scattering wave function, in the region where the nuclear potential is known, but have not succeeded in doing
the same at very small distances. Simply making a smooth extrapolation of the bounds leads to the
expectation that vacuum polarization reduces the proton-proton reaction rate by between 0.8%%uo and 1.2%
assuming the 'So potential is known beyond 2 fm. An independent argument following the work of Picker and
Haftel leads to the conclusion that 1.7 & A' ~ 7.2 with vacuum polarization included, assuming the 'So and 'S,-
'D, potentials are known beyond 3 fm.

NUCLEAR REACTIONS Effect of vacuum polarization on scattering length, wave
function. Bounds on pp de v reaction rate.

I. INTRODUCTION

Some time ago one of us made a crude estimate'
of the effect of vacuum polarization (v.p.) on the
rate of the solar reaction p+p -d+ e'+ v. Shortly
thereafter —in connection with a study of the ef-
fect of v.p. on elastic p-p scattering' —some of
the numerical work was performed which is needed
for an improved estimate, but the calculation
was not completed. Since interest has been
raised in this reaction in connection with the solar
neutrino puzzle, we decided to restudy the mat-
ter.

It was first pointed out by Foldy and Eriksen"
thai the modification of the electrostatic interac-
tion between two protons due to v.p. might be ex-
perimentally observable, and Durand' showed that
this is mainly due to the fact that the long range
of the v.p. potential produces scattering in many
angular momentum states, even at low energies.
The electrostatic interaction between two protons
is taken to be the sum of the Coulomb potential
and the Uehling potential'

l', (~) = V, (~)+ V,.„(&)= (& /~)[1+ &(&)], (1)

where h, =2ct/3tt=1. 549 & 10 ' and the function 1(t )
can be written

(2)

reaction is the overlap of the p-p scattering wave
function u in the energy region around E„~=12 keg
with the deuteron wave function u . At these en-
ergies, only the s-wave parts of the wave func-
tions are needed:

M = dv. tto(r)tt(v ) .
0

Since the v.p. potential is weak, one expects that
its effect upon M is small. The fact that the nu-
clear phase shift. is even smaller than the v.p.
phase shift at solar energies does not alter this
expectation for the following reason. Even though
the nuclear potential produces a very small effect
on the wave function at large distances, it has a
large effect at small distances. The modification
of the wave function due to the v.p. potential is
everywhere small, even though it is bigger than
the nuclear effect at large distances. These ideas
will be confirmed quantitatively below.
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with (2tt) '= I/2vrtc = 193.1 fm and m is the electron
mass. I(r) is plotted in Ref. 2 and Fig. 1, and
convenient numerical approximations are given in
Ref. V. The above expressions are correct for
point particles. The modification to f(r) for the
finite extent of the proton charge distribution will
be discussed in Sec. III.

The matrix element which is needed for the p-p
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FIG. L. The vacuum polarization integral divided by
The solid curve is the point interaction form; the

dashed curve includes the exponential charge distribu-
tion of the protons with an r.m.s. charge radius of 0.8
fm;
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In attempting to obtain the p-p wave function,
it is important to remember that most of the con-
tribution to M comes from beyond the range of
the nuclear force." In this region, and at solar
energies, the wave function is completely deter-
mined by just one piece of nuclear information:
the scattering length. But some care is required
in the definition of this quantity when v.p. is pres-
ent. If one solves the problem of a nuclear plus
Coulomb plus v.p. potentials, V„+V~, for the
wave function us(r), it has the asymptotic behavior

u~(r) ~ cos6~S(r)+sino~ T(r), (4)
0 &&+1

where S and Tare the regular and irregular solutions'
in the potential V~, and p, is the ~-meson mass. We
have used the symbol ~, to mean equality in the limit
x- . The effective range function appropriate
to 5~ is very well given at solar energies by its
zero energy limit -1/a~. According to recent
analyses" "of the elastic scattering data in the
few Me7 range with the inclusion of v.p. , a
= -7.815+0.005 fm.

