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Hyperspherical harmonics and electric dipole sum rules
for the triton
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We use expansions in hyperspherical harmonics to calculate electric dipole transitions in the triton photoeffect.
Gunn's ground state wave function is used with a Born approximation; the resulting cross section is compared
with sum-rule calculations. We also use Ballot's ground state wave function for the spin-independent Volkov

potential, in Born approximation, and combined with a continuum wave function for grand orbital one for the
Volkov potential assumed to have Wigner character. The latter assumption gives an integrated cross section

only 6% larger than the Thomas-Reiche-Kuhn sum rule; i.e., the severe truncation has only a small effect.

NUCLEAR REACTIONS Triton; calculated photoeffect; hyperspherical
harmonics; sum rules.

I . INTRODUCTI ON

The trinucleon photoeffect for electric
dipole transitions has been calculated by
Gunn and Irving', Delves', Barbour and
Phillips', Fabre and Levinger"'' and Gib-
son and Lehman' using different choices
of the potential and. different formalisms.
In this paper we use the hyperspherical
formalism of Delves as extended by Simo-
nov. an/ Fabre'. Ne choose Volkov's
model potential , which is independent of
the spin or the parity of the nucleon-
nucleon pair, so that we can compare our
integrated cross section with the Thomas-
Reiche-, Kuhn (TRK) sum rule''. The actual
nucleon-nucleon potential does depend on
spin and parity, and also contains a non-
central force; therefore, we do not ex-
pect our model calculation to agree with
experiment.

In the next section expansions in hyper-
spherical harmonics (h. h. ) are introduced
and used to evaulate several dipole sum
rules. -In, the thi:rd section Gunn's Born
approximation calculation for three-body
breakup of the trinucleon is repeated and
the results compared with sum rules. The
Born approximation is also applied to the
triton ground state wavefunction'' for
Volkov's potential. In the fourth sec-
tion the triton photoeffect is calculated
using Volkov's potential for the continu-
um, truncated at the lowest hyperspheri-
cal harmonic of grand orbital one; we
find an integrated cross section only 6&
higher than that given by the TRK sum
rule. Our results are discussed in the
final section.

II. PHOTOEFFECT USING HYPERSPHERICAL
HAP, t"ION I C S

The triton cross section for electric
dipole transitions from initial state

~

i& to final state
~

f& with density of
states pf is

da(E ) = (4v'/4')E &iIDI f&'pf.
Y Y

The photon, assumed polarized along the
z-axis, interacts with the proton, chosen
as the third nucleon. The dipole opera-
tor D is given by

D = e(zg — 2), (2 2)

where Z is a component of the center of
mass of the triton.

Moments of the cross section for the
photoeffect are defined by

1
OO

a = a(E ) E PdE
p Y Y Y' 0

The moment for p = -1 is found from eq.
(2. 1) by summing over all final states

(4vr /fic)&i(D
)
i&. (2.4)

where H is the Hamiltonian. Applying the
Heisenberg relation twice gives

ao = -

(2~'telic)&i~

[[H,D), D]
~

i&. (2.6)

If the potential energy term in H commutes
with D, only the kinetic energy - p~ ZM

contributes to ao . Eq. (2. 6) gives the
nuclear TRK result.

a, = (4vrz /3) n g /M) = 39. 8 HeV mb. (2.7)

The Heisenberg relation is also used
twice in obtaining the first moment

Note that o ~ is independent o f the shapes
of the wavefunctions of the final states

we use only the property that the
f& form a complete set. Eq. I2. 4) serves

as a check on the numerical accuracy of
our calculations.

The TRK sum rule is found using the
Heisenberg relation

(2.5)
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o &
= (4v'/fic)

I (2.8) polar coordinates r and C:

Again assuming that the potential energy
commutes with D, we have the simple result
that o~ is proportional to the expectation
value of the kinetic energy.

