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The problem of a single quantal particle moving in a time-dependent external potential well is formulated
specifically to emphasize and develop the fluid dynamical aspects of the matter flow, This idealized. problem,
the single-particle Schrodinger fluid, is shown to exhibit already a remarkably rich variety of fluid dynamical
features, including compressible flow and line vortices. It provides also a suAicient framework to encompass
simultaneously various simplified fluidic models for nuclei which have earlier been postulated on an ad hoc
basis, and to illuminate their underlying restrictions. Explicit solutions of the single-particle Schrodinger fluid
problem are studied in the adiabatic limit for their mathematical and physical implications (especially
regarding the collective kinetic energy). The basic generalizations for extension of the treatment to the many-
body Schrodinger fluid are set forth.

NUCLEAR STRUCTURE Fluid dynamical formulation of quantum mechanics, single-
particle behavior in nuclear collective motion, fission and heavy-ion collision, iner-

tial parameter, adiabatic approximation.

I. INTRODUCTION

The surge of interest in recent years in nuclear
heavy-ion reactions is at one time the response to
newly available experimental capacity and simul-
taneously the embodiment and the driving force for
a shift of attention towards the dynamical physics
of nuclear matter flow, rather than the "struc-
tural" properties of low-lying nuclear eigen-
states. ' ' The present work' ' follows from this
viewpoint: It is an attempt to begin again with the
simplest of problems and systematically to seek
out and emphasize those features of relevance to
the matter-flow dynamics.

The choice of a single nucleon as a first object
of study in such a dynamical context, is supported,
we believe, by the central lesson of nuclear many-
body physics: The Pauli principle implies the
shell model. ' " lt follows that an adequate de-
scription of matter flow in nuclei must encompass
also matter flow in the shell model limit, and that
to build such a description one ought to understand
the matter flow of the single quantal particle. This
paper attempts such a beginning.

In Sec. II, the idealized single-particle Schro-
dinger fluid is defined by the time-dependent
Schrodinger equation for a single particle moving
in an externally driven time-dependent potential.
The fluid-like properties of such a time-dependent
Schrodinger problem are. extracted by use of the
ansatz that the solution 4 is in polar form. ""
The unique (irrotational) velocity field vs of the

wave function and the fluid density p emerges as a
natural consequence.

In Sec. III, alternative velocity fields are con-
sidered which conveniently summarize the con-
tinuity relation, and satisfy other specified condi-
tions, but in contrast to v+, are not fixed uniquely
by the solution %. In Sec. IV, the line vortex sin-
gularity structure of v& is studied, and seen to be
strikingly analogous to the classical irrotational,
but compressible, fluid flow.

Section V utilizes the adiabatic approximation to
exhibit a mathematical trap in the most straight-
forward direct iteration method of solving the
Schrodinger equation in fluid dynamical form. An
improved technique is developed to obviate the
obvious immediate difficulties, but leaves still
some basis for residual doubt about its own con-
vergence. Section VI considers physical implica-
tions in the adiabatic approximation for collective
momenta and energy. For the latter, the variety
of forms which the alternative velocity fields of
Sec. III allow, are explored. Section VII sum-
marizes different special cases of single-particle
Schrodinger fluids of interest; some relationships
among them are discussed. Section VIII outlines
the appropriate many-body generalizations of the
fundamental quantities of the problem.

II. FLUID DYNAMICAL EQUATIONS

We employ the semiclassical approach, i.e. ,
we assume that each nucleon in the nucleus is
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2

H(x, p; n(t)) = + V(x; n(t)) . (2.1)

moving in a single-particle potential V(x; n(t)),
which is deforming with time t, through its pa-
rametric dependence on a classical shape variable
n (t). Here n(t) is assumed to be an externally pre-
scribed function of t. Thus, the Hamiltonian for the
present problem is given by

= -gyes ——gVS' VS (2.6)

We call Eq. (2.6) the continuity equation because
of the natural interpretation we now discuss.

which we refer to as the "dynamical modification
potential"

The single-particle wave function 4(t), which de-
scribes the motion of a nucleon, satisfies the
time-dependent Schrodinger equation

H(x, p; n(t))4(x, n(t), t) =i& —4'(x, n(t), t) . (2.2)

Rave function in the polar form

To obtain a fluid dynamical description of the
wave function 4(x, n(t), t), we use the polar form
of the wave function following Madelung. " We
first isolate the explicit time dependence in
4'(x, n(t), t) by an energy phase factor, i.e. , we
write

t
@(x,n(t), t) = tt (x, n(t) ) exp —— c(n(t') )dt'

h

(2.3)

where the intrinsic energy e(n(t)) of the nucleon
depends on time through n Then we. write the
complex wave function P(x, n(t)) in the polar form

g(x, n(t)) = &f&(x, n(t)) exp ——mS(x, n(t)), (2.4)
h

where P(x, n(t)) and S(x, n(t)) are assumed, with-
out loss of generality, to be real functions of x
and n. Finally, we assume p to be positive defi-
nite, thereby making the definition (2.4) unique.

The substitution of 4 in Eq. (2.2) gives the equa, —

tion for g:

Interpretation of the probability as a fluid: Continuity equation

The physical interpretation of Eq. (2.6) as the
continuity equation becomes, when we identify the
probability density of the single particle as the
square of the amplitude

~ P ~' and recognize that
Eq. (2.6), when multiplied by 2p, becomes the
equation of continuity familiar from classical fluid
dynamics,

8p
V (pv)=- —,

8t (2 9)

if the velocity field v is identified with the negative
gradient of S.

v= v@,
—:-VS. (2.10)

(The notation v~ indicates that this field is irrota-
tional by construction: V x v —= 0.)

Because of the continuity equation (2.9) we can
interpret the changing probability distribution of
the single particle as a fluid of density p whose
motion is described by the velocity field v of Eq.
(2.10). We shall refer to this fluid as the singLe
particle Schrodinger fluid.

Relationship of the velocity field and the current

Since the velocity potential $ is defined as pro-
portional to the phase of the wave function P as in
Eq. (2.4), we can invert this equation to obtain an
expression for S in terms of P:

H(x, p; n(t))0(x, n(t)) —i@—0(x, n(t))
ihS= ln —.
2m

(2.11)

= ~(n(t))4(x, n(t)) (2 ~)

The substitution of the polar form of g into this
equation yields from its real and imaginary parts
a pair of coupled equations for g and S:

[(V4*)~4*—(VP)~tt j. (2.12)

From Eqs. (2.10) and (2.11), the velocity field
can be expressed as

1 8
2/V S+VQ 'VS=

8t (2.6)
On the other hand, the current of the single-
particle state ~g) is defined as

and (IVY* P*vq) . (2.13)

8S 1H-m —-- VS VS
8t 2

(2.7)

We may call Eq. (2.7) a modified Schrodinger equa-
tion because it differs from the usual time-inde-
pendent Schrodinger equation by an added term

It follows by comparing Eqs. (2.12) and (2.13) that

J= pv (2.14)

which is exactly the relationship between current
and velocity in classical fluid dynamics.
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Euler's equation and the equation of state

Qf course, the continuity equation contains only
the kinematic part of any fluid dynamical system.
To describe the dynamical behavior of the system
completely, an equation of motion (which can, in
various approximations, be the Euler's equation,
the Navier-Stokes equation, or other equations in-
volving higher order spatial derivatives, such as
the Burnett equations, 'o or their a.nalogs) a.nd an
equation of state have to be introduced.

For a nonviscid fluid which admits a pressure
p, the equation of motion is Euler's equation

—+(v V)v= -Vp/p.
8$

(2.15)

For ideal fluids (in which the conductivity and vis-
cosity are negligible), the gradient of the pressure
p is related to the enthalpy per unit mass zv of the
fluid as [see, e.g. , Landau and Lifshitz" ]

VP/p = Vxu. (2.16)

Then Euler's equation, Eq. (2.15), can be written
in the form

8v—+(v V)v= -Vw.
8t (2.17)

A first integral of Eq. (2.17) can be obtained as

8S———,(VS)' = zo,8t (2.18)

where S is the velocity potential for v (v= -VS).
The integration constant in Eq. (2.18), chosen here
to be zero, merely sets the zero of the scale of
enthalpy, the a,bsolute value of which has no physi-
cal significance. But the left-handed side of Eq.
(2.18) is proportional to the extra, term Vd in the
modified Schrodinger equation. Hence, if we as-
sume that Euler s equation in the form (2.17) holds
for the single-particle Schrodinger fluid, then the
modified Schrodinger equation takes the form

(H —ms@)P = eP, (2.19)

where zv is now the "enthalpy" of the single-particle
Schrodinger fluid.

Equation (2.19) relates the density ~g ~' of the
single-particle Schrodinger fluid with its internal
properties H and e, and its fluid dynamical state
via so(S). Thus it fills the role of equation of state
for the single-particle fluid, although of a type
somewhat simpler than most equations of state
since this particular fluid lacks any quantity anal-
ogous to the temperature.

Hence, we have a set of fluid dynamical equa-
tions completely analogous to those which describe
a classical fluid. This set consists of the continui-
ty equation [Eq. (2.6) ], the Euler equation [Eq.
(2.17)], and an equation of state [Eq. (2.19)]. By

derivation, their content is precisely that of the
original time-dependent Schrodinger equation.

Irrotational compressible flows

The velocity field v, as a gradient (2.10) of the
scalar function S(x, o), is irrotational (V && v=0)
whenever v is differentiable. We therefore signify
this velocity field (as distinguished from other
velocity fields to be defined later) by v&. The
function S(x, o.) which gives the complex pha. se of
the wave function 4 in Eq. (2.4) serves as the ve-
locity potential for this irrotational single-particle
velocity field v.

Since S is completely defined (up to at most an
additive time-dependent spatial constant) by the
wave function P, the divergence of the velocity
field,

2V ~ v =-V S, (2.20)

Physical nonobservability of the velocity field

The description of the density
~ P ~

' as a classi-
cal fluid implies that we are assigning labels to
each "mass element, "

~ g ~'Axhyhz, and consider-
ing its motion in time, as described by the velocity
field v. However, in quantum mechanics, the
quantity

~ g ~'b, xb,yhz, is interpreted as the prob-
ability of finding the nucleon in the volume ele-
ment hxhyAz. It would violate the uncertainty
principle to attempt to define measurably the
motion of such a microscopic probability element
of the state P, or to attribute to assertions about
its motion in time the implication of measurability.

We therefore view the velocity field which de-
scribes the motion of the probability fluid as a
mathematical object, rather than a physically
observable quantity. (The nonobservability of the

is also completely determined by the wave function,
which is determined, in turn, by the Hamiltonian.
Hence, the choice of the single-particle Hamil-
tonian and its time dependence will determine
whether the velocity field v is incompressible
(V v~ =0).

This distinguishes the single-particle Schro-
dinger fluid from the fluid studied by Hill and
Wheeler" (see Appendix A) for which they a.s-
sumed irrotational (and implicitly, incompres-
sible) flow. By virtue of this assumption their
study is applicable only to very limited kinds of
collective motion. The present formulation is
specifically not restricted to incompressible
flows, but allows also irrotational, but compres-
sible, velocity fields to be described if they should
arise naturally out of the Schrodinger equation, as
they do in some important specific cases" to be
discussed in paper II.



SING LE-PARTICLE SCHRODINGER FLUID. I. FORMULATION 1129

velocity field is discussed more rigorously in Ap-
pendix B.) It follows that the value of the field v
and, indeed, of the whole fluid dynamical inter-
pretation, must derive solely from the insight and
convenience which they offer for handling and
computing the physically observable quantities,
such as momentum and energy, which are valid
objects of experiment.

