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The utility of the anomalous Green’s function formalism is physically motivated as a description of superfluid
finite Fermi systems. The quasiparticle self-energy is then derived from a generalized six-point response
function with the assumption that three-body correlations are negligible. An approximate calculation of the
self-energy includes the usual core-polarization diagram, a backward-exchange diagram with ground state
correlations, and higher-order diagrams that correct for exclusion-principle violations in the propagation of the
quasiparticle and the microscopic phonon. Intermediate lines in the self-energy are described self-consistently,
thereby including multiple-phonon core excitations. It is shown that the equation for the self-energy may be
solved by matrix diagonalization with coupling of the even- and odd-nuclear eigenmodes. Renormalized
phonons are calculated by taking into account the distribution of quasiparticle strength in the solution of the
Bethe-Salpeter equation. The self-energy and phonon are calculated self-consistently.

UCLEAR STRUCTURE Green’s function method with pairing. Self-consistent
RPA, collective effects in odd-A nuclei. |

L. INTRODUCTION

In a previous article,’ we presented a self-con-
sistent treatment of quasiparticle-phonon cou-
pling (SCQPC) for shape vibrations in nonsuper-
fluid nuclei. It was shown that writing the mass
operator in terms of the six-point function permits
a natural extension of Fermi liquid theory to pho-
non states in odd-mass nuclei. A further result
of applying Green’s function techniques was an
unambiguous prescription for treating higher-
order corrections to the usual quasiparticle-pho-
non coupling (QPC) approach. In particular, the
diagrams in Fig. 1 (see caption for explanation)
can be calculated according to the equations de-
rived in Ref. 1. The idea of extending QPC to
superfluid nuclei is not new.?"® In the present
article, we extend the many-body SCQPC of Ref.
1 to such systems. In following articles® the the-
ory will be employed for spherical and deformed
nuclei.

In this paper we use the Migdal-Gorkov’ forma-
lism for treating superfluidity. In Sec. II we re-
view this formalism and discuss why it is neces-
sary for superfluid nuclei. In Sec. III we define
one-, two-, and three-particle Green’s functions.
These are in fact supermatrices containing the
normal Green’s functions, as well as the anom-
alous Green’s function.” The dynamical and ana-

lytical properties of these matrices are then given.

In the case of the three-particle Green’s function,
the equations for a superfluid are derived for the
first time.

In Sec. IV, an approximation for the six-point
function is developed which leads to a matrix

diagonalization problem for the energies and spec-
troscopic factors of odd-mass nuclear states. The
equations for the even nucleus, which must be
solved self-consistently with the odd nucleus, are
also derived. The reader who wishes to skip over
the algebra in Secs. III and IV will find the final
matrix equations at the end of Secs. IVA and IV B,
Eqs. (52)-(53) and (80)—(83). A number of lengthy
derivations have been relegated to an unpublished
appendix,® and a less rigorous development of our
equations is contained in Ref. 9. We shall omit in
this paper the Landau renormalization which
transcribes the particle Green’s function into a
quasiparticle Green’s function, the irreducible
particle-hole (ph) and particle-particle (pp) blocks

/

(a) (b) (c) (d)

FIG. 1. Higher-order corrections to QPC: (a) cor-
rects for exclusion-principle violations (EPV’s); (b) is
the so-called “backward” diagram which results from
ground state correlations; (c) and (d) are two-phonon
contributions to the self-energy; (d) can be obtained by
‘“dressing” the intermediate line in the lowest-order
QPC diagram of Fig. 2(b).
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I and J into F and F’, and the bare interaction V
into 7. The philosophy and details of this trans-
formation are described in Ref. 1, including the
splitting of the quasiparticle by QPC. We intend
the term quasiparticle in the Landau sense: A
“dressed” elementary excitation. To refer to
those particular elementary excitations in super-
fluid nuclei which are both particle and hole, we
introduce the word “quasibogolon.”

In Sec. V we summarize the previous sections
and explain the physics contained in the compli-
cated equations describing SCQPC. The renormal-
ization of pairing by backward QPC and the physi-
cal basis for the small backward amplitude ap-
proximation are also discussed. Finally, methods
developed by other authors for nonrotational struc-
ture in superfluid nuclei are compared with this
work.

II. MIGDAL-GORKOV PAIRING FORMALISM

Ideally one would like an identical treatment of
pairing and shape correlations in superfluid nuclei.
In this paper we consider an even-even nucleus
to be superfluid when its ground state energy is
related to the ground state energies of neighboring
even-even nuclei by

Eyie—Ey=Ey—Ey_,, (1)

where N is the number of protons or neutrons.
Superfluid and normal nuclei are different only
because Eq. (1) facilitates a different approxi-
mation. The shell-model configuration interaction
approach to pairing vibrations and shape vibrations
in normal nuclei is well known. It is also true,
however, that the low energy 0+ states of super-
fluid nuclei can be described by a matrix diagonal-
ization of the pairing and quadrupole interactions
among appropriate configurations.'® The model
space must be severely truncated in practice, but
the shell model can in principle describe super-
fluid as well as normal nuclei. Therefore, in
finite systems, the BCS transformation' is not

a mathematical necessity.

In recent years most of the theoretical devel-
opments in structure physics have been based on
many-body field theoretic techniques, because of
the power and clarity of such formalisms. In the
Green’s function approach one should include pair-
ing correlations in normal nuclei by calculating
a (pp) correlated contribution to the single-parti-
cle mass operator as well as the usual (ph) term.
These are shown in Fig. 2. In the latter case, it
is well known that in the N + 1 nucleus, the extra
particle should be coupled at least to the lowest
excited state of the N nucleus. A similar tech-
nique couples a hole to the ground state of the
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N +2 nucleus. Figure 2(a) is just the usual pairing
vibrational approach used to describe states in
odd-mass nuclei.'?
In principle one may apply this approach to su-
perfluid nuclei using the following prescription:
First, solve the (pp) random phase approxima-
tion (RPA) equations with dressed particles, i.e.,
with single-particle strength fractionated among
the N +1 and N — 1 nuclear states. The resultant
two-particle Green’s function with poles in the
N +2 and N - 2 nuclei has the approximate form

S, S_
W=(Ey2—Ey)+i0  w+(Ey_,—Ey) —id "’

(2)

where the pairing correlations (S,,S_) are con-
centrated in the N+2 ground states.

Second, calculate the N+1 states by solving
Dyson’s equation for the one-nucleon Green’s
function

L(w)=

G=G9+cOM¢G (3
with
(VS%)%zn:1
M=VLGV=Y — 2 2Nl (4)
Z WFEy 1 FEyzs

Ntl

Steps one and two above should be done self-
consistently. Further, step two requires as an
input the distribution of single-particle strengths
z into the N+1 nuclei, even though this is the ob-
ject of the same step—a further self-consistency
problem. This requirement follows because the
one-particle propagator in the approximation for
the mass operator must be dressed. The theory
would be incorrect if the zeroth-order propagator
were employed.