Jacobi coordinates are defined following
Fabre's notation as

Sin CI,

E = r cos 4. (2.10)

Fabre and l'torse and Feshbach' give the
solution of the six-dimensional Helmholtz
equation

I3' (rg
as

(7~' + V ')y(r, Q) + k'4 (r, Q) = 0,

where 0 is the position of the center of
mass. Following Morse and Feshbach' , and
Fano,'' g and n, the two vectors in three
dimensional space, are expressed in terms
of one length r and five angles . (8~, $~, 8~,
g, , 4 ) which are collectively designated
as A. 9~ and II)j are the angles of the unit
vector ( in spherical polar coordinates,
and 8 2 and $2 are the angles of q. The
lengths g and q are transformed to the

g(r, Q) = (kr) '
JL 2(kr) H

L (Q) (2.11)

where the kinetic energy of the nucleons
is E = %z kz/M. Here Fabre's "grand orbi-
tal" L = R& + R2 + 2n, where n is a non-
negative integer. The hyperspherical
harmonics H , called K-harmonics by
Simonov~, are given by

mg mg
H „)(Q) = N cos '

4 sin '
C P ' '' ' *(cos 24') Y& (8~,4& ) Y (8z, fz).n Ry

(2.lla)

P ' '' ' ' (cos 24) is a Jacobi polynomial.
n

The notation [LJ stands for the five quan-
tum numbers (L, /. &, m, , Ez, m2). For the
triton ground state, Simonov chooses a
linear combination of the H(L) giving
total orbital angular momentum zero, even
parity, and complete symmetry for particle
exchange. These linear combinations are
designated y (Q). Only even L are in-(o)

eluded in y (Q), since the parity(o)

(-1) ' ' is just (-1) from the defini-f)+g
tion of the grand orbital. Simonov shows
that the terms with L=2 are missing in the
y (')(Q).

L
Simonov~, Erens' " and Beiner' ' used h. h.

to find the triton ground state wave func-
tion. The wave function

~
i& and. the poten-

tial energy U were expanded in h. h. ; the
coefficient of a given h. h. was r ' ' uL(r)
for the wave function, and a "hypermulti-
pole" VL(r) for the potential. Substitu-
ting these expans ions into the Schroedinger
equation, they obtained an infinite set of
coupled differential equations for uL(r),
which they truncated at a maximum grand
orbital LM.

Delves' and Fabre4 pointed out that the
dipole operator D from Eq. (2. 2) is a h. h.
with grand orbital one,

I I

D = eq /3' = e(v/18) *r Hl'8 1(Q) . (2.12)

The three subscripts give the values of L,
and L2 respectively; the two super-

scripts give the values of m& and m2.

g. (r, Q) = u (r) HD'8 8 (Q)r

( )
-s/2 -s/z

0 (2.13)

The f inal free wave function is expanded
in an infinite series of h. h. (see Ref.
4, Eq. (2.14)). The single term A which
gives a non-zero matrix element for elec-
tric dipole transitions is

A = (2~)' iJp(kr) (kr) 'H '„(Q).H ' (Q ).
7

(2.14)
The integrations over the five-dimensional
d'0 are done analytically. Define the
radial matrix element

Br ~ f
pOO

I

u (r) r (mkr/2) ' J& (kr) dr. (2.15)

The density of final states is

pf = —,'(M/%z) (2v) k"d'Q (2.16)

Substitution of Eqs. (2.13) through (2.16)
into {2.1) gives the differential cross
section

Since the h. h. obey the same "triangle
rule" as the spherical harmonics, electric
dipole transitions take us from a trunca-
ted expansion for ~i& to one for ~f& (or
vice versa). Specifically, if, following
Gunn' we use only grand orbital zero in
the h. h. expansion of

~
i&, then transi-

tions take us to
~

f& with grand orbital
one. Alternately, if, following Fabre"
we truncate the expansion of ~f& at grand
orbital one, then only transitions from
grand orbital zero contribute for the
initially completely symmetric S state.

The initial state wave function is
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« /d'Uk = (»/9)o(E /k) (&4/di') (r,f)'IH1'0 1 {Uk) i' ~ (2.17)

Integration over the five-dimensional
solid angle d 0k in momentum-space gives
the total cross section

o = (2vr/9) n(E /k) (M/fi ) (r. f) ~. (2.18)

Ne note that our cross section is twice as
large as Fibre's", since we use both
isospin final states. Also, Fabre uses a
mixed symmetry S' state in g. , and there-1'

fore includes u2(r) in the calculation of
the radial matrix element r. f. For our
spin- independent potential, u2 (r) = 0.