If one determines a particular nuclear potential
V~ such that the phase shifts 5~ agree with the
data, then it is a straightforward problem to ar-
bitrarily turn off V, , and solve the V„+V~ prob-
lem for the wave function u (r). Using this pro-
cedure, Gari and Huffman" estimated the effect
of vacuum polarization on the p-p reaction rate
to be at most 1/0. For orientation purposes the
wave functions u and u computed with the Beid
soft core potentials'4 are shown in Fig. 2, where
it is seen that the product falls off very slowly
with increasing distance.

In Sec. II we have made a more general examin-

ation of u —u to find out how much it can vary
with the choice of the nuclear potential, and the
following points are demonstrated. (i) One al-
ready gets a rough value for the ratio us/uc just
from the penetrability of the v.p. potential; this is
the quantity 1+ y = (S/E)„0, where F is the regular
Coulomb function. At solar energies X = -4.3
x 10 '. (ii) For separations r beyond the range of
the nuclear potential V~, u -u is largely in-
dependent of the behavior of V~ at short distances.
The small dependence which remains is contained
in just one number, a -a~, the difference of
the scattering lengths. a is defined by the con-
ventional effective range expansion involving the
phase shift 5~, where

uc(r) ~ cos6 E(r)+ sin6 G(r)
fear» I

(5)

II. EFFECT OF VACUUM POLARIZATION
ON THE p-p WAVE FUNCTION

Since u~ and u differ by the effect of the weak
potential V„, (r), Eq. (1), we can write the first
order perturbation expression

and G is the irregular Coulomb function.
In Sec. III we have shown that a~- a is itself

rather well constrained by the experimental values
of the scattering length and effective range, to-
gether with the fact that V„ is well determined in
to a separation of about 2 fm. Combining this with
the work in Sec. II leads to a very small uncer-
tainty in u -u beyond the range of V„, and in fact
all the way down to 2 fm.

We havenotsuceeeded in bounding u~-u~ in the
region x & 2 fm where the nuclear potential is not
known. In Sec. 97, however, we have put upper
and lower bounds directly on the matrix element
M, Eq. (3), by simply repeating, with vacuum po-
larization, what Picker and Haftel' did without it.

20

c 1
u (r)-u (r) = ——u(r

+ v{r

dr'U (r')v (r')u(r')

r
dr'U(r')u'(r') (6)
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FIG. 2. The Sop-p wave function g /Ck and the deu-
teron wave function g~, both generated with the Beid
soft core potential. Also shown is the asymptotic form
y(f —g g) and the product (N~/Qk)g . The difference
between I /Qk at zero energy and at 12 keV is less than
1% over the range of distances shown.

where U(r) = MV, , (r) and—M is the proton mass.
On the right-hand side of Eq. (6) and in the follow-
ing equations we have not distinguished between
type C and E functions where the difference con-
tributes in second order (X'). vc(r) is an irregular
solution to the V„+V~ problem wi.th the asymptotic
behavior

vo(r) ~ coshc (rG) i sn6Ec(r)-.gr» y

Using the asymptotic behavior given in Eqs. (5)
and (7), one obtains

u~(r) ~ cos(6 + &)F(r)+ sin(5 I+ &)G(r), (6)
2er&» 1
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where
00

dr U(r)u'(r) .
a 0

(9)

It follows' from the definition of the v.p. phase
shift t that

+&=5 +~,
where & is given by

(10)
l0

1
dr U(r)Z'(r)

From its analytic behavior at k=0, one has"

0
0 IO

Eiob(48V )

l5 20

tan5 ——C'kyA

where y= (1+hAc/R) ', C'=2]]q[exp(2][q) —1] ',
q = (2'), Q= Ite[I'(ip)/I'(ip)]-in&, R = fi0/Me'
= 28.82 fm, and the effective range function is
conventionally expanded as