In fact, the above scheme was followed in a ser-
ies of model calculations by Zawischa.'® The un-
happy result is that when the intermediate G is
dressed (theoretically correct), the single-parti-

(a) (b)

FIG. 2. Lowest-order quasiparticle-phonon-coupling
diagrams. (a) shows the coupling of a pairing or (pp)
vibration to a hole; (b) shows the coupling of a shape or
(ph) vibration to a particle.
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cle strength is fractionated not only into the N -1
nucleus, as well as the N +1 [the v? and u? of (d,p)
reaction analysis], but also into many states with-
in each nucleus. This is experimentally incorrect,
since one generally populates only one state of a
given spin and parity in each of the two sister
nuclei. The only way to remedy this deficiency is
to explicitly include some very complicated energy-
dependent contributions to the (pp) or pairing in-
teraction, which are required to fulfill the Pauli
principle. These corrections would not be so cru-
cial if the pairing vibration energy in the energy
denominators of perturbation theory were not
approximately zero, that is

Eyie—Ey=Ey—Ey.,=2) (1)

or, when X is taken as the zero for single-particle
energies,

Ey.2=Ey =Ey_;, (1)

thus permitting a large number of such excitations
to contribute and interfere with one another. Un-
fortunately, the cumbersome equations of Ref. 13
make it impossible to calculate a normal nucleus
with both (pp) and (ph) correlations and a large
single-particle basis set.

The approach of Gorkov” and later Migdal” is to
take advantage of Eq. (1). Although this approach
does not preclude going back and forth between
the pairing and shape correlations to achieve self-
consistency, it is based on a separate and unique
treatment of the pairing. The assumption implicit
in Eq. (1) is that by removing two nucleons from
the N nucleus to obtain the N — 2, the percentage
of particles removed from each orbital is the same
as the percentage added in going from N to N +2
(or removed in returning from N +2 to N). It fol-
lows that it is redundant to simultaneously con-
struct an N + 2 pairing vibration and an N — 2 pair-
ing vibration. The result is just to return to the
ground state of the N nucleus. This is shown sche-
matically in Fig. 3. Obviously, this argument is
not applicable to a nucleus like 2°Pb where “(N +2)
+ (N = 2)” leads, not back to the ground state, but
to the state at 4.87 MeV.

The far-reaching result of Eq. (1) and Fig. 3,
however, is that all graphs which superpose pair-
ing vibrations are eliminated for superfluid nuclei.
The “modified” Migdal prescription” is inconsis-
tent because although E, ,~Ey#E, —Ey_, (a clear
violation of Fig. 3), higher-order graphs [e.g.,
Fig. 4(a)] are neglected due to Fig. 3. As an ex-
ample, even the simple contribution to the self-
energy shown in Fig. 4(a) is disallowed because it
is equal (by the logic of Fig. 3) to Fig. 4(b) which
is already calculated by an iteration of the lowest-
order graph. The mass operator is then simply

.
=
I
>3
=
<

FIG. 3. In the Migdal-Gorkov approximation, the
superposition of the collective 0+ (pp) and (hh) vibra-
tions upon the N-nucleon 0+ ground state gives the same
superfluid 0+ ground state.

M=~VLG°V, (5)

where the intermediate G° is undressed. Also our
logic implies that S, and S_ are equal, as well as
Ey.» and E,_,. The solution of Dyson’s equation is
then just the BCS system of equations'!:

C=TE+i6 T wiE =i’

A :S+V’

S,=y uv.

Of course, having obtained G in this way, one
can still solve the usual Bethe-Salpeter equation
to obtain the (ph) excitations, thereby including the

(a) (b)

FIG. 4. An example of the Migdal-Gorkov approxima-
tion showing that the (pp) and (hh) 0+ vibrations cancel
whenever they coincide in time.
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dressed RPA bubbles such as those shown in Fig.
5. We proceed from the homogeneous integral
equation

P137A 1311234042
where

Aw)= ;—;fGl(wl)G3(w1—w)dwl

2 2 2 2
U, Vs o UsY,
w=-E,-E; w+E;+E;,

(7

If we define

IMMELE AND G. L. STRUBLE 15

_ U, Vg Pis Y. = ~UiUz__ Pais
Xys= ) 13~ ) FIG. 5. An RPA bubble which is effectively calculated
w—E;—E; A w+E +E; Ay . ) . s
by using normal Green’s functions which include (pp)
we obtain correlations in the self-energy.
W(X 13 F Yyg) =, 05 0,05) [[155,(0 40, X 4y +uy0, Vi) =Laaa(o vy X jp +1e, 0, ¥y )]+ (Ey+E3) (X 5% Yg) . (8)

If we compare this to the well-known superfluid RPA with a (ph) interaction

W(X 13 FY13) = (U, 05F 0,8g) (g V% V425) [155s FL1450) (X o2 Vo) + (B +E ) (X152 Y ) 9

it is clear that half of the terms are missing. The
reason is shown in Fig. 6. If (pp) correlations are
important, then there are some pairing vibration
contributions to the (ph) interaction which should
be explicitly taken into account.

In the approach of Migdal” this is accomplished
as shown in Fig. 7. The pairing vibration exchange
diagram is replaced by a diagram in which the
pair-addition and pair-subtraction modes are in-
itiated by different lines—this is legal because of
Fig. 3. The anomalous Green’s function F is de-
fined to be the one-nucleon graph that begins as a
particle on the N nucleus and ends as a hole on the
N +2 nucleus. With the same assumptions that
give the BCS [Eq. (6)],

uv s uv
wW=—E+i0 w+E-id "

F= (10)

Note that F does not contain any energy dependence
of the pairing vibration because of Eq. (1). Figure

FIG. 6. RPA bubbles which are effectively calculated
by including anomalous Green’s functions.

r

7 thus constitutes an anomalous RPA bubble that
must be added to Eq. (7) giving
P137A 13 119340 s+ A 13114320 42 5

where
A13=;—;fFl(wl)F3(w1—w)dwl. (11)

The second term turns out, after a good deal of
algebra,' to be responsible for the other half of
the terms in Eq. (9).

It is possible to show in a similar way how the

N+ 2

where F = -

N

FIG. 7. Tlustrating how anomalous Green’s functions
represent more complicated diagrams such as those of
Fig. 6.
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(pp) correlations are added to the (ph) interaction.
But we have already demonstrated the essential
points: In the case that Eq. (1) holds approxi-
mately, it is not feasible to treat both (pp) and
{ph) correlations on the same footing. In a Green’s
function formalism it is necessary to make the
Migdal-Gorkov approximation shown in Fig. 3.
This approximation is implemented by defining the
anomalous Green’s function and treating it on an
equal footing with the normal Green’s function.

We conclude with the comment that this approach
implies number nonconservation since we are as-
suming that it is impossible to distinguish the N
and N +2 nuclei.

III. EQUATIONS FOR ONE-, TWO-, AND THREE-PARTICLE
GREEN’S FUNCTIONS

As Secs. III and IV develop in considerable de-
tail the theory and approximations of SCQPC, we
begin by outlining the presentations.

Nuclear structure information is contained in
Green’s functions as follows: The n-point func-
tion describes the propagation or correlation in
time of n/2 particles or holes created upon some
core. They may scatter or excite core excitations.
The Fourier transform (from time to energy vari-
able) exhibits singularities (poles) whenever the
energy variable approaches eigenvalues of that
nucleus which is n/2 particles or holes away from
the core. The residues at such poles are products
of spectroscopic amplitudes. Typically then, the
two-point function describes the energies and par-
ticle amplitudes of the odd-A nucleus, while the
four-point function gives the energies and ampli-
tudes of particle-hole (or particle-particle) ex-
citations built on the core. The Green’s function
is the solution of an integral or Bethe-Salpeter
equation which incorporates the effective inter-
action between particles or between a particle
and the core.