The above calculations should be modi-
fied to include the effect of a hyperpo-
tential U~ (r) acting in the final
state with grand orbital one. The wave
function u&(r) obeys the differential
equation"

(-d'/dr' + 35/4r')ug(r) + (Mg')Ug { ) (r)ug (r) = k'ug (r). (2.19)

At large r, U~ (r) is negligible. The(1)
wave function is normalized to an asymp-
totic solution

u, (r) = {vkr)/2)'(cos 6 J, (kr) — sin 8 Y3(kr)).

(2. 20)

Here 6 is the phase shift for three-body
to three-body scattering''"-''". This wave
function is used in (2. 15) to evaluate the
radial matrix element r. f.3.f

For calculation of wave function, dipole
matrix elements, and cross sections, it is
convenient to truncate the wave function
expansions in h. h. . However, for sum rule
calculations of the integrated cross sec-
tion ao, it is more convenient to truncate
the h. h. expansion of the potential energy
V(r, Q) . Suppose we use the same potential
for both initial and. final states; then we
should find agreement with the TRK sum
rule. But if we use different potentials
for the initial and final states, then the
potential V does not commute with the di-
pole operator D, giving. us an extra term
in Eq. (2.6) .

The sum rules (2. 4), (2. 6) and. (2. 8) fora, , ao, and a& respectively, can be eval-
uated using h. h. For the first one, (2.12)
is used. to express the dipole operator in
terms of p . For a completely symmetric

z
S state,

(2.21)

Expanding the initial wave function in
h. h. and using their orthonormality to
integrate over the five angles,

(v2/9)a&il r~
l

1&

(v /9)n (uo + u„+ . . . )r~ dr.
Q

99. 3'& of the wave function' '.
Equation (2. 7) gives the model- indepen-

dent value of the integrated cross sec-
tion for a potential that commutes with
the dipole operator. In Born approxima-
tion, the double commutator of the poten-
tial energy and the . dipole operator in
Eq. (2. 6) gives

&il [[v,n], nl li& = 2&iI»'l i&.

Since both V and li& are completely
symmetric,

(2.23)

o = (4v /3) n((% /Mj - &ilVr li&/6).

(2. 24)

If we make a different truncation of
the potential for states li& and lf&, we
need to replace the total potential V in
(2. 24) by the difference V' for the two
states. For instance, the Volkov poten-
tial is truncated at about 24 for state

i& while in Section IU the final state
f& is truncated at L = 0. Then

24
V (., 0) = ( U{') (.). y (') (n).

L=4 L L L
(2.25)

III. BORN APPROXIMATION GALGULATIONS

The results of the previous section are
applied to find the. Born approximation
cross section o (E ), the moment o , andB B

"1
the integrated cross section ao using
two different ground state wave functions:
the analytical form of Gunn-Irving' and
the numerical results by Beiner~~ for
the Volkov' potential.

Gunn's ground state wave function re-
written in h. h. contains only grand
orbital zero:

I

u, {r) = (8/3) ' u'r' exp{-ur) . {3.1)

(2.22)

This infinite series converges very rapid-
ly: a single term contributes about 99'.
of the sum rule, because its weight is

We assume — h p /M = the
With the matrix element
from (2.1S), Eq. (2. 18)
suit

triton energy.
r-f, evaluated1f'
gives Gunn's re-
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o (E ) -- (200m'/3) (x(N/fp)E u"k'(u' + k')
Y "Y

(3.2)

(3.3)

-&Pu /dr2 + (15/4r')u + u'u + (M/fP)v(r)u =0.

»Jith these analytical expressions, a
can be found in analytical form using
either the def'inition (2.3) or the sum
rule result (2. 22). They agree".

The two calculations of the integrated
cross section are done in an analogous
manner. Using (2.3) and (3.2),

oo = (10~'/3) o(fi'/M).

Note that go is 2. 5 times that of the TRK8
sum rule, (2. 7); the extra integrated
cross section comes from the expectation
value of Vr2 in (2.24). Gunn's ground
state potential V(r) is found by substi-
tuting his wave function into the differ-
ential equation for the triton,

I

uo(r) = 2. 15 r' K2(ur) exp(-8 /r ). (3.6)

The parameter 5 = 5. 7 fm, and K2 is a
Kelvin function.