FIG. 3. The vacuum polarization quantities v, X, and
/ versus the laboratory kinetic energy.

f and g vary by less than 3% from zero energy up
to solar energies for r(20 fm. Also define

1 1 l ~
C C——=- —+-~u'+ "

A a (13) M(r) = dr'U(r'}f''(r'),

The corresponding expression for 5~ is'
X(r) = dr'U(r')f(r')g(r'),

where

s C~k(l+ 2y)A
1+(0+l)A /R '

I {r)= dr'U(r')g'(r')
0=0

(18)

1 00

dr U(r)F (r)G (r),

dr (r) (C[CG ( )]' [rC (r)]'G, ,I, -(16)

and A is given by Eq. {13)with the superscripts
C replaced by E.

It is useful to record the approximate numerical
values of these quantities at 12 keV. P'= 1.45
x10-4 fm-' g=1.44, &=0.0420, and C2=1.05
~ 10 '. The v.p. quantities below 20 keg are shown
in Fig. 3. At 12 keV they have the values v'= -3.1
~10, X= -4.3&10, and l= —1.6x10 . With the
approximate values of the effective range param-
eters ac 7.8 fm and rc 2 8 fm, the phase shift
has the value

oo(12 kev) = 1.0 x10 4. .

In the sequel, therefore, we have for convenience
neglected the difference between 5 and tan5.

It is also useful to isolate the main energy de-
pendence of the Coulomb functions" with the fol-
lowing definitions:

f(r) = Ji (r)/Ck,

g(r) = CG(r) —(t'4/R)f(r);

Q(r) = dr'U{r')[g'(r') g'(r'-)
i ~ c],

r, , u(r') ) '
Z(r) = dr'U(r')

0

with the following connections to previously intro-
duced quantities

r=c'uM( ),

(19)

25 h v—-=9(") -y+—-
R R R Ck

Since V, , has a range which is much greater
than that of V„ it is sensible to take Eq. (9)
for 4 and break up the region of integration into
two intervals' (0, r) and (r, ~}with pr» 1. In, the
outer region one has

(20)

as a consequence of Eqs. (5), (12), and (I"I).
Therefore

d@U g1 + y dr'U(r') [f'(r') —2Af (r') g(r') + A'g '(r')1 . (21)
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Adding r/C'k to both sides, and using Eqs. (10), (18), and (19) gives

gC gE
J(r)+'y'(-M(r)+ 2AN(r)+A'[P(r) Q-(r) —l/R]] + 2yAy.

C k pr»x

Using Eqs. (12),and (14) for 5 and 5, Eq. (22) becomes

As Ac-~ y'J(r) M(-r)+2AN(r)+A'[P(r) Q-(r)].

(22)

(23)

M and N have practically the same values (to
better than 3%) at zero energy and 12 keV for r
&20 fm. The term involving Q in Eq. (23) is neg-
ligible. In this same region y(f Ag) v-aries by
less than 1% from zero to 12 keV, and since V„
»E the same is true of u/Ck inside the range of
the potential. Therefore 8 varies less than 2%
and the zero energy limit of Eq. (23) is useful to
record:

and a~ are obtained from differently defined phase
shifts.

In Sec; III we have estimated how much a -a
depends on the choice of V~. To proceed further
here we have made use of the fact that beyond the
range of V„, all the nuclear information is incor-
porated in the functions A~ and A.~ which at 12
keg differ from the numbers a~ and a~ by only
0.2%. Using Eqs. (7), (12), and (1V),

as- ac ~ [J(r) -M(r)+ 2aN(r)+ a'P(r)]„o. (24) Cv'(r) ~ g(r)+ R f(r), (25)

It is worth pointing out that Eq. (24) is quite dif-
ferent from the change in the scattering length due
to a weak short range potential (which would just
be the zero energy limit of —&/C'k) because as

where the term C'k'yAcf has been neglected since
it is of the same size as O'. Putting Eqs. (20) and
(25) into Eq. (6) gives