In Sec. IITA the Green’s or n-point function is
defined in a general way so that particles and holes
are effectively mixed. By partially integrating
the equation for the two-point function, an effec-
tive one-nucleon potential M is defined. This
quantity is usually called the self-energy or mass
operator. It depends, however, on the four-point
or two-nucleon Green’s function, which in turn,
depends on both higher and lower orders. The
scheme is formally closed as follows: A Bethe-
Salpeter equation for a four-point (response) func-
tion is defined, in which all dependence on higher
orders is collected into an effective interaction /
or (as it turns out graphically) an irreducible
block, whose behavior we approximate later. A
similar technique yields a Bethe-Salpeter equa-
tion for the six-point function. However, if real

three-body forces are neglected, the effective
interaction for three nucleons K is a sum of two-
nucleon interactions I. The mass operator turns
out to be the sum of a Hartree-Fock-like potential
and a correlated term involving the product of
two-nucleon interactions and the six-point function.
Thus, we finally obtain a set of general formulas
connecting the two-, four-, and six-point func-
tions, coupled by an effective interaction which
we discuss in Sec. III B. This interaction may be
calculated in perturbation theory or parametrized,
as in Fermi liquid theory. We follow the latter
approach.

The approximations and simplifications for
evaluating the above quantities are the subject
of Sec. IV. In particular, an RPA-like equation
emerges for the four-point function, for which col-
lective excitations of the core (or phonons) are
particular solutions. The six-point function is
approximately factorized into a product of the
two-point function (particle) and the four-point
function (phonon).

A. Bethe-Salpeter and analytic representations

Guided by the considerations of the previous
section, we want to extend the ideas of Refs. 1
and 15 to superfluid nuclei by introducing anoma-
lous Green’s functions. It is convenient to com-
bine normal and anomalous quantities into a gen-
eralized matrix notation.®'” The advantages are
that most of the equations can be derived using the
same matrix multiplication techniques employed
for normal systems and that normal and anomalous
quantities are treated to the same order. The n-
point Green’s function is defined by

GAB---MA'B""M’
abeesma’blerom’

S GO A - TR A A A M IV
(12)
where n is the number of particle indices
a,b,...,m. The even-even ground state is rep-
resented by | ), and we shall neglect differences

between neighboring nuclei (see the arguments in
Sec. II):

|)=IN) =|N£2) =| N+4), etc. (13)
T is the time ordering operator.
The lower case indices refer to the single-parti-
cle states occupied by a particle, as well as the

time of creation or annihilation. The upper case
indices have the following meaning:

lpA:{lpa; A=1 TAz{
Pl A=2,

l/)I, A=1

Yooy Azz, (14)

A=3-A, @=-a.
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G is thus the usual form of the Green’s function
defined for normal systems, while G*? is the
anomalous function defining amplitudes of a parti-
cle upon the N nucleus and a hole upon the N + 2.

A systematic treatment of the Green’s functions
is based on their equations of motion!® and analyt-
ical behavior.”***¥” The dynamical equations re-
lating superfluid Green’s functions of different
order may be derived® as in normal systems:

AAT _ 0)AA’ ] 0\AK' K'P'KP ~KPA'P!
Gaar —(G )aal ""Z(G k! Vk'P'kP kalpl N (153,)
AB A'B’ _ (~0)AA' ~BB' 0)AB' ~BA’' 0)AB ~B'A’
Gaba’b' —(G )aa' be' _(G ab’ Gba’ +(G ab GF’a’
; 0)AK' K'P'KP ~BKPA’B' P’

+2(GO)gr Vilipind TGEEIIS T (15b)
where
K'P'KP _
Vk’P'kP _6KK’5PP'5KP

X (O 1 Verpren+ Oxa Vpr—pr p=p) -
The above equations suggest (on account of their
complicated appearance) a change of notation,
namely to replace the subscript and superscript
by a single subscript, e.g.,
GAA' =~ Gy, ete.

aa’

We shall follow this notation frequently through
remaining parts of the paper.

If we make the definition

“iVKIPIKPGKPAIPlEMKIKGKAI (16)

we obtain a Dyson equation for the two-point func-
tion

Guppr =G4 +Gr Myry Gpar am

Equation (17) turns out to be useful in practical

applications only when the analytical properties of
G 44 are detailed:

Al 7Y (G| g TA TA 2N (] A
GAA,:Z<(lzpa|z)(ZIzpa D, lz>(z|zpa|>>'

w—E®+ip w+E® =i
(18)

This can be derived by inserting a complete set
of odd-mass nuclear states between the Heisenberg
operators and Fourier transforming. The E% are
the energies of the odd nucleus measured relative
to the even nucleus. This statement of the analy-
tic behavior of G embodies the Migdal-Gorkov
approximation, made in the present theory; Egs.
(15)=(17) do not. Since neighboring even nuclei
are assumed identical, neighboring odd nuclei
have the same eigenvalues and spectroscopic
amplitudes. From this point on, we must expect
that spurious states and the other unfortunate con-
sequences of number nonconservation are an inher-
ent part of the development based on Eq. (18).
Using the technique of functional differenti-
ation,'®'!® a more practical equation for the four-

point function may be derived. With the definitions

Lapars'=Gapargr ~Gaar Gpprs (19a)

LE?A'B' =—=Gap' Gpar +Gu5GFrar (19b)
. OM g+

_zIK,P,KPE——aG—iPL,, (19¢)

Weigel' has obtained

— 1 free :
Lyparg =Laparp —Gagr Grar IgiprgpLpgprge

(20)

which bears an obvious resemblance to the Bethe-
Salpeter equation for the particle-hole response
function in normal systems. I is the generalized
irreducible block for scattering of excitations in
the superfluid system. Its structure is discussed
later in this section.

The above dynamical description of L is supple-
mented by its analytical representation

U T
Lo < XEAnEy S >
ABA'B w=-E®+is w+E® -5 )’

Isy=\
21

where the sum is over states of the even-even (or
odd-odd) nucleus with excitation energy E). The
energy variable w equals w, —w,, and the spec-
troscopic amplitudes or generalized density ma-
trix for the excited states may be obtained from
(S) b

Xaar PY

-1 ,
21 f Xixr dwy = Lol et 1) =p)s (22)

The dynamical descriptions of Egs. (17), (19¢),
and (20) for both the two- and four-point functions
are dependent on the mass operator M. The ap-
proach to determining M for superfluid nuclei is
analogous to that of Refs. 1, 15, and 20 for normal
systems, namely to write M in terms of a Hartree-
Fock-Bogoliubov (HFB) contribution and the six-
point response function. The latter is, in turn,
determined by the assumption that only certain
correlations involving two particles are essential
to the dynamical treatment of three particles.