The matrix element r. f of (2.15) was

evaluated numerically, giving the cross
sections shown in Table I. The unusual
values of photon energy were chosen to
facilitate numerical integration of the
cross section to obtain i , , ao and a~.
Using Stagat's'' 10-point Gauss-Gegenbauer
integration formula

~OO 10
f(E )dE = ) w. f(E )

i o Y Y i=1 Yi
(3.7)

potential, using Beiner's numerical solu-
tion for the triton .ground state wave
function, u 0

Beiner and Fabre (private communication)
have provided a tabulation of u (r) out to0
15 fm. u was extrapolated to large r0
using

Thus,

V(r) = — (fi'/M) (3/r' + 3u/r) . (3.5)

Note the "long tail" on the potential, as
compared to the 1/r' tail for a short-
range two-body potential. This long tail
is due to the incorrect behavior of
Gunn's wave function at large r: u 0
should fall off e.s an exponential, with-
out his extra r' ' factories . Substitut-
ing (3.5) into the sum rule equation
(2. 24) gives the result (3.3) for the
integrated cross section.

We now turn to a somewhat more realistic
example, Volkov's spin-independent

Stagat used. the behavior of the asymptotic
forms of the integrand at both lower and
upper limits. The weights w. are given

j-
in Table I .

The cross sections given in Table I
were used with these weights to give the
moments shown in Table II. Comparison
with the sum rule values serves as a check
en the accuracy of our calculations. From
(2. 22), o , = 2. 87 mb, in excellent agree-
ment with our result found from the cross
sections.

The sum rule (2.24) for the integrated
cross section was evaluated by expanding
both the potential and the wave functi'on
I

i& in h. h. . Thus,

r, DID& = u (r)Y( )(0) + u~(r)Y~( )(A) + (3.8)

3/2 (o)V(r, n) = 3V (r) Y (0) + 3 V, (r) Y„)(0) + . . . (3.9)

The factor 3 enters since there are"hypermultipole" VL(r) is defined by Fabre
3 nucleon pairs. .

Substitution and integration over the 5 angles gives

& i
I
vr~

I
»

Joo

~ OO

(uo + . . . )Vo(r)r dr + 6(3) (uouqvqr dr + (3.10)

These integrals were evaluated numerically, using the h. h. expansion for Volkov's two-
body potential, V(r. .):13

V(r . . ) = 144. 86 exp (- (r . ./0. 82) ') - 83. 4 exp (- ('r . . /1. 60) '),
13 13 3-3

V2K(r) = 289. 72 exp(-x) IK 1(x)/x — 166.8 exp{-x') IK 1(x')/x',
x = —,

' (r/0. 82) '; x' = ~ (r/1. 60) '.

(3.11)

(3.12)
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Table I
Cross s'ection for triton photoeffect

Photon Energy Born Approximation
E (MeV) Weighta B( b)

Cross Section
a (mb)

Phase Shift
(deg)

8.84
9.51

10.61
12.33
15.02
19.38
26.99
41.79
76.92

201.7

0.501
0.867
1 37
2.13
3.36
5.6Q

10.2
21.2
56.7

262.

0.0028
0,035
0.180
0.563
1.24
1.98
2.13
1.52
0.426
0.00196

0.018
0.36
2.46
6.29
4.08
1.33
.296
.0356

6.88 x 10 4

1.10 x 10 4

14.4
28. 3
50.7
88.6

122.6
136.7
137~ 8
129.0
108.8
69.0

a. See Eq. (3.7) .
b. See Eq. (2.20).

Here IK 1(x) is a modified Bessel function.

Evaluating (3.12) numerically and sub-
stituting into (2.24) gives. the numerical result

ap =- 39 8 + 54 1 + 2 4 + . 96.3 MCVmb
B

(3.13)
The first term on the right is the TRK result,
and the latter two are contributions from the two
terms in (3.10). Comparison with

ap = 95.3 MeV mb is remarkably good.B

IV. CALCULATION FOR VOLKOV POTIM'IAL

Another unreasonable assumption is substi-
tuted for the Born approximation: that we have a
Wigncr force, with indentical two-body forces in
the ground and continuum states. We do not ex-
pect agreement with this experiment. Our pur-
pose in performing this model calculation was to
find the effect of truncation of the h. h. expan-
sion for the continuum by comparison with the TRK
sum rule results. The moment a~ was also checked

against sum rule results; the value of a-~ was

used as a check on our numerical accuracy.
The continuum wave function uq(r) is a solu-

tion of (2.19) with normalization (2.20). The

hyperpotential Uq (r) = 3VO(r) where Vo(r) is(1

given by (3.12) for the Volkov potential.

