Assignments of J^{π} in ⁵⁸Ni via (α, α') and $({}^{6}Li, d)$ reactions

G. Guillaume,* F. C. Jundt,* H. W. Fulbright, J. C. D. Milton,[†] and C. L. Bennett

Department of Physics and Astronomy and Nuclear Structure Research Laboratory,[‡] University of Rochester, Rochester, New York 14627 (Received 22 November 1976)

Measurements of ⁵⁸Ni(α, α')⁵⁸Ni angular distributions have been extended to small angles and disagreements between J^{π} assignments based on earlier (α, α') and (⁶Li, d) measurements have been explained and resolved.

NUCLEAR REACTIONS ⁵⁸Ni(α, α'), $E_{\alpha} = 30$ MeV; measured $d\sigma/d\Omega$, deduced J^{σ} for 5.59 and 6.02 MeV levels.

It has been remarked¹ that the results of a study of the ⁵⁴Fe(⁶Li, d)⁵⁸Ni reaction are inconsistent with the spin assignments of two levels of ⁵⁸Ni arrived at earlier via several studies of the ⁵⁸Ni(α, α')⁵⁸Ni reaction. In the case of the 6.02 MeV level the observed (α, α') angular distribution had been interpreted as indicating $J^{\pi} = 3^{-2}$ However, the ⁵⁴Fe(⁶Li, d)⁵⁸Ni reaction produced a clear L = 1 angular distribution indicating a 1⁻ assignment.¹ In the case of the 5.59 MeV level, three different (α, α') results were available: Bruge *et al.*² assigned it $J^{\pi} = 2^{+}$, Jarvis *et al.*³

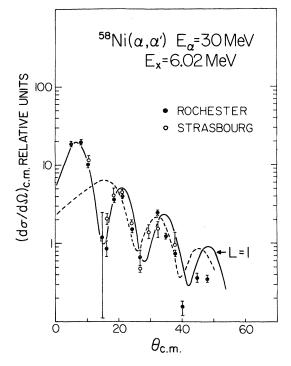


FIG. 1. Angular distribution for excitation of the 6.02 MeV state of ⁵⁸Ni. Curves: solid line zero-range DWBA with L = 1; dashed line same, with L = 3. The distinction between the curves is clear at angles less than 20°. The DWBA parameters used were Set 2 of Ref. 4.

found $J^{\pi} = 4^{*}$, and Inoue⁴ suggested unresolved J = 4 and J = 5 levels. In this case the (⁶Li, *d*) data were found consistent with L = 5 or $L = 6.^{1}$

In an attempt to resolve these disagreements we have made new (α, α') measurements (at 30 MeV), extending the angular distributions down to $\theta_{1ab} = 5^{\circ}$. Two sets of measurements were made: the first at Strasbourg, with a Browne-Buechner magnet and photographic plate recording; the second at Rochester, with an Enge split-pole spectrometer and a spark counter data acquisition system.⁵ The Strasbourg data were normalized to the Rochester data, angle by angle, usually via the strongly excited 4.475 MeV $J^{\pi} = 3^{-}$ level, but when that line was saturated, via the 4.40 MeV

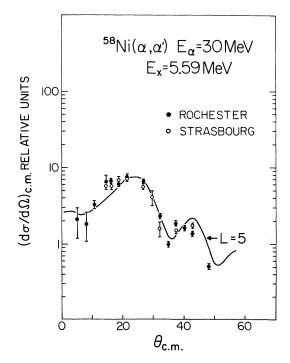


FIG. 2. Angular distribution for excitation of the 5.59 MeV level of ⁵⁸Ni. The curve: zero-range DWBA with L = 5. (Same DWBA parameters as in Fig. 1.)

15

1156

 $J^{\pi} = 4^{+}$ level.

For the 6.02 MeV level the results in the region $\theta_{c.m.} < 20^{\circ}$ (Fig. 1) are in excellent agreement with the L = 1 distorted wave Born approximation (DWBA) curve and in clear disagreement with the L = 3 curve, while in the region $\theta_{c.m.} \ge 20^{\circ}$ a clear distinction is not seen. We conclude that the $J^{*} = 1^{-}$ assignment is correct and that the 3⁻ assignment was made erroneously because the data from the earlier (α, α') measurements did not go below about $\theta_{c.m.} = 18^{\circ}$, hence did not allow unambiguous discrimination.

For the 5.59 MeV level the results (Fig. 2) are less striking. A fair fit is found with an L = 5 DWBA curve. No other *L* value gives a reasonably

good fit. We conclude that if a single level is involved it must have $J^{\pi} = 5^{-}$. The possibility that another weakly excited level is present—perhaps with $J^{\pi} = 2^{+}$ —is not excluded.

In summary, it has been shown that the (α, α') and $({}^{6}\text{Li}, d)$ results are consistent with each other, that the 6.02 MeV level of ${}^{58}\text{Ni}$ has character 1⁻, and that a level at 5.59 MeV has character 5⁻. These results illustrate that the identification of 1⁻ states is much more readily made via $({}^{6}\text{Li}, d)$ reactions (when they are possible) than via (α, α') , because of the distinctive character of the angular distributions from the former and because of the experimental difficulties usually encountered in making (α, α') measurements at small angles.

*Present address: Laboratoire de Physique Nucléaire et d'Instrumentation Nucléaire, Centre de Recherches Nucléaires et Université Louis Pasteur, Strasbourg, France.

¹H. W. Fulbright, U. Strohbusch, R. G. Markham, R. A.

Lindgren, G. C. Morrison, S. C. McGuire, and C. L. Bennett, Phys. Lett. 53B, 449 (1975).

- ²G. Bruge, A. Chaumeaux, R. M. DeVries, and G. C. Morrison, Phys. Rev. Lett. 29, 295 (1972).
- ³O. N. Jarvis, B. G. Harvey, D. L. Hendrie, and J. Mahoney, Nucl. Phys. A102, 625 (1967).
- ⁴M. Inoue, Nucl. Phys. A119, 449 (1968).
- ⁵H. W. Fulbright, R. G. Markham, and W. A. Lanford, Nucl. Instrum. Methods 108, 125 (1973).

[†]Present address: Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada.

^{\$}Supported by a grant from the National Science Foundation.