In addition, it follows that since the velocity
field in this fluid dynamical description of the
wave function is physically unobservable, we are
free to consider other velocity fields which might
prove convenient, and which are consistent with
the continuity equation, i.e. , which describe cor-
rectly the change of the probability

~ P ~

' in time.
Thus we shall choose later to consider in addition
to the irrotational velocity field v, other velocity
fields which satisfy the continuity equation (2.9),
in spite of the fact that only the irrotational ve-
locity field v~ is uniquely related to the phase of
the wave function, when such fields promise in-
sight and simplicity for the description obtained.
Some of these other velocity fields will be intro-
duced and discussed in the next section.

gp
pV v+ Vp v= ——.

eg
(3.1)

Viewed as an equation for v, this single scalar
equation is insufficient to determine the three
functions of position which define this vector field.
Thus, the solution of (3.1) is uniquely prescribed
only when additional conditions are imposed, as,
for example, the irrotational assumption (2.10)
which reduces (3.1) to a single equation for the
(scalar) velocity potential S, which (together with

III. ALTERNATIVE VELOCITY FIELDS

The irrotational velocity field v~ of (2.10) is
uniquely prescribed at each time by the wave func-
tion g. The (scalar) continuity equation (2.9) for a
prescribed time-dependent density function p un-
derdetermines the (vector) velocity field v. It
follows that many velocity fields might exist which

obey continuity.
In this section, we consider some of these ve-

locity fields' other than the unique irrotational
velocity field which follows from the wave function

These velocity fields satisfy the continuity
equation (2.9) only and have no direct relationships
with the dynamical part (2.7) of the Schrodinger
equation. Nevertheless they prove useful in ex-
pressing some dynamical quantities such as the
collective kinetic energy.

Nonuniqueness of solution to continuity equation.
Between the velocity field v and the density p the
continuity equation (2.9) provides a relationship as

Neuinann bounda, ry conditions) admits a unique

solution.
Taken alone, however, (3.1) admits many solu-

tions v(x) for a given set of boundary conditions,
some of which prove to be mathematically conve-
nient for the discussion of the time-dependent mat-
ter flow. Of these, the incompressible velocity
field, the regular velocity field, and the geometric
velocity field are of some special interest.

A. Incompressible velocity field

The "incompressible velocity field" vo is here
defined'4 to be that solution of (3.1) which satis-
fies everywhere the condition that the density at
any point moving with the flow be constant; i.e. ,
that its total derivative vanish:

Dp 8p=—+v@ 'Vp=o. (3.2)

Note that, together with continuity equation (3.1),
Eq. (3.2) implies that

V'vo =0 (3.3)

whenever pWO. Equations (3.1) and (3.2), or
equivalently, (3.2) and (3.3) serve as the defining
equations for the incompressible velocity' '

field v. .

Nonphysicality ofhomogeneous solution

The subscript N denotes the fact that the velocity
field v„ is "nonphysical" in the present context,
as we now discuss. By (3.2), v„ is incompressible
and everywhere perpendicular to Vp. That is, v~
is parallel everywhere to the equidensity surfaces
of the fluid. Thus the flow described by such a
velocity field cannot change the density distribu-
tion of the fluid.

But for the present problem of the single-par-
ticle Schrodinger fluid, the analogous fluid density
is the quantum probability density of the single
particle. It follows at once that the velocity field

v„ is nonphysical: it always carries the probability

Nonuniqueness of the incompressible velocity field

The two equations (3.2) and (3.3) are still in-
sufficient to define all three components of vo

uniquely.
To specify the arbitrary part of vo, we note that

vo is the solution of the inhomogeneous pair of dif-
ferential equations, (3.2) and (3.3), with the in-
homogeneous term -Bplst. The general solution
is the sum of a particular solution and the general
homogeneous solution, which we denote by v„, of
the problem defined by (3.2) and (3.3) with -8p/st
replaced by zero.
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density identically into itself, effecting therefore
on the quantum probability always an identity
transformation, regardless of the magnitude of
v„. It can therefore be added in arbitrary amounts
to any homogeneous solution of the problem (3.2)
and (3.3), without altering the physical content of
the solution. It follows that the essential physics
of the incompressible velocity field resides in the
particular (incompressible) solution to the con-
tinuity equation; the arbitrariness in any such so-
lution allows the a,ddition of v~ in any amount but
can effect no change in the physical content of the
solution. We can therefore say that the incompres-
sible condition and the continuity equation define a
"physically unique" velocity field vo.

B. Regular velocity field

Another interesting class of solution of the con-
tinuity equation (3.1) satisfies the requirement
that the velocity field v„ is regular, exhibiting no
discontinuities and no singularities in the finite
x space. We call such a velocity field a "regular"
velocity field.

The convenience of such a regular velocity field,
when it exists (and it can be exhibited in some par
ticular cases), will become clear in the discus-
sions of collective kinetic energy in Sec. VI.
There, the collective kinetic energy is expressed
as a sum of one integral over a quadratic form of
two velocity fields and another integra, l which in-
volves the singularities of the velocity field.
Therefore, in any case where the regular velocity
field exists, its introduction all, ows the expression
for the collective kinetic energy to be greatly sim-
plified.

In contrast to the irrotational condition and the
incompressible condition, the condition that vR
be regular is not easily expressible as a mathe-
matical equation, nor do we know at present under
what conditions the regularity condition is suffi-
cient to determine a velocity field, or compatible
with a given collective motion. But when it exists
(as in the case of rotational motion, where va
= Q x r) it offers substantial simplification and
(at least the promise of) an intuitive interpreta-
tion.

Definition of the geometric field

Consider a set of orthogonal curvilinear coordi-
nates ($„$„$,) which depends on the deformation
parameter n(t). Suppose that all the single-pa. rti-
cle wave functions g,. for a specified collective mo-
tion can be written as functions of n through these
coordinates alone with no other a dependence. "
I.e. , assume that

4~=4;(f~(x o') $2(x o') (s(x o')) (3.4)

In general, any point in space wit1 fixed values
of f„f„and f, will move in space as time ad-
vances. The instantaneous local velocities of all
such points constitute the "geometric" velocity
field vG:

v(of„h 253) = x(5g (3.5)

At each point x we can express the geometric
field vo in terms of a set of orthogonal unit vectors
B„and the scale functions h, „(n= 1,2, 3) as iollows:

n=l

(3.6)

Thus, the geometrical velocity field vo is a, single
velocity field, completely determined for all sin-
gle-particle densities ~p,. ~

by the curvilinear co-
ordinates $„, and their time dependence. [Equa-
tion (3.6) is also a convenient way to obtain
vo when the curvilinear coordinates are known. ]

Bg,. ~3 ~ Bg,.
n Bg

n=l n

(3 7)

1 Bg,. (3 6)

Then by Eqs. (3.6) (3.8), we have

Geometrical velocity field as both the regular and
the incompressible velocity fields

We now show that this geometrical velocity field
is a regular incompressible velocity field of the
single-particle Schrodinger fluid; that is, vG is
regular and satisfies the equations (3.2) and (3.3).

To prove Eq. (3.2), we need only to construct
B(,./Bt and Vg,.:

C. Geometric velocity field '+v V(.=0
G i (3.9)

There (sometimes) exists a special case of the
incompressible velocity field which can be in-
terpreted purely in -terms of geometrical con-
siderations. We refer to it as the geometric ve-
locity field and denote it by vG.

which in turn implies that vo obeys Eq. (3.2) iden-
tically. Thus v 0 is incompressible.

The proof that vo is regular and satisfies Eq.
(3.3) is more elaborate. It is executed in detail
in Appendix C.



SINGLE-PARTICLE SCHRODINGER FLUID. I. FORMULATION

From these results, we conclude that, when it
exists, the geometric velocity field vo is identical
with the incompressible velocity field vo; and the
regular velocity field vR,. for every single-particle
wave function, i.e. ,

tiated. However, v may be singular when P van-
ishes, without violating the Schrodinger equation
(2.6) and (2.7). We now show that these singulari-
ties comprise line vortices, and occur along the
nodes of g.""

voi=vai=vo- (3.10)
A. Singularities of the irrotational velocity field

dx dg dz

(vo)„(vo), (4), (3.12)

Then every P,. which satisfies (3.2) must be of
the form

Necessary and sufficient condition for a geometric field

Indeed, we now show that the necessary and
sufficient condition for a collective motion to
have a geometric velocity field vo is that the in-
compressible velocity field for every single-
particle state is identical, "'"i.e. , if and only if

v,. =v, -=v for all states ~i) and ~j). (3.11)

If the geometric velocity field vG exists, then
Eq. (3.10) holds for all single-particle states. But
Eq. (3.10) says that the incompressible velocity
field for every single-particle state is equal to one
and the same vo. Hence, condition (3.11) is neces-
sary.

To prove sufficiency, assume that Eq. (3.11)
holds, and consider the incompressible condition
(3.2), as an equation (first order partial differen
tial equation) to determine the functional form of

g, , the norm of g,. = P,. exp( —imS, /5). The solution
of such a first order partial differential equation
is discussed in many textbooks. " The general so-
lution of this equation is a functional which depends
only on three independent integrals, $,(x, o.),
(,(x, n), and $,(x, n), of the set of simultaneous
ordinary differential equations;

We write the wave function g as

g=u+i il, (u, p, , real)

= P exp(-imS/h) .
(4.1a)

(4.1b)

From Eq. (4.1) the expression (2.11) for S can be
written as

S = ln . + 2m8(-u)
iS u+i p,

2m u —i/,
(4.2)

arctan —+ n'8(-u)p.

u
(4.3)

where the function 8(z) describes a unit jump dis-
continuity at x = 0.

The fact that an a,rbitrary addition of 2nm (n in-
teger) to the phase of a wave function can have no
physical significance, suggests that in general 9
may be multivalued. This fact is evident also in
Eq. (4.2), where multivalued functions ln and arc-
tan arise. In order to make S single-valued, we
have chosen in (4.2) and (4.3) the principal branch
of ln and of arctan, i.e. , —m & arg(ln) &+ m and
-2m & arg(arctan) &+ 2n. With this choice for ln
and arctan, the terms involving the step function
8 in Eq. (4.2) are introduced to honor the conven-
tion that p in (4.1b) be positive. Then S is con-
tinuous everywhere except upon certain cuts in
space, which comprise the portions of the nodal
surfaces of u upon which p, is negative. Across
one of these cuts, S has a, discontinuity of 2mb/m.

Using Eq. (4.2) we write the velocity field v~ as"

i i 1& 2& 3 (3.13) S uVp. —pVu
vg = -VS=-

m
(4.4)

Moreover, by the continuity equation (2.6) which

p,. and S,. have to satisfy everywhere in space, the
form (3.13) of g,. also implies a similar form for
9, , and hence

(3.14)

But this form of g,. is identical with Eq. (3.4).
Therefore, the geometric velocity field exists.

Condition (3.11) is hence both the necessary
and the sufficient condition for a collective motion
to have a geometric velocity field.

IV. VORTEX SINGULARITIES IN THE IRROTATIONAL

VELOCITY FIELD

By construction r(2. 10)], the irrotational velocity
field v has zero curl whenever it can be differen-

0=f4=f(u + p ) (4.5)

With these factorizations, the expression (4.4)

where p'=u'+ g'.
From Eq. (4.4) we see that v~ can become singu-

lar only when p (and hence (, or u and p, ) go to
zero. Qne can imagine two distinct ways in which
both u and jLj, may vanish as follows.
(1) The nodal surfaces of u intersect the nodal
surfaces of p, . Then P is zero on the lines of in
tersection. This leads to line singularities in v.
(2) The functions u and p may have a common
nodal surface. Let f(x, y, z) =0 be the equation for
this common nodal surface. Then u and p, contain

f as a common factor. We can write u=fu and p,

=fp, so that
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of v becomes

h uVp, —p, Vu
Vg =—

m 2
(4.6)

whence we see that such common nodal surfaces
do not result in singularities in v .