With Eq. (17) and the definition

- -1
LCABA’B’C’ =GCABA'B’C’ "GABC'U GUV GVCA’B’
(23)

for the six-point response function, G° may be re-
moved from Eq. (15b) to obtain

— > free H
Guparp' =GAparpr +tGag' Vi prkpLpgpargrpr s
(24)
where

free = — G—
GABA’B’ _GAA' GBB' _GAB' GBA' +GAB GB'A’ .
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From Egs. (16) and (24) the mass operator may be
written symmetrically®:2°

_ 7 7(HFB)
Mpip=Mpip +VprcragLeaparsrc' Vargine s

(25)
where
(HFB), - ; free
Mpip’Gpar=—1tVpipippGppar pr
or (26)
HF
MER =~ 2V, pippGpp =i Vpippp G ppr .

The six-point response function L contains all
graphs connecting excitations in orbits A, B, and
C’ to excitations in A’, B’, and C, with the ex-
ception of those graphs that can be separated by
cutting a single line, i.e., a 2p-1h excitation can-
not evolve into a 1p excitation. Graphical con-
siderations and the analogy to low orders suggest
that a Bethe-Salpeter equation for the six-point
function be written down. Generalizing the de-
velopment in Refs. 1, 15, and 20:

— 7 free
Leaparsrer =Lckparprer
+GAPGBQGR’C'
XKppoprrgrr Leprgrarsir s 27
where
free -
LY, o ainicr =Ganr Gppr Goor =G apr Gpar Gocr
=Ga5Gppr Gzrcr +G 45 Gpar Gxrer
GE!CI +GAB’ GBEGKICI
(28)

—G44 Gpe

and

. _ -1 -1
iKpporrorr = Iprrrpr Gogr~ +Igrrrqr Gppr

—IPE’GP' GRR:_l . (29)
The analytical properties of L follow from Eqgs.

(23) and (25) and the ansalz that the mass operator
(minus the HFB part) has the form

(y) (y)
Mpp= Z (30)
It can then be shown®® that
(y) (y) +
PAnc (PArpre)
Lcapargrer = ; 4 w—wy < (31)
with

{ Ty | ot
R ONESS

_<|4J IZ><IZPAZ/)BZPC’I>} (32)

E® +wy
and

O(D)/’)=VD'C’AB PEZ;c' . (33)

B. Irreducible block

The irreducible block, or effective interaction
between quasiparticles, is formally defined in the
derivation of the Bethe-Salpeter equation for the
four-point response function:

. O Mg
—Z[K,Plxpz—?s—(‘;if—. (19¢)

Actually, the choice of this matrix is basic to
Fermi liquid theory. In principle it can be cal-
culated, and there are numerous efforts in this
direction.?''? More commonly the (ph) block and
(pp) block for normal systems (I and J) are de-
termined phenomenologically,?® and the results

are extrapolated to superfluid nuclei. Justification
for the latter procedure has not been thoroughly
investigated.

In general, we expect the supermatrix / to have
16 elements since each superscript can assume
the value of 1 and 2. But the following approxi-
mation has been universally employed

1111_72222 _
Ik’p‘kp_[k_EEﬁ Iyiprap »
122172112

Ik'p'kp R'D'RD =g 'RpB 3

(34)

where the [ and J without superscripts are the in-
teractions in normal systems, and all other super-
script combinations are zero. There are several
reasons for Egs. (34). One is that if they are com-
bined with the BCS approximation for the two-point
function, Egs. (6) and (10), the Bethe-Salpeter
equation (20) yields the usual superfluid RPA equa-
tions with (pp) and (ph) interactions. Then, in the
limit that all #’s and v’s are 0 or 1, these give the
(pp) RPA, with interaction J, and the (ph) RPA,
with interaction I. Moreover, the close corre-
spondence of Eqs. (34) with lowest-order pertur-
bation theory should be noted:

(HFB)

Tgrpgp™1 %&K_
PP

2Vyrprpp for K'K =PP’ and K’ =K =1
2Vgpsy for K'K =PP’ and K' =K =2
Virgppr for K’'K=PP’ and K’'=K=1
Vg for K’K=PP’ and K'=K=2.
(35)
Namely, all but 4 of the 16 supermatrix elements
are zero. This is advantageous for obvious cal-
culational reasons, as well as the physical ones
that the matrix elements which begin with higher
orders and mixed superscripts are difficult to in-
terpret and could not be determined via phenom-~

enology.
Nevertheless, Eq. (34) is subject to several
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criticisms. One is that

I %] (normal) ; (36a)

the reasons are simply that while the Green’s func-
tions are the same

G =G(normal), (36b)
the mass operators are not [recall Eq. (19¢)]

M £ M (normal) . (36¢)

For example, Fig. 2(a), the coupling of a hole and
a pairing vibration, contributes to the mass op-
erator for normal systems, although for super-
fluid systems the same graph is calculated by
iterating the anomalous mass operator, i.e.,

Fig. 1(a) = M22G2&M2,

Similarly, I (normal) includes the pairing vibra-
tion exchange contribution, Fig. 6, but I does
not. The answer to this technical point is that
Fig. 6 is not important for normal systems, al-
though for superfluid systems it is so dominant
that its influence must be handled by anomalous
Green’s functions in order for I to remain ap-
proximately energy independent. A less easily
discounted argument is that the contribution of
Fig. 8, viz., the exchange of a (ph) excitation in
the other (ph) channel, influences I differently in
the normal and superfluid regions. This is be-
cause the 2+ or 3- states can be at greatly differ-
ent energies. But this same argument would seem
to apply to every different nucleus in the Periodic
Table, so we shall not comment further on its
importance in the present paper on superfluids.
We shall adopt the above approximation for 7, as
have other authors.

It is also of some interest to examine the rela-
tion of the generalized I block to the Hartree-
Fock (HF) and BCS (or HFB) approximations. The
functional definition (19¢) may be integrated to
give

Mgty = =il yrprp G (37)
My = =idwipp Ghp -

Formally, these are the HF and BCS equations

A

#

FIG. 8. The phonon-exchange contribution to the
(ph) interaction.
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but with Migdal’s irreducible blocks, instead of
the bare interaction. In the case thatl and J are
energy-independent, G and G'? will have only one
pole. On the other hand, it should be realized that
Eq. (37) is not a rigorous (or even an improved)
form of HF or HFB. In principle, this approach
causes the single-particle energy (or M) to include
Fig. 2(b), core polarization. Similar comments
hold for the pairing gap (or M*?). Thus the inter-
pretation of single-particle strength is different
from that of Baranger,* for example.

The advantage of doing HFB this way is that if
HFB and RPA are done with the same interaction
or, more generally, when the mass operator and
the response function are calculated with the same
block, as in Egs. (19¢) and (20), the approximation
is conserving'®; consequently the spurious states
(1-, center of mass, or 0+, number nonconserva-
tion) are isolated.?®

This points up a major shortcoming of the theory
which we propose in this paper, namely that M is
improved (i.e., energy-dependent or time-delayed)
while I is a phenomenological and unretarded (ph)
block. Spurious states will have to be eliminated
explicitly, since the system of equations is no
longer conserving. In principle, we could elimi-
nate this difficulty by determining I by functional
differentiation; in practice, this is not simple.