—y'[f(x) A(r)]f)de-}}b )g(r')+ "f(r'} [f{r') Ag(r'—)], - (26)

and making use of Eqs. (18) and (19), this becomes

„„&,x-yg~)+
& I&f(r})'(r)+(f(r}+&g(x)]}}(r)g(x)M(x) Af(r}Q(r}--

yg(r)+ f-(r) (As-A-c) . (27)

The main difference between the values of the
right-hand side of Eq. (2V) at zero energy and at
12 keg comes from X, which varies from -3.85
&&10 ' to -4.30 &&10 '. The quantity (us-uc)/uc at
12 keV obtained from Eq. (2'l) is plotted in Fig. 4.
Also shown in Fig. 4 is the same quantity com-
puted with the Reid soft core potential. '4 The last
term in Eq. (2V) is the only one which depends on
the choice of the nuclear potential, and it is seen
in Fig. 4 that this term accounts for only a small
part of the answer. In Fig. 4 we have used the
Reid soft core value of a~-a, 0.01 fm, to evalu-

ate this term. Constraints on a -a are dis-
cussed in the following section.

HI. BOUNDS ON u —u~

All dependence of a -a on the short distance
behavior of the wave function is contained in Z(r).
The values of the other functions which appear in
Eq. (24) are given in Table I, evaluated beyond the
range of the strong interaction, at r =4 fm. We
have determined bounds on J, and thus on a~-a,
allowing for the most extreme variations in the
short range wave function consistent with certain
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experimental constraints.
It is possible to enhance the wave function at

small distance where U(x} diverges and obtain a
large value for a~- a~. This divergent behavior

of U(r) is unphysical and arises from neglecting
the finite extent of the proton charge distribution.
A static exponential charge distribution for each
proton gives the following modified form of V„, ;

00 1 1
I~(r) = dx(D4(x)e '" +D(x)e '[3p+ 3p'+p'-6D(x)(p+ p')+24D'(x)p-48D'(x)]/48) —,+2, (x'-I)'~',

p = (12)'~'r/r~, D(x) = [(2xr~}'/12- Ij ', (28)

I

where r~ is the proton r.m. s. charge radius for
which we used 0.8 fm. Although it is not obvious,
the integrand in Eq. (28) is finite at —,', (2&v~x)'= 1.
The derivation of this expression follows a similar
treatment of the Coulomb potential. " 1~(r)/x and
the point form l(r)/r are shown for small r in Fig.
1.

It is apparent from Eq. (26) and the fact that
2m~= p.

"' that the only significant effect of the
charge distribution on u -u outside the range of
the nuclear potential is via the function Z(r) The.
same remark applies to b, in Eq. (21). It is con-
venient, therefore, to continue to define the func-
tions S and 7; the quantities 7', y, and l; and the
functions M, N, P, and Q with the point form of
the v.p. potential. Only the definitions of J(r) in

Eq. (18) and & in Eq. (9) will be modified for the
finite size of the protons.

The value of az-~c is constrained by the follow-
ing considerations. The 'S, potential appears to be
unambiguously determined in to a separation of
about 2 fm." Furthermore, for the function u (r)
with asymptotic form avs(x) =-cos5sS(r)+ sin5 T(x)
the integral of (u )' is fixed by on-energy-shell
quantities from the following relation":

Q g K
ca cu

(1-P)'sin'5s d 1
Ce dI as

where to first order in A. One has Q = g.
Therefore, we shall only consider wave functions

for which the integral
0

~ ~

~ ~-I—
x IO

-2—

X
1

~ r~r

EQ. [27)

~a. g~ 1
yrl

r

a(b)= 'd. "'(' '
Ck

has a specified value for each b. (Since a —a is
first order in X, it is not necessary to include v.p.
when computing 8. We have nevertheless included
it so that these values of 8 may be used in Sec.
IV.) The integral 8 was evaluated by first writing
it as