Hence, we can remove the common nodes of u
and p, , until u and p, contain no common nodes.
Then the singularities of v are again determined
by the intersection of nodal surfaces of u and p, .
Hence, case (2) is subsumed in the following dis-
cussion of case (1).

u node

8

B. Line vortex of the irrotational field

Consider the line integral of v along a closed
path I' in space. Assume that on l, v has no
singularity. Since v is equal to the negative
gradient of S, such a closed line integral is equal
to the sum of the discontinuities which $ may pos-
sess along I'. As noted above in Eq. (4.2), dis-
continuities of S must have value magnitude 2vk/m.
This implies that any closed line integral of v is
quantized and

v dl =2nnS/m, (4.7)

C. Irrotational velocity field near a vortex

Consider a region in which a nodal surface of u
intersects a nodal surface of p, . (See Fig. 1.)
Choose an arbitrary point P along such a nodal
line of g and consider the irrotational velocity
field v = -VS near this point. Let r be the position
vector measured with respect to this arbitrarily
chosen point.

We divide the discussion into two parts. First,
we consider in (a) the simplest situation where
both u and p, vary linearly in space within a small

where n is an integer. This quantization condition
for circulation was first obtained by Dirac."

When I' encircles no singularities of v, we
must have n= 0 in Eq. (4.7), because the left-
hand side is evidently zero. [Use Stoke's theorem
and the fact that v is irrotational wherever it is
not singular. ]

When I" encircles a line of singularities of v,
the line integral (4.7) is generally nonzero. Then,
if we let the dimension of I" go to zero, we con-
clude that v~ must have an unbounded curl (vor
ticity) on the line of singularity, which, as we
have already noted, is also the nodal line of (.
We follow the terminology of classical fluid dy-
namics to denote such a line singularity of vor-
ticity distribution as a line vortex "Thus we c.on-
clude that the irrotational velocity field" v pos-
sesses line vortices on the nodal lines of P.

FIG. l. Relationship between a line vortex and the
nodal surfaces of the real part M and the imaginary part
p of the wave function. Unit vectors a and b are the nor-
mals to the u node and the)Lt node, respectively. The
line vortex is along the polar axis k, which is pointing
perpendicular outwards from the page. The azimuthal
angle Q is also shown. The velocity potential S on the
path ABCDEA is schematically sketched in Fig. 3 and
discussed in Appendix D.

and

u(r) =a. r (4.8a)

p(r) =b ~ r.
Here

a=-Vui,

and

"—= +&
I r-0

(4.8b)

(4.9a)

(4.9b)

are (constant) normals to the nodal surfaces of
u and lj, on the nodal line of g, respectively. (See
Fig. 1.) From Eq. (4.3), we obtain v~ (to lowest
order in r) as

h b(a, r) —a(b r)
S 2

(axb) xr
m (a. ~ r)' + (b ~ r)' ' (4.10)

neighborhood of P. Next, in(b), some of these
results are generalized to cases where u and JLI,

depend upon r in higher degree.
(1) u and g vary linearly. Suppose that every-

where within a small neighborhood of P, both u and
p, vary linearly, i.e. ,
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Let the z direction k be the direction of a x b. The
normals a and b then lie in the xy plane. Let the
azimuthal angles of a and b be p, and p~, respec-
tively. Equation (4.9) then becomes

(4.11)
Qxp

v~ =—g(8, y)Pl J'

with g(8, p) dependent only upon angles, and given
explicitly by the expression

ab sin(y, —y, )
sin'8[a'(sin&]&, sing+ cosQ, cosp)'+ b'( sing~sing +cosset cosg)']

(4.12)

A

Qxrv=X

where X is the "strength" and k is the direction of
the line vortex. Comparing this equation with Eq.
(4.11), we see that the velocity field in the neigh-
borhood of the line vortex in the present Schro-
dinger fluid differs from the velocity field in Eq.
(4.13) by a factor g(8, P), which depends on the
angles. The deviation of this factor from unity
distinguishes a vortex in compressible flow from
a vortex in incompressible flow.

(2) u and p, vary in higher pouers of r. Suppose
the first nonvanishing terms in the power series
expansion of u(r) and p(r) about a point P on a
nodal line of g are of powers p and q, respective-
ly. We refer to such a case as a vortex of order
(P, q). Then in a small neighborhood of P, u, and
p, can be approximated by"

(4.13)

and

1u-——, g u, ,...„(0)x,.x,." x„
Stat ~ 0 ~ t~

(4.14a)

where a and b are the magnitudes of a and b, re-
spectively.

From Eq. (4.11), we see that the irrotational ve-
locity field v has the following two properties:
(a) v~ varies'4 as r ' for r-0. Hence, the irro-
tational field is singular on the nodal line of g.
(b) Since vs is parallel to h x r, the stream lines"
of v are circles lying in the planes perpendicular
to and centered upon the nodal line. Since the
angles 8 and g cannot change the sign of the func-
tion g(8, P) as can be seen from Eq. (4. 12), the
sense of circulation of vs about the nodal line is
unchanged throughout any part of a stream line.
It follows that any closed line integral of v around
the nodal line of g is nonzero. In accordance with
the discussion following Eq. (4.3), we compute the
value of such a closed line integral (circulation) to
be 2~A/m, since there is only one cut for S ex-
tending out from the line vortex for the case when
u and p, vary linearly in r. (The circulation for a
general vortex is discussed below. )

A familiar example of the velocity field" created
by a line vortex in a classical, incompressible,
irrotational fluid is the velocity field

1
p „...,(0)x;x, '' 'x, ,qI

1t Jt ~ ~ ~ tS
(4.14b)

where x, , i = 1,2, 3, are the three Cartesian com-
ponents of r, a.nd the sets of indices (i,j, . . . , r)
and (i, j, . . . , s) contain p and q elements, respec-
tively.

In this approximation, the gradients of u and p,

can be found by direct operation of V—=Q,. e,. /8xa,.
on Eq. (4.14). The results are

1
vu =a-=, 1, , Q u, ,....„(0)B,x,. ~ x„(4.15a)

~t~ ~ ~ ~ ~ t7

and

vp, =b—=
), Q p, „...,(0)e,.x, x, . (4.15b)

lt 2t ~ ~ ~ tS

Comparing Eq. (4.15) with (4.14), one can repre-
sent u and p, in analog with Eq. (4.8):

and

]
u(r) =—a, r

p
(4.16a)

p(r) =—b'r, (4.16b)

except that a and b are not constant here. The
particular case (p=q=1) of Eq. (4.16) reduces
to Eq. (4.8). From Eq. (4.4), v~ is equal to

h pq'(a r)b —qp'(b. r)a
m q2(a ~ r)2+ p2(b ~ r)2

Some properties of v~ can be seen from this
equation as follows. (a) Being the gradients of
u and p, , a and b are vectors normal to the u node
and the IL(, node, respectively. Hence a and b must lie
on a plane perpendicular to the nodal line of g.
Then Eq. (4.17) implies that v~ also lies on this
perpendicular plane. (b) Since a and b vary as'4
0 ' and x' ', respectively, the numerator in Eq.
(4.17) varies as r "'. The denominator in Eq.
(4.17) consists of two terms, one varying as r't
and the other a,s r" Thus, for a.ny (positive in
tegers) p and q, v exhibits various singular be-
haviors which we describe in the following.

If p=q, Eq. (4.17) reduces to
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(ax b) x r
rn (a ~ r)'+ (b r)' (4.18)

Similar to the velocity field for the linear case,
case (1) [cf., Eq. (4.9)], vg, has circular stream
lines and varies for small y as y. '. However, un-
like the linear case, a and b are not constants but
vary in space.

When pcq, v has different limiting values when
the vortex is approached from different directions.
If p&q, then

(4.19)

Ã] BQ ~ (4.22)

Since u has 2p zeroes on 1", it changes from
negative to positive values at most P times and from
positive to negative values also at most p times.
This implies the inequalities,

tive) sign corresponds to the situation where u goes
from negative (positive) to positive (negative) val-
ues in crossing the cut. Let there be n, and n,
positive and negative jump discontinuities on the
path I', respectively. Then according to Eq. (4.7)
the circulation of v~ is 2nm8/rn and

The velocity v then tends to infinity as x ~" '
when r - 0 along the p, node. When r - 0 in other
directions, v tends to zero or to finite constant
values when the quantity p —q —1 is greater than
or equal to zero, respectively,

For q& p, similar conclusions can be drawn with
the roles of u and p. reversed.

D. Circulation of a line vortex

The circulation of v at the line vortex is of
course given by the general formula, (4.7). For a
specific case, the number n in (4.7) can be de-
termined by summing up the jump discontinuities
of all the cuts which extend outwards from the
line vortex. In general, the inequality

!n! min(p, q) (4.20)

applies, as we demonstrate in the following.
Consider again the small neighborhood of point

P on the line vortex. We choose a coordinate sys-
tem such that its origin is located at P and its z
axis coincides with the line vortex. We calculate
the circulation of v by utilizing a circular path
1 in the xy plane.

In the xy plane, the approximate expression
(4.14a) for u becomes a pth order homogeneous
polynomial in x and y. We can factorize this
polynomial and represent u as

(4.21)

where a, is real and a; (i = 1, . . . , p) can be com-
plex. For a real a, , the equation x —a,y= 0 defines
a straight line on the xy plane on which u vanishes.
Since there are at most p real a,. 's, there can only
be p p such straight lines. Since each straight
line intersects the path l" twice, u must have 2p
zeroes on I'. (A degenerate zero of order I is
counted as m zeroes. }

Similarly, by applying the same argument to p, ,
we conclude that p, has 2q —2q zeroes on I'.

According to Eq. (4.2), S has a jump discontinuity
of+ 2mb/m across a cut, where the positive (nega-

(4.23)

From Eqs. (4.22) and (4.23), we conclude that

!n! —max(n„n, ) —p —p . (4.24)

Pn the other hand, since p. has 2q zeroes on I,
it is negative on at most q segments of I'. Since
cuts of S lie in the regions where p, is negative,
and since we have altogether n, +n, cuts, we have

(4.25)

From Eqs. (4.22) and (4.25), we conclude that

!n! —n, +n, —q —q. (4.26)

Combining this result with Eq. (4.24), we estab-
lish Eq. (4.20) which we promised to show.

V. ADIABATIC LIMIT

In this section, we consider the adiabatic limit
~ -0. We exhibit a natural, but false, expa, nsion
of P and S in powers of n, and its more adequate
replacement. We also discuss the behavior of the
incompressible and regular velocity fields in this
limit.

A. Irrotational velocity field

I. Simplest iterative approach is false

When ot is small it is natural to attempt an iter-
ative solution of the fluid dynamical equations
(2.6)-(2.7). On the other hand, our foreknowledge
(from Sec. IV) that the velocity field exhibits sin-
gularities suggests that great care must be exer-
cised in managing perturbative expansions. We
here demonstrate this fact by considering a natu-
ral iterative procedure and showing that it leads
to a false singularity structure and hence to quali-
tative erroneous results (in particular, nonphysi-
cal infinities in the values of certain physical quan-
tities).