IV. SCQPC EQUATIONS

In this part of the paper, the Bethe-Salpeter
equations for the two-, four-, and six-point func-
tions are simplified by a set of self-consistent ap-
proximations, which are suitable for odd-A nuclei
in which the collective excitations of the even-A
nuclei persist. A capsule summary of the section
follows:

(a) Phonons of the even-even nucleus:

1. One-nucleon Green’s function. We first define
a generalized set of particle and hole amplitudes

u and v and relate these to forward () and back-
ward (¢) amplitudes, the latter being small except
in the case of ground state correlations.

2. Bethe-Salpeter equation. Utilizing the #’s and
v’s of the previous paragraph, as well as the mul-
tiplicity of odd-A states with particle residue, an
RPA-like equation for superfluid nuclei is derived.
Its most important feature is that it includes re-
normalization due to QPC-induced fractionation of
single-particle strength.

(b) Odd-mass problem:

1. Approximate treatment of the six-point func-
tion. A partial summation of terms for the six-
point function is performed, so that, in lowest-
order perturbation theory, it is a product of the
four-point function and the two-point function. The



former contains information about the collective
states of the even-even system.

2. Approximate diagonalization for the poles of
the mass operator. The generalized (2p-1h) or
three-nucleon amplitudes of the six-point function
are factorized into phonon and particle contribu-
tions. This development of the analytic represen-
tation of the six-point function, combined with the
approximation for its dynamic behavior mentioned
above, admits a matrix solution for the poles of
the mass operator. The effective interaction be-
tween phonon-plus-quasibogolon configurations is
actually equivalent to the higher-order graphs
which account for the exclusion principle violations
and two-phonon intermediates discussed in the
introduction.

3. A second matrix-diagonalization problem con-
nects the poles of the mass operator to the ener-
gies and spectroscopic amplitudes of the odd-mass
nuclei.

4. The final step is to combine the two matrix
problems into one.

It is intended that consistency between the even-
and odd-mass nuclei is achieved by iterating back
and forth between the two problems, hence, the
title self-consistent quasiparticle-phonon coupling.

A. Phonons of the even-even nucleus
1. One-nucleon Green'’s function

The exact analytic representation of the two-
point function is given in Eq. (18). As commented
upon previously, the N+1 nuclei have the same en-
ergies. This enforces a special symmetry in the
equations. We shall also assume that the Green’s
function is diagonal in the single-particle repre-
sentation. Making use of an obvious notation,

( ul?, A=1

<|¢ﬂi>:1 —s o A=2
a% ’

(38)

where s is the usual time-reversal phase factor,
the Green’s function may be written

— AK!
GAK,_Gak,
(i) (i)
=5 BA,(, N Cag (39)
T Car W-ED4+i0 T w+E® 45
i a a
where
(i), (i) (i), ()
o ut'u, -S0, U,
B t = N s s
AK* 1) ,, (i) (i), (i)
S, U, v, Y,
and
i), (i) (i), (i)
. va Ua sava uﬂ
Cz(at}‘ s iy ) 4Gy M .
a a a a a
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It turns out from the QPC development in Sec, IVB
that the occupation amplitudes obey the following
equation:

_sava(” h =Sl SMa ¢z(zi) ’

That is, the QPC amplitudes (of which there are
2n, n being the number of poles i) are related to
another set of amplitudes by the #’s and »'s of
HFB. The amplitudes ¢ and ¢ have the properties
for physical states |¢|2 <1 and also ¥~ 1 for
states with little or no phonon admixture, i.e.,
quasibogolons. We shall henceforth refer to ¢ and
¢ as the “forward” and “backward” amplitudes.
Although a more sophisticated development (even-
tually requiring a much larger computational pro-
gram) is possible, we shall henceforth make the
“small backward amplitudes” approximation, viz.,

(i) ~ (i) = (ini/2
uPru PV =y (2 0)2

U;i)zvaw(i)gva(za(i))l/Z’ (41)

G, =0 ,,z2D BA{(' + CA!(’
AK ak'“a w—E;”+i(3 CU+E;’)-i5 ’

with
2
u -S v u
a a a
BAKI_ < a>
2
=SV, YV,
and (42)
v? sovu
CAKI"-" a a“a"a > .
2
Savdua ua

Thus, the effectof backward coupling on energies
(ED pushed up when ¢ #0) is being retained, while
the redistribution of single-particle strength
across the Fermi surface is being neglected. For
single-particle states nearest the Fermi surface,
this is a good approximation since pairing effects
dominate backward coupling in determining the rel-
ative amounts of particle (?) and hole (v®) strength
in a given odd-mass nuclear state. We discuss

the small backward amplitude approximation fur-
ther in Sec. V.

2. Bethe-Salpeter equation

The derivation of the RPA with appropriate QPC
modifications depends primarily on a transforma-
tion of the normal and anomalous amplitudes p§5)
defined in Eq. (22). We shall outline the steps as
simply as possible, since this development of
RPA has never been published. More details on
the algebra are contained in Ref. 8.

Substituting Eq. (21), the analytic behavior of
the four-point functions, into Eq. (20) and setting
w =E‘S) one obtains the homogeneous Bethe-Sal-
peter equation
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X = =1G 4 G g L gpocpX pps - (43) trix. It is then not difficult to show that
If I is taken to be energy-independent, Eq. (43)
may be integrated to obtain BAKCEA = MM, (46a)
Pa =Aakaxxpp Poprs where
where
US iV, 000
Aaxan= jcf’:’(' WGt (@0 - @)dw, ~S v, 0 00
M= 000
UMy
=00 2Pz P @
2%a
aa;aa =8,5,0,0,, 0 0 0
(e - Canf ) a
w-E® -EP  w+EP+EY an
(44) CAK'BEAI= NN, (46b)
The algebra involving superscripts is cumber-
some in the four-dimensional (2 X 2 X 2 X 2) nota- where
tion. We transform all quadruply superscripted
quantities to a two-dimensional (4 X4) matrix no- 0 spu, 00
tation, for example, 0 —us,v, 00
AAKA'K' . A AA'K'K 45 N=
’ (45) 0 -s,s,v,0, 0 0
where AA’ or K’'K =11, 22, 12, and 21 correspond 0 " 00
to row or column 1, 2, 3, and 4 of the 4 X4 ma- Ualte!
- |
Note also that the I matrix is 4 X4 and diagonal
Lopary 0 0 0
pr 0 5,5,8,8,1 0,0 0 0
IKIPI;;(Péak‘@ - a>a’p7p' Tap'a’ , 47)
0 0  pegtpept 0
0 0 0 8484858 prd gearpapt

where we have used the time-reversal properties of I and J in rows 2 and 4.
Finally, we introduce the unitary matrix which transforms the superscripted amplitudes into the more
conventional amplitudes (X and Y) of superfluid RPA (cf. Baranger®):

USgVyr  =SDMgr UMy =S ,Sq1 V0 o
S U U, -u,S U, -V, U, Uuu,.S,S, .,
= a aa a-a’a a’a a’a a
U= o . (48)
UMye  SSgUVgr —USuV, =S U
S SV Vg UMy SV Uy UGS 1V g

Multiplying Eq. (44) from the left by U, inserting (U,,.)'U,,, and defining the column matrix (four ele-
ments) X =Up, we obtain the equation