(1—2y)sin'6s d 1 & ts (r)
2C'a~ da Xs ', Cu

osc '
ijlJ

M M
E c

MC

l2 keV ~u y ' zv~r"
(I. CI Cu

(31)

FIG. 4. @+-uo) juc computed with the Beid soft core
potential (solid line) and from Eq. (27) (dashed line),
which is valid outside the nuclear potential. Both curves
were computed with the point v.p. potential. The shaded
region indicates the maximum possible range of values
due to changes in the nuclear potential f'or r & 2 fm.
X(12 keV) is shown by a dash-dot line, as is the small
term in Fq. (27) proportional to (A~-A ).

TABLE I. Terms of Eq. (24) at x=4 fm which do not
depend on the short range wave function.

-M
2a N
(a~)'Z

-0.0017 fm
-0.0i22 fm

0.0046 fm

By using the Noyes values of a = -V.814 fm, x
= 2.7950 fm to compute the first and second terms,
and using the Rei.d soft core wave function to com-
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pute the third term, we found the values for 8
given in Table II. The'third term of Eq. (31}is
20%, 4%, and 10/ of 8 at b=2, 3, and 4 fm, re-
spectively. The functions S and T which are re-
quired to define re~ were obtained by solving the
Schrodinger equation with the point interaction
v.p. potential.

Bounds on Z(b) assuming the wave function to be
unknown for r &b were determined as follows.
Since V,., (r) decreases monotonically, the maxi-
mum value of J(b) was found by making (u )' for
x& b a 6 function at r =0 with a coefficient adjusted
to give the correct value of 8(b). Similarly, the
minimum value of J(b) was found by making (u )'
for r & b a 5 function at x= b. These extreme val-
ues of J are also given in Table II. (These values
were computed at 12 keg but, as stated in Sec. II,
the values of J at 12 keV differ very little from the
ones at zero energy. ) Adding J(4 fm) to the num-
erical values in- Table I gives the bounds on a~-a~
shown in the last column of Table II. These bounds
are rigorous in that no restriction on the wave
function at a distance less than 4 fm was used.
Somewhat tighter but less rigorous bounds may
be obtained by assuming the wave function to be
known at distances less than 4 fm. By using the
bounds on J(b) for b = 2 fm or 3 fm and using the
Reid soft core wave function at larger distances
one can find tighter limits on J(4 fm). These
bounds on a~- a~ which follow from these values
of J are given in Table II. The limits on (us
-uc)/uo assuming the wave function to be known
for r &2 fm are shown in Fig. 4. We have ex-
tended the bounds on (us-uc)/uc in to 2 fm using
Eq. (6} and the bounds on J(2 fm).

Noyes and Lipinski" have analyzed low energy
(Sp p p phase shifts using values of 5~—5 given

by several potentials. They conjectured that the
uncertainty in a —a due to the unknown short
range wave function is +0.0024 fm and chose as
the central value that given by their repulsive
core potentials. It is worth noting, however, that
when the charge distribution is included the val-
ue of g~-a given by the Reid potential is 0.009
fm. Because the repulsive core strongly sup-
presses the wave function near r=0, this value of
a~-a~ is not midway between the limits in Table
II, but is closer to the lower limit.

TABLE II. Values of J(b) from Eq. (31) and bounds on
J(b) assuming the wave function to be unknown for r &b.
Also shown are the corresponding bounds on a —a . 8
and J were evaluated at 12 keV.