Direct iterative procedure. Consider a direct
iterative approach to the solution of the fluid dy-
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namical equations (2.6) and (2.7), by expansion of
(t) andS:

problem. Hence one has

u(0)S(i) ~ (1) Su(0)I (5.8)

and

(
~ )2ny (2n)

n&
(5.1a)

where S is an arbitrary constant and the velocity
potential S"' is obtained by dividing Eq. (5.8) by
u' '. Thus,

S- g (Q)2n+1S&2n+»

n=o

(5.1b)
(i)

S = —— +SA(i) g P, o

m u(» (5.9a.)

(Here &t& contains only even powers of ('2 because
it is assumed to be positive, and S is odd in Q

because the velocity field v = -V'S, which de-
scribes the collective motion, must be odd under
time reversal. ) Substitution of (5.1) into Eqs.
(2.6) and (2.7) leads to obtain the infinite set of
equations, one from the coefficient of each power
of h:

(8 ~0)y(0) p (5.2)

1
y (0)~2S&1) ~y (0) gg(1 ) & y

(0)
BQ

(1)
(ff ~0)y (2 ) ~ 1 gS&1), pg(1 &

g
(o)

BQ

(5.3)

~&0& ~u&0&~ (5.5)

Although $(0& is continuous, its derivative is dis-
continuous at nodal surfaces under this conven-
tion, a sign, but not the cause, of difficulties to
come. (The alternative choice (t)&0&=u&0& leads,
for all finite Q, to a discontinuity in the value of
&t), and is therefore even more awkward. )

Singularities of the approximate velocity po-
tential. The singularities of &&&1& can be exhibited
by transforming Eq. (5.3), using (5.2) and the iden-
tity for the I aplacian of a product, into the form

I f

(a ~0)
m j&0&s&0& =ah

(&
j&0&

5 BQ
(5.6)

T»s equation says that the product -(m/h)(t) &0&S&»

obeys the same equation,

(H —E ) jJ, "'=h(2 u"',
BQ

(5.7)

as the first order correction to the wave function
in the familiar cranking" model treatment of the

(5.4)

The process of solving this set of equations [Eqs.
(5.2)-(5.4)] successively defines the direct itera-
tive procedure on the fluid dynamical equations.

Equation (5.2) is just the unperturbed Schro-
dinger equation whose solutions are the unper-
turbed wave functions u"', chosen here real,
except that our convention that (p is always positive
implies that

m 60 eo u(0) +
j(Ai)

(5.9b)

where p,
&1& is written out explicitly. '2 (Here we

write u"'=—u,'."and eo,. =—eo. ) From this result
(first obtained by Gross" ), one can draw some
inferences about the singularity structure of S"'.

Each summand in Eq. (5.9b) is a ratio of an
eigenfunction u,'."of the Hamiltonian H and the
particular eigenfunction u,'.". Thus, unless its
eigenfunction vanishes everywhere on the nodal
surface of u,'", each of these terms is singular.
However, we are certain that not every eigenfunc-
tion can vanish everywhere that u,'."vanishes,
since then the set of eigenfunctions u,'.0' (j
=1,2, . . . ,i, . . . ) would not form a complete set,
since every function expandable in them would
have to vanish wherever u,'."vanishes. Hence
some of the terms of the summation in Eq. (5.9b)
must be infinitely large on the nodes of u,'.".

In special cases (e.g. , the case of quadrupole
deformation with an harmonic oscillator potential,
which will be discussed in paper II), the function
p,
"' may be proportional to u' ' so that no infinities

occur. But such a cancellation depends explicitly
upon interrelationships among the coefficients of
u,'."for j=1,2, . . . , and requires a special depen-
dence of the eigenfunctions upon n. (These spe-
cial cases possess interesting properties, e.g. ,
the collective kinetic energy is equal to the ir-
rotational value. Discussion of such properties
can be found in the next section. ) Therefore,
apart from such special circumstances, which
one has no reason to expect to occur in general,
the expression (5.9b) is singular on the nodal sur-
faces of u"'.

Since we have seen in Sec. IV that the exact
velocity potential can process singularities only
on one-dimensional curves and never over two-
dimensional surfaces, we must conclude that the
approximation of the velocity potential by the func-
tion S"' defined in Eq. (5.9) is qualitatively er-
roneous. Morever, it would imply an infinitely
large kinetic energy for the system as we next
demonstrate.

th

Divergent kinetic energy inzplied by S ' . One
operational evidence of the inadequacy of the ve-
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(5.10)

At a small distance e from a node of u(o& (where
u"& e, p"'= Iu"&I' e2), by Eqs. (5.9) the velocity
field v" ———VS"' has singularities which behave
there as 1/e2. Thus, the collective kinetic energy
density in (5.10) behaves as

1 p(o) IV~ (1&I2- ~28 g2 g2 (5.11)

Consequently, the integral (5.10) for the classical
kinetic energy T is divergent in this approxima-
tion.

However, we are certain that this same term
in the kinetic energy is finite when calculated for
the exact p and $, because then (as discussed in
Sec. IV) V$ behaves as 1/e near the singular line
vortex while p behaves as &'. Thus in the exact
case, no singularity arises in T= 2 J p()&'d'x, even
though the velocity field v ——-VS is singular on its
line vortices.

Since [see the next section, especially Eq. (6.20)]
the collective kinetic energy of the single-particle
Schrodinger fluid is the sum of this classical fluid
kinetic energy and a certain additional integral,
the false divergence in Eq. (5.10) would, at best,
require a corresponding cancelling divergence to
occur in the second integral, rendering both phys-
ically uninterpretable. At worst, there might oc-
cur no such cancellation; then this approximation
would be simply wrong in its description of such
a physically important quantity as the collective
kinetic energy. We therefore consider S«', as
given in Eq. (5.9), to be a qualitatively unaccept-
able approximation to the velocity potential.

2. Adiabatic cranking as a guide to improved approximation

We have seen that the naive direct iterative
procedure yields an approximate velocity field
with a false singularity structure in which nodal
surfaces occur instead of nodal lines. We now
discuss an alternative iterative procedure which
corrects this deficiency in leading order by start-
ing in "zeroth" order with a magnitude (t&(o&, which
already incorporates the (pure imaginary, in our
phase convention) first order cranking correction
p, "'. Then, for any finite value of h this function
vanishes not on the nodal surfaces of u«', but only

locity potential (5.9) is the fact that it implies a
divergent value for the collective kinetic energy.
We consider here one term of the collective kinetic
energy (which itself will be discussed in more de-
tail in the next section) of the single particle
Schrodinger fluid: the "classical fluid kinetic
energy""

on the curves where nodes of u«' cross nodes of
The resulting velocity field is qualitatively

better structured already in the first order.
The cue for executing this improved starting

point thus lies in the cranking" model description
of the adiabatic limit of the present problem. We
insist that the zeroth order magnitude (t&(o& include
the effects of cranking (or the deformation of the
nuclea, r potential in general). Hence we write4o

(5.12)

Then we use (5.12) and solve the continuity equa-
tion,

1
y(o)g2$(1&+ py(o), +$(1& ~ y(o)

BQ
(5.13)

to obtain the first approximate S"'. This S"' is
then substituted into the modified Schrodinger
equation,

gS(1) 1/$(1&, /$(1& y(2) $0$(2)
BA

(0) ~ (1)
S(1) zS

l
u +zP S(1)

2m u«) -i p, (') (5.15a)

[We here drop the additive term 2)(8(-u) of Eq.
(4.2) since it plays no role in the present discus-
sion. ] The first (ln) term of this equation is most
important and will be denoted by the symbol S"'.
Hence Eq. (5.15a) can be written simply as

S(1) g(1) S(l) (5.15b)

The approximate velocity field derived from this
velocity potential is

v(1) VS(l ) VS(l )

( &1
(1)g~(o) ~(o &g)1 (1))h 1

m p(') (5.16)

(5.14)

to obtain the second approximate (t&
"&. In princi-

ple, the iteration would be continued by substituting
back p(2& to the continuity equation to obtain a bet-
ter S"' and so on until the desired degree of ac-
curacy is achieved. In practice, we have so far
restricted our study to the determination of S"',
and to some general considerations which signal
some further caution of the ensuing infinite se-
quence.

To execute the next iterative step, we must
solve Eq. (5.13). Again the process is simplified
by consideration of the cranking model solution.
Since Eq. (5.12) is equivalent to approximating P
by u«'+ip, "' except for a phase factor
exp[ih$" &/m], we can make use of the general
expression for the velocity potential in Eq. (4.2)
and assert that the solution to Eq. (5.12) is given
to order n2 by
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Since S"' is defined by an expression of exactly
the same (logarithmic) structure as the exact ve-
locity potential, the entire discussion of the com-
pressible line vortices in Sec. IV applies here.
Then, S"' has line vortices on the lines of inter-
sections between the nodal surfaces of u"' and
~(1)

It remains to verify the assertion that S"' of
Eq. (5.15) satisfies the continuity equation to order
of h'. Substitute S"' into the left-handed side of
Eq. (5.13). Then use the equation Hu"'= cu"' and
Eq. (5.7) satisfied by p"' to obtain

eu")
p(0)g2S(l ) + pp(0) +$(l ) 2&u(0)

8Q
(5.1'I )

But this equation is identical with the iterated
continuity equation, Eq. (5.13), except for the
term 2n p"'9

p, , "'/Bn, which is of the order n'
This verifies the assertion.

It is interesting to note that the function Q"'
which we have chosen by Eq. (5.12) satisfies the
modified Schrodinger equation to order z. We
can readily derive the identity

es(l )
g$(1), gg(1) (0)

BH

u(0) g ~ (1) gs(l )=e'y"'+me" —non g"'. (5.18)y&0)

But this is precisely the modified Schrodinger
equation for S"' and P"', except for the addition
of the last two terms, both of which are of order

or higher. This result is hardly surprising,
because the choice of P"' in Eq. (5.12) is equiva, —

lent to approximating g by the first order cranking
perturbation, which in turn was constructed to
satisfy the time-dependent Schrodinger equation to
order A.

Singularities in hi ghee order i tentative velocity
Potentials. We have obtained so far only the first
order iteration S"' from the chosen &f&"' in Eq.
(5.12). One expects that if n is too large, one

may need to continue this iterative procedure to
obtain contributions from higher powers of n.

However, the convergence of this process, as is
so often true in physics, is not self-evident. In-
deed, we wish to point out certain properties of
the iterative scheme which open some doubt about
its ability to converge to the exact solution.

Consider the singularity structure of the velocity
potential. S"' is singular on the nodal lines of
P"', tending to infinity as 1/e as the distance e

to a line vortex diminishes. In the next iteration
for g"', S"' will be substituted into the modified
Schrodinger equation, Eq. (5.14). Then the quan-
tities VS"' and SS"'/Bn, which involved on dif-
ferentiation (with respect to coordinates or n),
exhibit singularities which behave like 1/e' near

nodal lines of g"'. Hence the "dynamical modifi
cation potential"

. gs(1)
(5.19)

in the modified Schrodinger equation (5.14), ac-
quires singularities -e ' through the term
+(2m)VS"' VS"', which behaves like an infinite
repulsive potential on every node of p'o'. One
expects that in the next order P" ' also will be
forced to have nodes precisely on the nodes of

Extrapolating the above arguments to higher
orders of iteration, we conclude that the magnitude
of the wave function P, obtained in all finite orders
of iteration, will have nodes (and, corresponding-
ly, the velocity fields will have line vortices) on
the nodes of the zeroth order approximant p"'.
This peculiar feature of the present iterative pro-
cedure supports the suspicion that in general the
sequence of iterated solutions does not necessarily
converge to the exact solution, since it can only
reach solutions with the same spatial nodal struc-
ture as the starting function. Further investiga-
tion, therefore, might focus on any possible phys-
ical significance of such a nodal constraint, on
the prospect of fashioning a zeroth order function
which matches the exact solution in its nodal
structure, and/or on the discovery of methods
which allow the solution to escape this strong re-
striction.