X0 =U Py
(w)U M (M ') IaP a’P( PP')iXPP’ +Aaa'(—w) Uaa‘Naa'(Naa’)TIap’a’P(UPP')TXPP’ ’ (49)
!
where for convenience we have deleted the super- pRcied
scripts from the column matrix X and from the Al @) = w_E® _Ean- (50)
it a a
4 X4 matrices U, M, N, and I. The function i

A, (w) is not a matrix, rather Because of the simplicity of the matrices U, M,
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N, and I defined above, the matrix multiplica-
tions are actually rather easy. It turns out that

1) (? 1)/ (9[
UMMTUY = 00 00
00 0 O
00 0 O
(51)
00 0 O
UNN'IU T= @ PQ
00 0 O
00 0 O

Rows 3 and 4 being identically zero, the corre-
sponding amplitudes X are also zero and the val-
ues of the matrix elements P’ and @' do not enter
the calculation. If we write the first and second
elements of the column matrix X, as X and ¥, we
arrive at the matrix problem

X\ <Aaa,(w) 0 )
Y, 0 A, (-w)
X <P ap'as QaP'a'P> (X,,,,> , (52)
QaP'a'b PaP’a’P YPP’

— £E ES x £3
(PxQ) =% E5pd s arpmpr+ Mot MoprS S prlaprary »

where

£ =y, Fo,) ,
= U, 20 u,) .

Equation (52) represents the self-consistent ver-

sion of the RPA. In the HFB limit where
A lw)=(w-E,—E,)"

we obtain the usual superfluid RPA equations, in-
cluding different interactions in the (pp) and (ph)
channels. The importance of the modification to
A(w) is that forward QPC, which fragments the
single-particle strength in the odd nucleus, low-
ers the energy of the phonon by admixing certain
anharmonicities. On the other hand, backward
QPC, which primarily pushes odd-nuclear eigen-
energies upwards, similarly affects the energy of
the even-nuclear state by reducing the amount of
ground state correlation.

We shall not present the details of the normali-
zation equation here. It follows from the inhomo-
geneous term of Eq. (20). The algebra is similar
to that in the Appendix of Ref. 1 with two modifi-
cations: The matrix algebra involving the »’s and
v’s must be faithfully carried out® and the inhomo-
geneous term is antisymmetric and contains two
terms rather than one. A factor of 2 is thereby
introduced into the normalization formula:

1
1 =§ Z, Xaa’ZWaa'(E(S)) - Yaa'ZWaa'(—E(S)) ’ (53)
aa

where

dA =t
(S)y -
WanlE' ) =

weE (S
B. Odd-mass problem
1. Partial summation of bubble diagrams in the six-point function

The three-nucleon interaction given in Eq. (27)
may be substituted graphically into the Bethe-Sal-
peter equation for L. One obtains the following:

(21) (21)

_71 (21) (21) (21) (21) ey 20
Lcapasrer=L Gapaprer =L cganncr =L capparc +Lcgapac+Lzosena—Liascec

(1) (21) 1)

5 - = - 2 — free
+LA'BACB'C’ -L CC'BA'B'A +L CC'BB'A'A ™ 2LCABA’B’C" (54)

The function L ®Y obeys an integral equation appropriate for a correlated pair and weakly interacting par-

ticle:

(21)

- 7 (21) (21)
L CABA'B'C’'™ — L BCC'B’ Gan—- lLBR'C'QG AP HRPQP'Q’R’L CP'Q'A'B'RY

where

(21) = 7 e
HRPQP’Q’R’ "IQS'R'P'GSS’IPRSQ’+lIPS'TP’GSS’GTT’IQT'R’UGUU’IU'RSQ’ +

The graphical description of the interaction is
given in Fig. 9. Note that L @V is not antisym-
metric with respect to interchange of the particle
indices, C’ and A or A and B. We have taken ad-
vantage of the fact that L ®’, and therefore LV,
are antisymmetric with respect to interchange of

(55)

(56)

r

B and C. The free part (GGG) is seen to correct
the lowest-order contribution to L ‘® for double
counting, namely

L™ =6 X GGG,
IXLEY=9X2XGGG +* *
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Equation (54) may be substituted into Eq. (25) to
obtain

Mpp=Vpeas (9 terms like L®V_ 12 terms
like GGG)V yppo- (57)

If we neglect the free part and define an interac-
tion W, which has the same symmetry properties
as I,

Woean=2Vpcoas+Vpases (58)

the mass operator involves only a single L ?*’ func-
tion

~ (21)
MD’D ~ WD'C’AB L CABA'B'C'WA'B'D C* (59)

2. Approximate diagonalization for the poles
of the mass operator

In order to develop a matrix equation for the six-
point function (and therefore the mass operator),
we would like to follow the usual procedure of sub-
stituting an analytical representation into a homo-
geneous Bethe-Salpeter equation. We have already
shown that M is related to L @' and further that
L@ obeys an integral equation. We shall assume,
however, that the analytic behavior of L " may be
taken as that of L ® itself, viz., Eq. (31). We
point out that the justification for this step of the
procedure is more schematic than rigorous. Fur-
ther comment is postponed until after Eq. (66). At
poles of the mass operator w, this substitution
yields the equation:

@) - (21) )
PAsc = A g aspoc W H 5 oporr Phgrrs (60)

where
-1
Apappocl®) “or L srceGap

(s) (s)

_ sz Psc'B 4pPor

= PR L S A L6
53 w-EY_E"Y

+ P&C AP p}%?Q)
W+ESI L E@ )
Note that in writing down an expression for p, we
assume that the unnatural energy variables have

been integrated upon, i.e., p is obtained by apply-
ing to the more general quantity the operator

fdw,,dwbdwd(w - W, — Wyt W)

Equation (60) also presumes that H*') is indepen-
dent of the unnatural energy variables, which will
be the case when the I block is energy-independent.
It should also be pointed out that because of the
symmetries of the Migdal-Gorkov approximation,
the poles of the mass operator will occur in pairs.
We shall assume that the amplitudes p$J. and p%).
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FIG. 9. The “interaction” between the four-point re-
sponse function and an extra particle. The ingoing and
outgoing ‘“‘stubs” are not part of the interaction. Inter-
mediate lines labeled S, T, U, etc.are exact or “dressed”
propagators. I is the irreducible interaction. All
possible time orderings of the I blocks are implied in
this diagram.

are uncoupled. This reduces the dimensions of our
problem by a factor of 2. A further reduction (as
in the phonon case) to a manageable and physically
intuitive form hinges upon an approximate de-
composition and unitary transformation of the am-
plitudes.

A decomposition of the amplitude pf{g o Which
leads naturally to a linear algebra is the following:

= Yatp vl i) = pE24S [04]0) (61a)
and

=i |bats¥ ) = 08N [94]8) = pE2AE | 441S),

(61Db)

where we have inserted a complete set of states S
in Eq. (61a) and truncated to the collective pho-
nons. In Eq. (61b) we have inserted the even-
mass reflection states S appropriate in the case
of coupling to achieve the odd-mass reflection
states with energy — E‘’. The algebraic difficul-
ties associated with commuting the §’s and de-
leting the ground state from the summation are
discussed in Refs. 1 and 15. These decomposi-
tions permit the definition of a quasibogolon-
phonon amplitude

UAVESAEEY = X0, (62)

abe

where the unitary transformations U diagonalize
a one-quasibogolon excitation, Eq. (40), or a two-
quasibogolon excitation, Eq. (48).