This differential equation was solved
numerically and normalized by comparison with
(2.20) at two large values or r.

Our result for the cross section and the
phase shift are given in Table 1. (These
numerical results were given earlier at the
Delhi conference, where the cross section for
final isospin 3/2 states is just half the value
for the total cross section evaluated in this
paper. )

The effect of using the potential in
the final state is shown in Table I:
the broad peak for the Born approximation
is narrowed and pulled to lower energy.
The attractive potential for the final
state wave function "pulls in" the wave
function, giving a significant increase
in the cross section at low energies. At
high energies, this "pulling in" leads to
destructive interference so the calcula-
tion with a potential gives a lover crbss
section than that for Born approximation.
The large values of the phase shift also
show that (for this model) the Born
approximation can be expected. to be rather
poor ~

Table II shows that the integrated
cross section ao = 42. 2 MeV mb is only 6~0

higher than the TRK value of 39.8 MeVmb .
That is, our drastic truncation to a
single term in the hypermultipole expan-
sion of the final state potential is
surprisingly accurate. The results of

Table II
Comparison with sum rules

Moment Born Approximation

Cross Section Sum Rule

Volkov Potential
Cross Section Sum Rule

a-1 2.87 mb 2.87 mb 2.86 mb 2.87 mb

ap 95.3 MeV mb

ag 4200 MeV~ mb

&i&-i/(&o)

96.3 NeV mb 42. 2 MeV'mb 42.2, 39.8 MeU mb

677. MeV mb 580 MeV mb

1.09

a. See Eq. (2.3).
b. See Eqs. (2.7), (2.22), (3.13), and (4.1).
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a, = (8v'/9)n(fi'/t'j)&i~T~ i&. (4.1)

The ground state expectation value of the
kinetic energy operator T is evaluated
using T = H — V(r, A). The hypermultipole
expansion of V(r, 0) was truncated at the
first term. Numerical evaluation gives
&i~T~ i& = 21.9 '.4eV, and from (4.1),
oq = 580 MeV mb . Comparison with 677
MeV mb in Table II shows that our cross
sections give a value of og 17o higher
than the approximate sum rule result.

Table II also shows o,o, /(o~) '
evaluated from the cross sections. This
quantity is always larger than unity.
It is close to unity for the Volkov

neglected terms can be studied in two
different ways. First, we can calculate
the final state wave function using
coupled h. h. with grand orbitals of one
and three. Fang finds'' that the cross
section curve is shifted to a slightly
lower peak energy, a , is unchanged, and

o 0 is decreased from our 42. 2 MeV mb to
41.0 MeV mb . Second, we can evaluate the
series (3.13), this time omitting the
term proportional to the expectation value
of 3V~r , since we included the term
3VO (r) in f inding the f inal state wave
function u (r). This sum rule calculation
gives oo = 39.8 + 2. 4 + . . . = 42. 2 'YIeVmb.
The agreement with 42. 2 MeVmb from the
cross sections is quite good.

The cross section curve gives o~
677 MeV' mb . Evaluating the sum rule
(2. 8) for a potential that commutes with
the dipole operator gives

potential, since the photoeffect curve
has a narrow resonance''.

V. DISCUSSION

The calculations of electric dipole
transitions in the photoeffect for the
Volkov potential, truncating the
continuum wave function to a single term,
show that this truncation is surprisingly
good. While the Born approximation gives
an integrated cross section 140'& larger
than the Thomas-Reiche-Kuhn value,
Table II shows that the use of a single
h. h. in the continuum reduces the
integrated cross section to a value only
6o above the TRK value This six percent
difference is understood in terms of
the expectation value of neglected terms
in the h. h. expansion of the potential
energy, starting with grand orbital four.

Convergence may be poor for the h. h.
expansions of V(r, 0) and. &f(r, 0) for the
potential energy and continuum wave
function. However, calculations of the
total cross section for the photoeffect
show rapid convergence of the h. h.
expansion, due to the dominance of the
lowest term uo(r) in the ground state
triton wave function
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