We do not here offer answers to these ques-
tions. The further work reported here is based
entirely on the first iteration which has been seen
to be identical with the first order cranking model
approximation. Hence, the validity of the present
results rests upon the adequacy of the perturbation
solution of the Schrodinger equation.

B. Incompressible velocity field and the regular velocity field

As has been emphasized in Sec. III, only the ir-
rotational velocity field is uniquely determined by
the wave function. All the other velocity fields
which we consider (including the incompressible
and the regular velocity fields) satisfy only the
continuity condition (imaginary part) of the Schro-
dinger equation, Eq. (3.1). Since these velocity
fields are not an integral part of any solution to the
entire set of Schrodinger fluid equations, the ques-
tion of consistent iterative approximation to them
does not arise. Their structure is completely
specified by the continuity equation (3.1) (in which

p may be specified to any desired degree of ac-
curacy), and the additional conditions which render
them unique. Their adiabatic approximations, cor-
respondingly, are simply the limits of these solu-
tions to leading order in h.
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Thus, the adiabatic approximation to the in-
compressible velocity field is defined by the solu-
tion of the first order approximation to the incom-
pressible condition,

(5.20)

~ g~(0)o)g ~ ~ @
8Q

(5.22)

The two velocity fields vo" and v„"' defined here
are particularly useful in studying the nature of
the collective kinetic energy in the next section.

VI. COLLECTIVE ENERGY AND MOMENTA

Having discussed the kinematic aspects of the
velocity fields in the previous sections, we are
now in a position to examine the dynamical aspects
of these velocity fields. Using these velocity
fields, we shall study the collective kinetic en-
ergy, the collective momentum, and the collective
angular momentum. The collective kinetic energy
is further studied in the adiabatic limit, and is
put into different forms with the help of the irro-
tational, the incompressible, and the regular ve-
locity fields, respectively. 4"4"

A. Relationship between the velocity field v and

the collective motion

For collective motion, characterized by a finite
velocity n, of some one (or more) collective co-
ordinate, we now show that the velocity field v
arises solely from the collective motion. Consider
the current J defined in Eq. (2.13) from which the
velocity field v~ = J/p is defined. Since v~ is zero
only when J is zero, it is only necessary to ob-
serve that J is identically zero when the nucleus
(as represented by the n- dependnet nuclear poten
tial) is not performing a collective motion. In
deed, if the nucleus is not performing a collective
motion (i.e. , the nuclea, r potentia, l is independent

and the condition from the continuity equation,

(5.21)

These two equations follow from Eqs. (3.2) and
(3.3) when the density p is approximated by Iu"'I'.
Thus, the discussions of the nonuniqueness of vo
which occur in Sec. III are also here applicable to
vo"'. lt follows that vo" is unique up to additive
incompressible velocity fields which are every-
where tangential to the constant density surfaces
Iu"'I= constant.

For the regular velocity field, we define its
adiabatic approximation v'„" as the regular solu-
tion to the analogous approximate continuity equa-
tion

of time), then each nucleon is described by a sta-
tionary single-particle wave function, which can
always be chosen to be real by adjusting the (ar-
bitrary) constant phase. Hence the current J
vanishes ' identically when n is constant.

Conversely, if the nucleus is deforming with
time (i.e. , if the nuclear potential, and hence the
Hamiltonian, are time-dependent), then no sta, —

tionary solutions of the Schrodinger equation
exist. The single-particle wave functions are
"essentially" complex, ' and a finite matter flow
exists in each single-particle state. Therefore,
the velocity field v is nonzero if and only if the
nucleus is in collective motion.

With the assumption that v is a regular function
of n, this fact and the odd-time-reversal behavior
of a velocity field imply that the velocity field v~
and its potential S will in general contain 6 as a
factor, "i.e. ,

and

v~(c. , n) = nv~(n, n)

S(a, n) = &i.S'(o'. , 6)+ constant in space.

(6.la)

(6.1b)

This dependence of v and S on h allows us to
identify the physical quantities such as the collec-
tive kinetic energy and the collective momenta,
which are discussed below.

We note that this dependence of S on n also
underlines the fact that the present formulation
is especially constructed to handle problems with
finite collective velocity n. When h = 0, the pres-
ent formulation trivializes. (It also becomes awk-
ward, because then the absolute magnitude P of g
has discontinuous derivatives at its nodes. How-
ever, we show (Appendix D') that these cause no
inconsistencies. )

B. Collective kinetic energy for the exact single-particle state

The total single-particle energy is given by the
expectation value of H evaluated with the time-
dependent solution g. Writing g in the polar form
[(2.4)] we obtain

(( I
H

I
ti') = (g lib —

I p)

(6.2)

8=6 +E (6.3)

Here the third term is identically zero (normaliza-
tion of P).

We arrange, by construction, that e be inde-
pendent of Q. , as follows. Suppose that the eigen-
value & of the modified Schrodinger equation does
depend upon cv. Then separate it into two parts
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where e' depends on n alone and &' contains all the
dependence of n (and all higher time derivatives
of c{, if any). As discussed in Sec. II, the velocity
potential S is defined only up to an additive con-

0 0
stant S in space. Let us choose S for the single-
particle state under consideration by requiring

t
S = — e'({).(t'), h(t'))dt' (6.4)

and denote the velocity potentials before and after
0

this definite choice of S by 8 and S, respectively.
That is

S=S+S. (6.5)

BS
H —m —-2VS VS

Bt (6.6)

0
Then by making this particular choice of S, we

guarantee that the energy of the single-particle
state in (6.2) takes the form

(6.7)

where e' is independent of collective velocities.
The energy of the single-particle now separates

into two distinct parts: a collective potential
energy e' which is the intrinsic quasistatic (as we
see further below) energy of the single-particle
state and is dependent only upon n but not upon
4, and a collective kinetic energy, which may
depend upon powers of the collective velocity n
(and higher time derivatives of {)., if any). We
denote the collective kinetic energy by T

Since for S, the modified Schrodinger equation
(which involves a term proportional to 8S/St) wa. s
solved with eigenvalue 0, which we assumed to de-
pend upon collective velocities, then for S, it is
solved with eigenvalue e' which is independent
of h, h', etc. , i.e. ,

From this equation, we see that e' is the quasi-
static energy of the single-particle state under
consideration.

For a model nucleus of noninteracting particles,
the total collective potential energy and the total col-
lective kinetic energy can be obtained by summing up
the occupied single-particle contributions.

={»' '»i»"')exp —S('')iPPg 0

Il
(6.11)

and determine S"' so that the energy expectation
value with g"),

(&) = (g"' I& Ig" ')

= ({t){ ' IH Ip {")+ —,m
J

p' )VS &' & ~
VS& "d'x

(6.12)

becomes a sum of one h-independent and one @-
dependent term, as in (6.7). Using Eq. (5.18) for
{t)"', we can rewrite Eq. (6.12) in terms of the
quasistatic energy E as

(E) = @'+m p{0)z d'x+ h{3{ u{0BSO )

BQ BQ

C. Collective kinetic energy in the adiabatic approximation

In this section we consider specific aspects of
the collective kinetic energy in the adiabatic
cranking model approximation.

Determination ofdin the adiabatic approximation.
In the adiabatic approximation, we write the sin-
gle-particle wave function as

»zp ( $( ))

BS
Bt (6.8)

~ B S(&)
—Pl@

BA
(6.13)

Since the modified Schrodinger equation Eq. (6.6)
holds for all n, we can consider the limiting situa-
tion of no collective motion, i.e. , z = 0. Then the
velocity potential $ must be a constant in space
and time. But then (except for the 5 functions
discussed in Appendix D, which cause only some
appropriate sign changes in the wave function to
honor our convention that {t) is positive)

Then the choice

S(l ) u(0) ~(1 )
m Bcy

puts (E) into the form (6.7}:

~ BS(1)
{z)=»'»m J p("» d'» .

BQ

(6.14)

(6.15)

B$—--,vS vS =0.
{8=0

(6.9)

(6.10)

Hence, the modified Schrodinger equation, Eq.
(6.6}, reduces to the quasistatic Schrodinger
equation

au= ~'u.

Collective kinetic energy. The collective kinetic
energy given by the second term of Eq. (6.15) can
be put into a more convenient form by expressing
it in terms of S ' defined in Eq. (5.15). By Eq.
(5.15), we have
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gg(1) ~

mQ p"' d'x=SQ p, " —u"'
8Q 8Q

—hQ u"' —P,
"'

= —2$Q u —p,
~ (o) (z

et

gs(l )
= —2Q

BQ
(6.16)

~ gg(& )
p( Q dx.

8Q
(6.17a)

This result is identical to that given by Inglis's
cranking" model: By Eq. (6.16), we obtain from
Eq. (6.17a)

T"' = SQ p. "' —u"'d'x8

BQ
(6.17b)

which is exactly Inglis's formula for the collective
kinetic energy.

D. Adiabatic collective kinetic energy in terms of various

velocity fields

l. Irrotational velocity field v

We now write the collective kinetic energy (6.17)
in terms of the irrotational velocity field v''
= VS" ' = -VS"'. In Eq. (6.17b), we make use of the
continuity equation (5.17) to obtain

T(, ) h

2
v (1), [$ +(1 &Vp(0& p(0)Vt&(1&] d 3x

V ~ ( p, ")y"&v&1)) d'x
2 u(" S (6.18)

The quantity inside the square bracket in the first
integral of this equation is related to the single-
particle current J"'—= p' 'v'~", since

1
u(o& ~[ &1

&1 )Vp&0) p&0)V+ &1 )] t1(1 )Vu(o) u&0)Vt1 (1 )

where Eq. (6.14) is used in obtaining the last line.
Since S"'=S"'+S'"' [Eq. (5.15)], the collective
kinetic energy is

gg(& )
p(o) Q d 3x

BQ

(6.21)

neglecting only terms which go to zero everywhere
in space as &'). -0. Substitute Eq. (6.21) into Eq.
(6.17b} and follow the same steps outlined from
Eq. (6.17b) through Eq. (6.20}. We arrive at an
equation exactly the same as Eq. (6.20), but with
&t&&0) replaced by u"', i.e., we have

T"'=T —— V ~ (p, "'u"'v"')d'xcl (6.22)

Now the second term of this equation can be trans-
formed to a surface integral. Since v'' has no
singularity by assumption, the surface involved in
this surface integral is only the boundary of the
box of normalization. Since the wave function P
=u"'+ ip."' vanishes on this boundary, this sur-
face integral is zero. Hence Eq. (6.22) becomes

T"'=T„, for regular v'~" . (6.23)

Therefore, the kinetic energy of the single-particle
Schrodinger fluid is equal to the classical fluid
kinetic energy when v ~" has no singularity.

netic energy of a classical fluid with density p"'
moving with a velocity field v'. We therefore
call this part of the kinetic energy the "classical
fluid kinetic energy" T„. The second term of Eq.
(6.20) is generally nonzero. It is because of this
nonzero term that the single-particle Schrodinger
fluid has a kinetic energy different from that of a
classical fluid.

However, whenever the second term in Eq. (6.20}
vanishes, the single-particle Schrodinger fluid has
a kinetic energy equal to that of a classical fluid.
Moreover, it is equal to an irrotational value'4
because the velocity field which appears in the
classical fluid kinetic energy is the irrotational
velocity field v '.