Then with definition

= Y (S)yrBC'rrApyCABA'B'C'yrA'rrB'C 3 (S)
HaSa’S'_Xbc' ch' Uchaba'b'c' Ua’ Ub'c Xb'c ’ (63)
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Eq. (60) becomes

pég)/AaS(wy) =HaSa'S’p¢(JS)' (64)
with

Ay@)=2,

T 1
e w, -~ E; - F

Z(k)

and for the reflection states
ng?/Aas <_ (,07) =HaSa'S'p¢:7S)" (65)

As expected, the poles ¥ are a reflection of the
positive and we can choose any convenient phase
factor. We take

@) _ 7))
Pgs = Pqs -

The foregoing development shows why we chose to
replace L ') by the analytical expression for L
and subsequently develop a phonon-like factoriza-
tion of the L ® amplitudes. Namely

X(S) (r) (T),X(,SI)
L@ - Lbe Pgs Pars+ A prc PR (662)

w-w,

is similar to the analytic form for the free part of
L (21 ):

(), (R (S)
Xpo' 2 X e

_L®C=
LG w-EP_E®

+oe e (66Db)
Nevertheless, it was implicitly assumed that the
quasiparticle and phonon are distinguishable:
Even though L @ is antisymmetric and L ?V in-
cludes exclusion principle violation (EPV) correc-
tions via H®", there will be double counting and
consequently normalization difficulties when more
than one phonon is considered. A simple example
is that the configuration a=a,S=(bc)+ + + + has
nonzero overlap with a’=b,S’=(ac)+ + + -+ . In the
present development, it is assumed that this does
not give rise to large errors.

Equation (64) prescribes that an amplitude for a
particle-plus-phonon configuration is connected to
other amplitudes of the same type by a higher-
order sort of effective interaction. Following the
development of Ref. 1 this coupling equation can be
transcribed to a matrix-diagonalization problem.
If we define

o (zz(zk))llzpys)

Prs (w0, -EP _ESA (67)
7 a

Eq. (64) may be rewritten
(w, = EL — ES)p) = (282 F)VY 2H ¢ 050 pil.. (68)

A transcription of Eq. (65) is similarly accom-
plished. If we take H to be independent of the nat-
ural energy variable (a rather drastic approxima-
tion since it is at least second order in the I block
and therefore retarded) and make use of the fact
that it is symmetric,

HaSa’S"—'Ha'S'aS’ (69)

it is clear that Eq. (68) is a Hermitian matrix
problem and that the following unitary transforma-
tion holds

RHR™=5,,w,,

where

- p(r) p’?’) “ e
R-1=< ’:;S) (j’) (70)
Prse Prese *
and
(S |H k'S’ )= 6,8 s (EX + ES)
+@PzENY Y s (71)

The normalization of Eq. (67) is

1= |p|? (72)
13

subject to the reservations discussed in connection
with Eq. (66).

3. Diagonalization for the solutions of Dyson’s equation

At a pole of the two-point function, w=E", Dy-
son’s equation (17) reduces to the homogeneous
equation

(14518 = @ ™mg ™[ v2 |, (73)

where we have already incorporated the assumption
that G and M are diagonal in the single-particle
representation. Multiplying both sides by the uni-
tary matrix U,, and inserting U*U at appropriate
points, we obtain

AN <Izpdli>>
b4 (luiley

_ (0= E,+i0)! 0
0 (+E,—i0)™!

x (umu'™) [ e (74)
'
which may be written
(w = E )Y, = (UMU )t g, + (UMU )26, (74a)
(w+E ), =(UMU ), + (UMU ")%2¢,. (74b)

As M is energy-dependent this is not a conve-
nient formulation of the problem. Recall the ana-
lytic behavior of the mass operator, Eq. (20), and
also that the poles w, occur in pairs (w,, - w,).
Then

124
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(UMU T)D’D _ Z 6.0'(7)6-D @) &D'(‘?)&D(‘?)
a0 W=, w+w,
with
GO0 DK G () (75)

If we define (for w=E¥)
C,f”(w— wy)561(1)¢d+6.2(7)¢d,
@) . .
C; (w=-w,)=0'P9,+02¢,,

and assume that we have chosen phase conventions
such that all matrix elements are real, then Eq.
('75) becomes the symmetric matrix problem

510) 516 o) @)
E, &'¢ 0 ¢ Vg ot

5.1(7) w, G2m 0 C;i) o Cy(t')
0 5.2(7) _Ed ‘0'.2(‘7) ¢;i) ¢éi)
GL1® g F2@® -w, Cim C,fi’
(76)
Since it can be shown that
5.2(7)=6.1(7)’ G20 = G1@) » 77
J
E, (d|H|kS)y --- 0
(d|H|k'S) (k'S'|H|RS) -+ (d|H|ES)
Hgpe = —
0 @d|H|RS) -+ -E,

| (a|H|RS) 0

with ('S’ |H |kS) as defined in Eq. (71),
(d|H|kS)=UPWARLC(WU A (UES)'X, 2",
and
(d|H|rS)=ULP WABLO(U A (UEC )X, 2.

These three matrix elements represent the higher-
order interaction between quasiparticle-plus-pho-
non configurations and the forward and backward
QPC matrix elements, respectively. The matrix
H . may be diagonalized by applying successive
transformations: first, rows 2 through n, where
n -1 equals the number of configurations (kS),

are diagonalized by R; the remaining problem is

(d|H|&S)

- (d|H|rs)

o —(d|H|R'S) (k'S |H[RS) -+

the eigenvalues of Eq. (76) occur in pairs

(E®, - E®) as expected. With the assumption that
they are energy-independent, the matrix (called

S) is diagonalized by a unitary matrix ﬁ, con-
structed from the eigenvectors:

RSR'=w. (78)
The physical significance of the ¢’, previously

established in Eqgs. (40) and (41), is valid only for
the normalization

1=Z |Cy(i)|2+’C7<i)[2+‘¢éi)|2+[¢;i);z_ (79)
750

4. Final SCQPC matrix

We have thus far written down two matrix prob-
lems. The first, diagonalized by R, combines
quasiparticle-plus-phonon configurations to ob-
tain “dressed” modes corresponding to poles of
the mass operator._ In the second problem, which
is diagonalized by R, these modes are coupled to
the quasiparticle degree of freedom. It is con-
venient to define an Hyp, which directly couples
the quasiparticles to the quasiparticle-plus-phonon
configurations:

0 (80)

just that given by Eq. (78). Symbolically we may
write

RHopcR'=2EW, (81)
where

R=RR

and we denote the elements of R as

Pir .. [C2
a d
@) ... ()
R"l kS kS
- @ ... (i)
d d
[ (i)
S kS
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Because of the analytical properties of p%%’, we

may identify the elements of R with the quasipar-
ticle-plus-phonon amplitudes discussed previous-
ly:

Z (2N 29D = U4 |9 i) = s

and (82)

Z(Zae) 1/2¢(k) U‘A(lel)als) bgf-

The normalization of the amplitudes follows from
the unitarity of R and R; hence,

l¢(1)|2+'¢(1)' +Z(|¢(t> 2+|¢><” =1. (83)

Equations (80)-(83) constitute the odd-mass part
of the SCQPC problem. The resultant residues
and eigenvalues are inputs to the same problem
and also the even-mass equations, which deter-
mine the phonon. This means that we have two
iteration procedures: Solutions for different spin
states of the odd-mass nuclei must be self-con-
sistent, and an outer self-consistency must be
achieved with the even-mass solutions.