3 4 fm

8(b)
J(b) minimum
J(b) maximum
a -a minimum
a@-a~ maximum

53.4
0.0055
0.0196
0.006
0.021

125.5
0.0078
0.0462
0.003
0.042

213.9 fm3

0.0092 fm
0.0787 fm
0.000 fm
0.070 fm

0

usr
dr dr [u~(r)]' . (32)cu

The integral of (u~)' is given by the normalization
condition

us r)~A('=-,'y' dr „u'(r)
0

0

where y '= 4.317 fm is the range of the deuteron
wave function. Limits on the uncertainty in

~
A [',

ignoring vacuum polarization, were considered by
Picker and Haftel. " In this section we have fol-
lowed their procedure, making the appropriate
changes to include vacuum polarization.

For r larger than the range of the nuclear force
us(r) and u~(r) are specified by the phase shift 6s,
the deuteron D-state fraction P~, the deuteron
binding energy, and the deuteron asymptotic nor-
malization. The asymptotic normalization is fixed
by PD and an analytic continuation of the on-shell
Sy Dy channel scatte ring amplitude to the deu-

teron pole. Examination of various potential mod-
els suggests that there is only a small uncertainty
in the asymptotic normalization. " Just as in the
previous section, this "external" region can be
extended down to smaller separation distances,
for which we have chosen x&2 fm, where the '$,

Dy potential is known approximately. In this
external region we have used wave functions gen-
erated from the Reid soft core potential. "

The contribution from the internal region x&b
is bounded by the Schwartz inequality:

IV. BOUNDS ON THE p-p REACTION RATE
Jb

, [u'(r[]'=(-Z, —f [M'(r))'
b

(33)

Although we have been able to bound the effect
of vacuum polarization on u(r) only for r &2 fm,
the overlap integral Eq. (3) can nevertheless be
bounded. The p-p reaction rate is conventionally
expressed in terms of

in terms of P~ and the external wave function. To
obtain a conservative upper bound we have used
P~ = 0 on the right-hand side of Eq. (33) (in this
respect we differ, from Ref. 20). The integral of
(us)' is the quantity 8 evaluated in the previous
section. The values of these integrals required to
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bound
~

A ~' are given in Table III. Since the bound
on the internal contribution is smaller in magnitude
than the external contribution one has both an up-
per and lower bound on ~A~'. The upper bound is
not very sensitive to the radius outside of which
one assumes the wave functions u~ and u to be
known. The lower limit is much more sensitive
to- this radius.

TABLE III. Ingredients. and results for the bounds on
( A ) at i2 kev laboratory energy.

29.23 21.66 fm325.24

213.9 fms
u~{r) '

Ck
125.5. 53.4

f dr[g+(r)]

A2 lower bound
A2 upper bound

V. SUMMARY 0.743 fm0.5950.370

Vacuum polarization reduces the size of the
proton-proton scattering wave function in the re-
gion where it overlaps the deuteron wave function,
and the amount of this reduction at any distance
depends upon the details of the nuclear potential at
all distances —inciuding x & 2 fm where it is not
well known. But the effect of this short distance
behavior can be rigorously bounded for separa-
tions r&2 fm, and these bounds are shownin Fig.
4 for a laboratory energy of 12 keV. Bight at
x= 2 fm, for example, v.p. reduces the wave
function by a fracti, onal amount which must fall
betweeri 0.0056 and 0.0073, @nd the amount of
this reduction decreases smoothly with increasing
distance. These bounds are probably not optimal,
in the sense that there may not exist nuclear po-
tentials which yield the extreme values.

Since most of the contribution to the proton-
proton reaction matrix element comes from
separations greater than 2 fm, comparison of
Figs. 2 and 4 makes it very likely that the effect
of v.p. on this matrix element is to reduce it by

1.71
7.14

0.51
7.30

3,82
7.05

(0.5+0.1)pp. (Double these numbers for the reac
tion rate. ) But we have not been able to.make
this argument ironclad by finding similar bounds
right inside the unknown nuclear potential.

By applying the Schwartz inequality directly to
the matrix element" with vacuum polarization
included, we find that 1.V&&' (E=12 keV)&V. 2,
assuming the. nuclear. potential is,known for x & 3
fm.
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