Kinetic energy of the single paxticl-e Schmo'dingex

fluid equals the classical fluid kinetic energy when ve&

has no singularity. We show in the following that
when v ~" has no singularity the kinetic energy of
the single-particle Schrodinger fluid is equal to the
classical fluid kinetic energy. If v'' has no sin-
gularity, then the continuity relation (5.17) can be
approximated as

eu"'
2hu(0& (u&o&)3V ~ V& ) —V&1) ~ V(u&o&)3

~Q S

T(1) n(o) (1) ov(l)ds

(p(1)y v 1))d3x (6.20)

The first term of this equation is equal to the ki-

With this relationship, Eq. (6.18) can be written as
2. Incompressible velocity field vo

As with the irrotational velocity field, other
velocity fields, especially the incompressible vel-
ocity field and the regular velocity field introduced
in Sec. III, can also be involved into the expres-
sion for the collective kinetic energy by utilizing
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T = —8 p."'v"' Vu' 'd'x

fv(1) ~ [l1(1)gu(0) u(0)gl1(1)]0

+ V. (v',"u"'p."')jd'x (6.24)

with the help of some vector identities. By Eq.
(6.19) and the divergence theorem, Eq. (6.24) can
be put into the form,

Z (1) ~(0)v(1) v(l )d 3

the continuity equation to replace the time deriva-
tive of the density (or density amplitude). Intro-
duce the incompressible velocity field vo", de-
fined by Eqs. (5.20) and (5.21). We obtain

collective motion in which a regular velocity field
can be found, Eq. (6.28) is the most convenient
expression for the collective kinetic energy.

It can also be noted that the second integral in
Eq. (6.20) and the surface integral in Eq. (6.25)
are all due to the presence of singularities in
either the irrotational velocity field v, or the in-
compressible velocity field vo. In the special
cases where v or vo are free from singularities
(i.e. , equal to the regular velocity field v„), Eqs.
(6.20) and (6.25) go over to Eq. (6.28), as they
must.

The result (6.28) is one remarkable product of
the present attempt to redescribe Schrodinger
processes in fluid dynamical terms, as we shall
discuss further in paper II in connection with ap-
plications of the present theory.

8 u"'p, "'v"' n do.
2 8 (6.25) E. Collective linear and angular momenta

where 0 is the totality of surfaces surrounding the
singularities of vo, if any, and n is the unit nor-
mal on o pointing towards the singularities.

3. Regular velocity field vR

Likewise, for the regular velocity field v„(when
it exists) we convert the expression (6.1Vb) for the
collective kinetic energy, by means of the continu-
ity equation, Eq. (5.22), for the regular velocity
field into the form

7 (1 ) — g ~ (1 &( &u (0 )g .v(1 ) + v(1 ) .gu (0 & ]d 3&
Q2 R R

To) ~(o)v(& ) v(&)d 3~

:Rg, (u (0 ) )1 (1 )~ (1 ))d 3x
2

(6.2T)

In this case, however, the integrand of the last in-
tegral is regular everywhere and is transformed
to a surface integral over only the external
boundary of the box of normalization, which van-
ishes since u"' and p, "' are zero at the external
boundary. Then we have simply,

(6.26)

and thence by similar algebraic manipulation, we
obtain

&p~lp~lp& =(p~lp~lp&+I J pv p "x

(p
~~

1
~

p& = (p
~~

(
~~

p& +If pr x v p 'x .

(6.29)

(6.30)

In the same spirit as in treating the energy, we
can separate both of these equations into an 5-in-
dependent part and an h-dependent part. The z-
dependent parts in these two equations can then be
defined as the collective linear and angular mo-
m enta.

The second term in either Eq. (6.29) or Eq.
(6.30) depends on ('). surely through its dependence
on v. However, the first term is not n-inde-
pendent because Q may also be n-dependent.
Therefore, Eqs. (6.29) and (6.30) are not appropri-
ate separations for the collective momenta. In
fact, no satisfactory separations for the exact so-
lution have yet been found.

However, if we limit our considerations in the
adiabatic limit, then Eqs. (6.29) and (6.30) are al-
ready in a form separating z-independent and h-.

dependent parts. Since Q is approximated by (t&(0&

[Eq. (5.12)] in the adiabatic limit, we have

Using again the polar form (2.4) for the exact
wave function, we calculate the expectation values
of the linear momentum operator p and the angular
momentum operator T= r x p, as

p"'v(" v"'d'x . (6.28) g&( )
~p ~(t&( )) (u( )

~p ~u( )) + 0(~ ) (6.31)

Comparing with the expressions for the collec-
tive kinetic energy, which we have in Eqs. (6.20)
and (6.25), respectively, we see that the present
expression, Eq. (6.28) is especially simple: No
terms not expressible in the quadratic form of the
velocity fields are involved. Therefore, for the

and

(Q"' Ill(t&"') = (u"'lllu"') + 0(a') . (6.32)

The first term in either Eq. (6.31) or (6.32) is (t.-
independent. Hence, to order ~, the collective lin-
ear and angular momenta are, respectively,
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and

I "'=m p"'v" &d'x (6.33)

L"' = m p"'r x vg", d'X. (6.34)

VII. MORPHOLOGY OF THE SINGLE-PARTICLE

SCHRODINGER FLUID

In this section, we classify the single-particle
Schrodinger fluids according to some general pro-
perties of these fluids. This can provide, we
believe, an overview of several of the topics we
discussed, such as vortex singularity, compress-
ibility, and some relationships among the various
kinds of velocity fields which can arise in the
single-particle Schrodinger fluid.

In Fig. 2, we present our classification in the
form of a set diagram. We denote by E the set of
all single-particle Schrodinger flui.ds. Inside F
we consider as subsets E,. those special cases of
the single-particle Schrodinger fluids which pos-
sess a, volume conserving ve (subset Fc), a regular
velocity field v„(F„), a vortex-free ve (Fvr), a
geometric velocity field vo (Fo), an incompressible
v& (F,), and/or a nodeless density distribution
(F,). We discuss the relationship among these
subsets and summarize their special properties
in the following.

Subsets characterized by properties of the irrotational field

VNI
=- VS

For every single-particle Schrodinger fluid, we
c3n define the irrotational velocity field v
[through Eqs. (2.9) and (2.10)j and the incompress-
ible velocity field i [through Eqs. (3.2) and (3.3)j,
although in some cases, these fields may exhibit
singularities. But the conditions for the existence
of more restrictive velocity fields are not com-
pletely known. For example, as mentioned in Sec.
III B, the conditions for the existence of the regular
velocity field vR are not known at all; we can ex-
hibit such a field in some cases, and in other
cases we believe that no such field exists. There-
fore, we view E„as a proper subset of E to keep
open the possibility that single-particle Schro-
dinger fluids possessing no v„exist. A similar
conservation has been consistently employed in the
conservative attitude of Fig. 2.

The vortex-free subset Ev~ is a subset of E„,
since the line vortex singularity is the only sing-
ularity of v~ (Sec. IV). A vortice-free ve is
therefore a regular velocity field. Hence, the cor-
responding single-particle Schrodinger fluid
belongs to F„. We note also that in the adiabatic
limit, the fluids in F» have the interesting pro-
perty that its kinetic energy is equal to the class-

FIG. 2. Relationships of different kinds of single-par-
ticle Schrodinger fluid. E: the set of all single-particle
Schrodinger fluids; Ec.. fluids conserving the nuclear
volume; ER . fluids possessing a regular velocity field
vR, E&&. fluids possessing a vortex-free v, EG. fluids
possessing a geometric velocity field vG, E&. irrota-
tional incompressible fluids; Eo.. fluids with a nodeless
density distribution.

ical irrotational (not necessarily incompressible)
value (Sec. VID1).

Fluids with nodeless density distribution (F,) are
very special cases of E», since only the lowest
single-particle states have nodeless wave func-
tions. The fact that these lowest single-particle
states possess a (regular) irrotational velocity
field was recognized by Wick ' long ago. In the
present context, this theorem is almost a trivial-
ity, following at once from the simple argument
that, since the only singularity of the fluid, the
vortex singularity, comes only from the zeroes
of the wave function (Sec. IV), then the lowest
single-particle states, being nodeless, must be
singularity-free, i.e. , they must have a v which
is regular.

Subsets characterized by properties of the collective motion

We can generally divide the collective motions
according to whether the motion involves a net
expansion or contraction of the total nuclear
volume (as, e.g. , in the case of the breathing
mode). Because the overall nuclear compress-
ibility is very small, "a substantial energy is
needed to excite such a collective motion. In con-
trast, one believes that the low-lying collective
motions (as well as the processes of fission), pre-
serve the nuclear volume to a good extent. There-
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fore, the subset Fc is of particular interest to us.
The set of fluids EG having a geometric velocity
field is simultaneously a subset of ER and Ec,
since the geometric velocity field vG is regular
and incompressible (Sec. Ilj C and Appendix C),
and hence volume conserving. The necessary and
sufficient condition for the existence of vo is given
in Eq. (3.11). However, I'o is not entirely included
in the subset F~~ characterized by vortex-free v,
since the case of collective rotation, where the
geometric velocity field exists (and is known: vo
= 0 x r), provides a counterexample in which the
irrotational velocity field v has line vortex sing-
ularity for wave functions with nodes. (The case
of rotation will be discussed in detail in paper Ij.)

On the other hand, the set of irrotational in-
compressible fluids E, is entirely a subset of EG
and E~~. These irrotational incompressible
fluids have been first systematically considered
in connection with nuclear collective motions by
Hill and Wheeler. " They are discussed further
in Appendix A. The single-particle Schrodinger
fluids in the Hill-Wheeler box or in a quadrupole
deformed osciallator potential4' provide specific
examples of the fluids in E,.

VIII. GENERALIZATIONS TO THE MANY-BODY CASE

Although our discussions in the preceding sec-
tions are confined to single-particle wave func-
tions in three spatial dimensions, the interest
(at least ultimately) for applications to nuclei must
lie in the generalization to the many-particle prob-
lem. Although the program of incorporating
two nucleon forces into such a generalization has
hardly begun, we execute in this section some of
the most straightforward many-particle gener-
alizations of the theory of the single-particle
Schrodinger fluid, namely, we concentrate our
discussions on the continuity equation.

In analogy with the single-particle case in three
dimensions, we first obtain the continuity equa-
tion and the modified Schrodinger equation for the
N-particle case in the 3N-dimensional space. Then
we derive the continuity equation for the three-
dimensional space from the continuity equation in

the original 3N-dimensional space.

where

Here we assume V(x, ; n) to be an average potential
felt by the 2th nucleon due to the interactions with
all other nucleons, and V(x, . x„;n), the residual
interaction between the nucleons, which is not in-
cluded in the average potential V(x,.;a). Because
we are working within a description of collective
motion which does not assume self-consistency,
but instead assumes that certain collective vari-
ables, well described in a classical approxima-
tion, define the potential for the single-particle
motion; the average field is here externally driven
through its dependence on the classical collective
parameters o.. (The very deep and persistent
problem arising from the redundancy between the
collective degrees of freedom and the particle de-
grees of freedom are not considered in. the present
discussion. ) Then the N-body wave function II is
a function of x„.. . , x„and n.

In analogy to the single-particle wave function,
we obtain a "fluid dynamical" description of the
N-body wave function by writing 4 in the polar
form:

4'(x, . . . ; n) = 4(x, . . . ; 5)exp ——IS(X,. . . ; a. )

t
E(n(f'))dt'

5

(8.3)

Here the norm C and the phase S are assumed
(without loss of generality) to be real functions of
the particle coordinates and the collective param-
eters. The quantity E(o.) is the intrinsic energy
of the system.

The substitution of Eq. (8.3) into the N-body
Schrodinger equation, Eq. (8.1), yields the con-
tinuity equation and the modified Schrodinger
equation in the 3N-dimensional coordinate space:

E ~2
H(x . x;5) —=

1 N& 2&ii"-1

N

+ g V(x, ; n)+ V(x, x„;5). (8.2)

A. Continuity equation and the modified Schrodinger equation

l. In 3N-dimensional space

A Schrodinger equation for N interacting
nucleons can be written in the following form '

2C V'S+ VC ~ VS=—C

0—I —S —2VS ~ VS

(8.4)

(8.5)

H(xi ' ' 'x~, D)'k(x ' ' ' x~', Q) = M—4'(xi ' ' ' x~ 5),

(8.1)

where V —= Q,",V;. Equations (8.4) and (8.5) are
the obvious generalizations of the continuity equa-
tion [Eq. (2.6)] and the modified Schr5dinger equa-
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tion [Eq. (2.7)] of the single-particle Schrodinger
fluid.

integrate over all but the coordinates of the jth
particle and summing over the index j we obtain

2. Continuity equation in the 3-dimensional coordinate space

(8.6)

and

J(x, ~ ~ ~ x; o!)= p V$= (4*V% 111 V 4*),

In terms of the N-body density p and the N-body
current J defined by

p(x ~ ~ x; 5) = 4 ' = 0 * 1I1 N~

5 ~ J

(8.14)

The sum of the i =j terms in the right-hand side
of this equation is just the divergence of the total
current JT, as can be seen from Eq. (8.12).
Hence, we have

Bp T
Bt

(8.7)

the continuity equation [Eq. (8.4)] becomes simply

ik
Z dx" s "(%*V.'@ 4V.'0*)

Bt-J=-—p. (8.8)

p,.(x,.) = f dx'(!) "«'« (8.9)

J ( ) ) d 3(N 1)(@«V
2m

(8.10)

Then the total matter density pT and the total
current JT are obtained by summing these one-
particle contributions; viz. ,

p (x) = P p;(x) = d~3
(N-1) y+y(i) (8.11)

The N-body density p is the probability of finding
the particles 1, 2, . . . , N in positions x„x„.. . , x„,
respectively. We relate this density to the total
matter density pT(x; n) in three-dimensional space
and the corresponding total matter current
JT(x; ii.), following the method of Landau in his
study on liquid helium. " We first extract from
the N-body wave function the one-particle density

p; and current J,-, contributed by the ith particle,
by averaging over the 3(i!i—1)dimensionswhich
describe the rest of the particles, as follows"

(8.15)
It remains only to show that the summation on the

right vanishes term by term. This can be done
directly by expanding 4' in any complete set of
determinants based on an appropriate single-
particle Hamiltonian. Then the fact that only
one-body operators occur therein and the mutual
orthogonality combined to make every term
vanish identically. Therefore, the last term in

Eq. (8.15) vanishes identically and we obtain the
continuity equation for the total matter density
and the total current of the nucleus:

JT (x; 5) = ——p T (x; n) . (8.16)

3. Total velocity field in N-particle case

From the total density distribution pT and the
total current JT it is natural to define the t«al
velocity field vT of the nucleus as

JT(x)
VT(x) =

(~)
~«

In terms of vT, the continuity equation, Eq. (8.16),
takes the form

and
~

BpT
pT+ VT+ VT ~ +pT =—

Bt
(8.18)

JT(x) =- Q J, (x)

(8.12)

It remains only to show that pT and JT obey a
(three- dimensional) continuity equation analogous
to Eq. (2.9). Rewrite the continuity equation (8.8),
via (8.7):

——p=- (4 V, '4 - CV, '4*); (8.13)
i=1

We note that the definition, Eq. (8.17), of the
total velocity field gives, in the case of a one-
particle system, the single-particle irrotational
velocity field v.

In order to obtain a complete fluid dynamical de-
scription, some dynamical equation of motion
[which, for example, might be (approximately) an
Euler equation, a Navier-Stokes equation, or a
Burnett equation, or any of the infinite series of
higher order equations, were a hydrodynamic de-
scription to prevail] and an equation of state must
be constructed out of the many-body Schrodinger
equation, which here ispresumedto comprise the
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complete description of the system. This is a-
should one say "the"—fundamental problem in
the theory of quantum fluids, which we do not
attack here.

We should note that Wong et al. have studied the
possibility of obtaining a fluid dynamical equation
of motion utilizing the time-dependent Hartree-
Fock theory, "which is certainly a first step to-
wards this goal.

B. Nonobservability of the total velocity field

In Sec. II, we pointed out that the single-particle
velocity field is not a physically observable
quantity. We discuss here the nonobservability of
tht total velocity field vT defined in Eq. (8.17).
(The mathematical proof is given in Appendix B.)

According to the statistical interpretation of
quantum mechanics, "a physical observation is
symbolized by the action of an operator 0 on a
state vector 4 of the system. The possible results
of this observation are the eigenvalues of the oper-
ator in question, and each has a probability given
by the square of the amplitude of the corresponding
eigenfunction in the function OC. Furthermore,
the average result of a large number of observa-
tions of this physical observable is the expectation
value (4' ~0 ~4). This statistical interpretation
is the physical ground of the superposition princi-
ple of quantum mechanics. " By the superposition
principle the operator representing a physical
observation is necessarily linear.

The total matter density pT and the total current
JT are physical observables. There exist linear
(in fact, Hermitian) operators P„and J„whose
expectation values give, respectively, the average
values of the total matter density and total current
for a large number of observations on the system.
These operators are, in coordinate representa-
tion, "

(e ~Z., g=s, (x). (8.20b)

The total velocity field vT will be a physical
observable, only if a linear operator exists whose
expectation value in

j
4') is everywhere equal to

vT(x), defined in Eq. (8.17). In Appendix B, we
show that any operator which has an expecta-
tion value equal everywhere to vT(x) cannot be
linear, and therefore cannot be a physical ob-
servable in quantum mechanics.

In the study of liquid helium, Landau has defined
an operator v„ for the total velocity field as"

1 1 1
v = ——-- J +J

OQ 2 p
O9 OP

pOP OP

(8.21)

From the above discussion, Landau's operator
(8.21), although linear must not give the correct
vr as defined in Eq. (8.17).

In fact, as has been pointed out by London, "
this operator, for a system consisting of one
particle, is simply the momentum divided by the
mass (1/m)p. Its expectation value on a state of
the system is in this case just a number indepen-
dent of position, the average momentum over the
coordinate space, which has no immediate rela-
tionship with the local velocity field. Therefore,
Landau's suggestion that the operator (8.21) be
utilized as the quantum theoretical velocity field
operator is quantum mechanically inconsistent.

IX. SUMMARY AND CONCLUSIONS

We have presented a formalism suitable for use
in constructing a theory of mass Qow in nuclei
based upon an independent-particle shell model
and exhibiting substantial fluid dynamical con-
tent. Some mathematical features of this idealized
single-particle Schrodinger fluid have been dis-
cussed and some general implications drawn
for physical quantities. More specific physical
applications will be discussed in paper II.

(x )X„)x') = / II(x; —x)ll(x —x') (8.19a)
APPENDIX A. WHEELER-HILL DYNAMICS: INCOMPRESSIBLE

SCHRODINGER FLUID FLOW

and

&~
~ p., ~

+) = p, ( ) (8.20a)

N

x')= Z(8(x,. x)vS(x-x')
5=1

+ [ V5(x- x')]5(x,. —x')).

(8.19b)

Thse operators are linear, and their expectation
values in any state ~C ) are identical everywhere
with pT(x) and Jr(x), defined in Eqs. (8.11) and

(8.12), i.e. ,

PNeeler-Hill cEynamics

In their very comprehensive paper on the foun-
dations of the collective model, Hill and Wheeler"
consider the effect of a time-dependent nuclear
shape on the evolution in time of a single-particle
wave function. We show here that this Wheeler-
Hill" "'"irrotational nuclear fluid dynamics
(which also, incidentally, provided one of the
starting points of the present research) is a spec-
ial case of the single-particle Schrodinger fluid
dynamics studied here, which involves an addi-
tional assumption of incompressible flow, and as
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v'8 =0,I (A2)

and the (Neumann) boundary condition that its nor-
mal gradient at the surface is equal to the normal
velocity of the nuclear potential, as prescribed
by n(t).

Wheeler and Hill showed that the wave function
(Al) is a solution to the time-dependent Schro-
dinger equation (approximately up to terms in n)
if only the wave function u(x, n(t)) is carried along
by the change in a with the local classical fluid
velocity

a result, describes only certain special cases of
the Schrodinger dynamics.

The Wheeler-Hill discussion is based on the
ansatz

g (t) =u(x, n(t)} exp —— g(n(t ')) dt ' ——mS, ~z ", , z

(Al)

for the solution to the time-dependent Schrodinger
equation (2.1), where u(x, n(t)) is an eigensolution
of the Schrodinger equation with a potential of
shape n(t), and S, is the velocity potential which
would describe an irrotational incompressible'
liquid flowing in the nuclear volume specified by
n(t). Thus S, is defined by Laplace's equation

is incompressible, and (b) that such an assumption
is inconsistent with the dynamics of the Schro-
dinger fluid, except for those special potential
shapes where an irrotational geometric velocity
field exists" (which is also always an incompres-
sible velocity field as discussed in Appendix C),
among which, as we noted above, are the quad-
rupole deformed oscillator and the Hill-Wheeler
box."

Incompressibility of Wheeler-Hill flow

We note that incompressible flow for a system
whose density is not constant in space implies that
the density of any material element remains un-
changed as it moves through space. I.e. , the total
derivative (3.2) of the density must vanish. But
for p = ~u (x, n(t)) ~' and v, given by (A3), the incom-
pressibility condition (3.2) is immediately identical
with the Wheeler-Hill assumption (A4).

We further note that as implied by condition (A3)
and Laplace's equation (A2), S, satisfies the con-
tinuity equation of the single-particle Schrodinger
fluid. Therefore the Wheeler-Hill dynamics is a
special case of the single-particle Schrodinger
dynamics, in which each single-particle velocity
field v is equal to v, .

v~ = —VSg ~ (A3)
Wheeler-Hill dynamics implies existence of the irrotational

geometric velocity field

so that the relationship

~Qe —= 7'8 ~ V'u
ea (A4}

is obeyed. "' " Then the kinetic energy of such a
particle takes the form

(A5)

Relationship to Schrodinger fluid

The assumption (A4) is the distinctive feature
of the Wheeler-Hill dynaxnics, and the source of
its simple and general prediction (A5) of irrota-
tionai incompressible physics.

We show here (a) that this assumption is equiva-
lent in the broader framework of the Schrodinger
fluid to the (additional) requirement that the flow

where the second term, due to the finite collective
velocity n, is the "collective kinetic energy" of
this particle. It has a value equal to that of a clas-
sical incompressible irrotational fluid of density

p = ~u ~'. Its sum over all particles then yields the
irrotational incompressible Quid value for the
total collective energy, and correspondingly, the
irrotational incompressible value for the inertial
parameter.

Since the incornpxessiMe velocity field v, is de-
termined only by Laplace's equation (A2) and the
time-dependent boundary of the nuclear volume,
this velocity field must be identical for every sin-
gle-particle wave function u. But then, according
to the necessary and sufficient condition (3.11), the
geometric velocity field vo exists for the Wheeler-
Hill dynamics and is equal to v~.

Since the single-particle velocity field v& (= v, )
is necessarily irrotational, we have, in fact, a
special kind of geometric velocity field, namely,
an irrotational geometric field.

This result also implies that in the case where
no irrotational geometric velocity field exists,
neither can the assumption (A4) be valid, and nei-
ther can the Wheeler-Hill dynamics be a valid de-
scription.

APPENDIX B. PROOF OF NONOBSERVABILITY

OF THE VELOCITY FIELD

To be a quantum mechanical observable, a phys-
ical quantity must correspond to a linear, Hermi-
tian operator in the Hilbert space. As promised
in Sec. VIII 8, we show in this appendix that the
assumption that v~ is a linear operator, together
with the established fact that J~ and p~ are physi-
cal observables, leads to the absurd conclusion
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that vT must be merely a constant number inde-
pendent of the state of the system. We therefore
conclude that vT cannot be a linear operator. (All
of these arguments apply also to the irrotational
velocity field vs for each single particle. )

Let us consider in general three nontrivial (i.e. ,
not proportional to the identity operator) operators
A, B, and C, in which A and B are assumed to be
linear and satisfying the relationship

l~ly) =«lBlq)«lclq) (B1)

(B;; —Bqq)(C;; —Cq, ) —B;;Cq( —B;;C;;=0, (B2a)

(B2b)

for any state lP) in the Hilbert space. We prove
in the following that under these assumptions, C
cannot be a linear operator. For the problem of
observability under our consideration, the opera-
tors A, B, and C stand, respectively, for J» p»
and vT (and for the single-particle case, J, p, and

v~). [Cf. Eq. (8.19).]
To prove the nonlinearity of C, we assume the

contrary that C be linear, and reduce this assump-
tion ad absurdum.

We pick an arbitrary complete set (l i)) of states
in the Hilbert space. Since Eq. (Bl) is assumed to
hold for any state in the Hilbert space, it must hold
for any state and any linear combination of the
states in (li)). Consider then the states li), lg),
and la)

—= ( i)+al j))/W2, where a is an arbitrary
complex number of unit magnitude. By the linearity
of A, B, and C, and by the arbitrariness of a, Eq.
(B1) for

I
y) = li) ly& and la) leads to three equa

tions:

APPENDIX C. EACH GEOMETRIC FIELD IS ALSO REGULAR

AND INCOMPRESSIBLE

In Sec. III C we have shown that the geometric
velocity field vo obeys the condition (3.2) of in-
compressible flow. Here we demonstrate, first,
that vo is regular in the finite volume, and, sec-
ond, that it obeys the alternative compressibility
condition (3.3) and, therefore, (by addition) the
continuity equation (3.1). Thus, the geometric
velocity field, whenever it exists, is proven to be
a velocity field of the single-particle Schrodinger
fluid, which is simultaneously a regular velocity
field and an incompressible velocity field.

In the following proofs, we assume that the wave
functions P,. form a complete set and that every g,
has a continuous first derivative with respect to t.

Proof of regularity of v&

We assume the contrary property, that vo has a
singularity at some point x„such that vG -~ as
x-x„and reduce that assumption ad absurdum.

We have already shown in Sec. III C that when
the velocity field vo can be defined for every wave
function P, , Eq. (3.9) holds for each P, , i = 1, 2, . . . .
Since every g,. has a continuous time derivative by
assumption, the first term of Eq. (3.9) is finite
for every i = 1, 2, . . . . Then every g,. must have
at x x p zero gradient along the direction of vo.
Otherwise the right-hand side of Eq. (3.9), which
has already shown to be zero, would become in-
finite at x, for that g, It follows that every linear
combination of g, has zero gradient along the di-
rection vG at x,. On the other hand, consider as a
counterexample the function,

(B2c) q(x) = ~ p '~'exp(--,'(x x,)')—
2

(Cl)

Since B is assumed to be nontrivial and since the
set (li)) is arbitrary, we can pick it in such a way
that B,,a0 and B,, cB,, for every i o j. (For the
operator p, we can choose, e.g. , the set of simple
harmonic oscillator states as (li)3.) Then Eqs.
(B2a) and (B2c) imply that (a) C is diagonal:

C,, =O, for it j;
and (b) all its diagonal elements are equal:

(B3a)

C, ,-=C,, (B3b)

Therefore C is a t.- number times the identity oper-
ator in the representation (li)), and hence in any
other representation.

This contradicts the assumption that C is non-
trivial. Therefore, C cannot be a linear operator.
This completes the proof.

7( ' vo ~ (x o
—x~) ' vo j0 . (C2)

That is, g is a function in the Hilbert space, but
has nonzero gradient along the direction of vo at
x„and so it cannot be expressed as a linear com-
bination of the g,.'s. But this would contradict the
completeness of the set of P,.'s. Hence vo cannot
be singular at x,. Since x, is arbitrary, we con-
clude that vo is regular at every point in finite
space.

In a similar way, we can prove that vo has no
discontinuity: If we assume that at x, the com-
ponent of vo in a direction 3. is discontinuous, then
all the g, , i = 1, 2, . . . , must have zero gradient
along the direction of a in order to honor Eq. (3.9).
This leads again to a contradiction with the com-
pleteness of the set of g,.'s.

which obviously does not vanish at x=xp4x, . Then
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Hence vG cannot have any singularity or dis-
continuity in finite space: vG is regular.

Proof that 'p ~ v& vanishes

To prove that vo satisfies (3.3), consider

I
dt . tt f tJr, d 'x

drhP d&h.
+ g,* —~ d'x=0

dt ' dt

for all i and j, where the zero is implied by the
orthonormality of the eigenfunctions. Then use
(3.9) to obta, in

I;~= — ~VG'V ~ +; VG'V d g

vo V(g,*P,.) d 'x (C4)

or, by Green's theorem,

(c5}

where the surface s encloses the relevant finite
volume. (There are no singularities or discon-
tinuities of vo, according to the preceding discussion. )
Then every g,. vanishes, or canbe made arbitrarily
small, on the surface s so that the surface integral
itself vanishes. Thus we arrive at the result

I,, = P,*. (,.(V vo)d'x=0, (C 6)

for all i and j. But since the g~'s form a complete
set, the quantity itself must be identically zero:

V 'VG=O. (C7)

Thus vo obeys (3.3), and consequently (3.1). This
completes the proof that the geometric velocity
field is also a regular and an incompressible velo-
city field.

APPENDIX D. POLAR FORM OF THE WAVE FUNCTION

IN THE STATIC LIMIT

Throughout this paper, the polar form (2.4) of
the wave function is utilized with the collective
velocity n assumed to be nonzero. We here ex-
amine this polar form of the wave function in the
static limit +=0. Then a single-particle state is
described by an eigensolution g of the time-inde-
pendent Schrodinger equation

(Dl)

which in general can assume both positive and neg-
ative values, and passes through zero continuously
and with continuous first derivatives.

However, in the polar form,

(D2)

with the conventions we have adopted, the phase S
(interpreted as the velocity potential in the single-
particle Schrodinger fluid) exhibits a discontinuity
and the magnitude Q, a discontinuous first deriva-
tive at each zero of g. We discuss here the re-
lationship between this discontinuous form implied
by Eq. (D2) and the more familiar continuous ei-
gensolution in Eq. (Dl).

Discontinuities are consistent ~ith (modified) Schrodinger
equation

In the modified Schrodinger equation (2.7) and
(2.8), the dynamical modification potential V„„„de-
pends on the derivatives of the velocity potential S
and hence may exhibit singular behavior as o. -0.

I 2 3 4

a=0

O

C
(D
+"
O
CL 7f.tl

2m
+
O
O

0
A B C D

path length g

FIG. 3. Schematic representation of the velocity poten-
tial S across a nodal surface of the real part u of the
wave function for different collective velocities. The
velocity potential along the path ABCDE shown in Fig. 1
is shown here. Point C is on the nodal surface of u. The
collective velocities n&, e2, a3, and h4 satisfies the

~ ~
inequalities G,

&
& e2 & e3 & 0,4 & 0.

Singular behavior is well defined as a( ~ 0

We consider the limit o. -0, at which P becomes
a purely real function. For all n)0, however, g
is complex. Figure 3 shows schematically the
function S, as a function of the distance along the
path ABCDE shown in Fig. 1, for a sequence of
diminishing n values. At points A and E, the im-
aginary part p of P vanishes. According to Eq.
(4.2), the value of S is 0 and ~him at the nodal
points A and E, of p. , respectively. As n dimi-
nishes, p, diminishes everywhere (while the real
pa.rt u of P remains finite) and the change of the
value of S from 0 to ph/m takes place in a smaller
and smaller interval across the u node. As Fig. 3
shows, the function S for decreasing n values ap-
proaches a step function as a limit.
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As h -0, the first term BS/st of V,„„canbe ap-
proximated by h(BS/Bn). By our assumption that
the single-particle wave functions are smooth
functions of n, we conclude that BS/St gives rise
to no singularity as n -0.

However, as we show in the next section, the
second term (VS)' of Vd„approaches a 6 function
of infinite strength on the u node as o. -0. As a
result, the dynamical modification potential Vdy„
acts as an infinite repulsive t

due to the positive
sign of the (VS)' term in V„„,] potential on the u
node. Such a potential forces P to have value zero
and a discontinuous first spatial derivative at the
u node.

Therefore, although S and the spatial derivatives
of Q have the discontinuities mentioned above, they
are nevertheless consistent with the Schrodinger
equation, as modified by the singular dynamical
modification potential. For n =0, these singulari-
ties are purely the result of convention and could
trivially be defined away. But, for n 4 0 one would
then have had to deal with discontinuous magni-
tudes g in the polar forms, whereas our conven-
tions give continuous positive P.

Nature of the singularities

We now show that VS and (VS)' approach 6 func-
tions of finite and infinite strength on the u node
as i -0. We use the coordinate system of Fig. 1,
as described in Sec. IV, and consider, along the
path ABC13E, the functions

~

VS
~

and (VS)' in the
interval between two points B and D adjacent t o
the u node at point C. On the path, ~S is only a
function of the azimuthal angle $ (since 8=-,' z
and ~=R), and therefore its behavior can be an-
alyzed by the function g (8, P) defined in Eq. (4.12).
By our particular choice of the coordinate system
in Fig. 1 (/ =0 at C, and hence Q, = ——,

'
p) we obtain

by retaining only terms up to the second order of
P in Eg. (4.12),

Z(-'~ 0)= 1,. 2 . .»(0), (D4)

where 6 is the Dirac 5 function, because the di-
mensionless quantity

a
V=

b S1I1(f) p

(D6)

goes to infinity as 0.' goes to zero. " Introducing
result (D4) in Eq. (4.11), we have, along the path
BCD,

(D6)

For (VS)', we consider the integral along the
same path:

lim

2

lim g'(~ p, P)dQ
m ~)~6 p~

lim v, , + — g(-', w, P)dPI,

where & is an arbitrarily small but fixed number.
The first term in the parentheses tends to zero as
v- and is negligible compared with the second
term, which integrates to & z. Hence, for any
arbitrary fixed &, we have

lim (DB)

so that

where &f „=P, —Q,. Since b is the magnitude of vp
at the line vortex, it approaches zero as n -0.
The last two terms in the denominator in Eq. (D3)
are then negligible, and

a(-'~, 0)
2

lim (&S)' ~~c~ = lim —,
'

p v6(g) .
n~p

BCD 2 mg (D9)

ab sing„
b' sin'P„+ a'P'+ O'P' cos'P„—b'Q sin2$„' Equations (D6) and (D9) show that the functions

~

VS
~

and (VS)' tend to 6 functions of finite and in-
finite strength as we have set out to prove.
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