V. DISCUSSION

The preceding sections have extended the self-
consistent approach to quasiparticle-phonon cou-
pling to superfluid nuclei. The theory for normal
systems and a comparison to a number of other
QPC developments have been presented in a pre-
vious work.!

In Sec. II we discussed why QPC and pairing
correlations cannot be treated on the same footing.
In a superfluid system, a number nonconserving
assumption is a technological necessity. How-
ever, once this is accepted, equations of motion
for a supermatrix of normal and anomalous
Green’s functions may be formulated, and the
mass operator for a single nucleon may be re-
lated to the six-point (or pph) response function.

In Sec. IV the six-point function was approximat-
ed to yield a QPC description. It was also shown
how a Bethe-Salpeter equation for the phonons is
handled when the quasiparticle description is im-
proved by the QPC mass operator. For odd-mass
nuclei (and therefore the mass operator), the im-
plications of our development are most easily seen
by an inspection of Eq. (80), the final matrix di-
agonalization for odd-A energies and spectro-
scopic amplitudes. Note that it has the reflection
property (similar to RPA) that positive diagonal
energies are coupled to negative diagonal ener-
gies of the same magnitude.

As expected from the Migdal-Gorkov assump-

tion, there is a positive (physical) set of eigen-
values and an identical set of negative (unphysical)
eigenvalues. The forward amplitude z/)y) is a lin-
ear combination of particle and hole amplitudes.
Although we have never explicitly introduced a
canonical transformation from particles to BCS
quasiparticles or “bogolons,” 35¥’ corresponds to
(i |a}|) where af is a bogolon:

=ty Py = 0484 Vg (84)

Similarly, the backward amplitude ¢’ corre-
sponds to {i|a_,|). The amplitudes ¥ come from
the coupling of a quasiparticle a, which has sev-
eral poles &, to the phonon S. If we had neglected
the self-consistency of the two-point function
there would have been only one ¥ =90 =(i|al|S).
Note that all matrix elements 1nv01v1ng amplitudes
are multiplied by the single-particle strength of
the state k, i.e., (2{*))!/2. The interaction be-
tween S and z/)‘” is just the usual QPC [see Fig.
2(b)]. The interaction between ¢’ and ¢/ or ¢V
and ¥ is the backward QPC [see Fig. 1(b)]. The
interaction between the zp‘” comes from higher-
order diagrams such as Figs. 1(a) and 1(c) which
correct for EPV’s and quasiparticle-phonon re-
coupling.

In order to carry out an SCQPC calculation, we
need the following inputs: (i) the irreducible
blocks I and J, as well as the “bare” interaction,
which appears at the “one-three” vertices, and
(ii) the unperturbed amplitudes #, and v, and the
unperturbed bogolon energy E,. The latter quanti-
ties might be determined from experiment or from
a Migdal form of HFB, viz., Eq. (37). It should
be noted that, to be consistent, the Green’s func-
tions or density matrices which appear in these
equations are the exact ones. Hence, the calcula-
tion of the self-consistent field and the nuclear
pairing should in principle be determined with a
density matrix that has been corrected for QPC.
Normally, this is not done; one assumes

MY >>M"™ and MY*>Mqpc. (85)

It is well known that for heavy nuclei the former
assumption is quite reasonable. This means that
HFB corresponds to HF plus BCS, because the
nuclear pairing energy of the even-even nucleus
is but a small fraction of the total binding energy,
as computed from a variational calculation of the
self-consistent field. For similar reasons, one
might expect that

MM > M OPC, (86)

However, it is not clear that QPC does not re-
normalize pairing. With a constant pairing force
and the usual Migdal-Gorkov assumption about the
identity of N, N+2 nuclei
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from Eq. (40), we have
A—_

= zb:lz{ubvb([zp(i)]z_[qs(n]z)
+ (,sz _ ubz)d)(i)d) (i)}
“Zubvb Z([d)(i)]z_[d)(i)]z) (87)

neglecting the term that changes sign at the Fermi
surface.

This result illustrates a most important conse-
quence of our theory, namely that forward QPC con-
tributes nothing to the renormalization of nuclear
pairing, because inthis limit ¢ =0 and the sum over
physical states i of |§*’ |2 equals one. However,
backward QPC (¢ #0) has the effect of reducing
the pairing field A. It is easy to understand this.
Backward QPC is a consequence of ground state
correlations, which are different from those in-
duced by nuclear pairing, and the two interfere
destructively.

One might in principle perform backward QPC
calculations before calculating the pairing. The
resultant energy levels of the N nuclei would be
pushed apart (c.f., the matrix diagonalization in
Ref. 1). This extra gap in the single-particle
level scheme would then have the effect of re-
ducing the calculated value for A. It turns out,
however, that in the cases we have studied this
effect is unimportant,®® amounting to at most a 2%
correction in A. Since this shows that pairing
dominates backward QPC, we have further support
for the small backward amplitude approximation
(c.f., Sec. IV A), which neglects the redistribution
of single-particle strength across the Fermi sur-
face.

By way of comparison to the present work, not
all of the QPC theories applicable to superfluid nu-
clei were discussed in Ref. 1. We also want to
mention here various methods for the self-con-
sistent treatment of even systems, which is by no
means unimportant.

The most famous QPC equations for odd-mass
superfluid nuclei are those of Kisslinger and
Sorenson? and Soloviev.? One can obtain their
problem from Eq. (80) by neglecting the backward
coupling and the interaction between phonon-plus-
quasiparticle configurations (and therefore EPV
corrections), as well as using unperturbed inter-
mediates in the self-energy (no self-consistency
for the ¥{¥’ amplitudes). Their residual interac-
tion is the quadrupole-quadrupole force, and this

permits a considerable reduction of the remaining
algebra. The even nucleus is not treated self-
consistently, rather by the usual RPA.

There have also been several shell-model cal-
culations,®?*?7 in which states in odd-mass super-
fluid nuclei are described as linear combinations
of one- and three-quasiparticle excitations. Of
course, if the QPC is really valid, it should fall
out of the shell-model diagonalization. Since con-
figurations which violate the exclusion principle
are excluded automatically,? diagrams like Fig.
1(a) are implicitly included. Also the higher-order
contributions to the effective six-point interaction
[Fig. 9(b)] are included. In theory, if these dia-
grams were not negligible, their energy depen-
dence might break up the phonon structure.

Kuo and Baranger®” have given a matrix problem
which includes backward [extended Tamm-Dan-
coff approximation (ETDA) and extended RPA
(ERPA)] diagrams. ETDA includes processes
such as Fig. 1(b), while ERPA permits backward
amplitudes into the phonon. Of course, like all
shell-model calculations, the quasiparticles are
not self-consistently dressed by the QPC mass
operator. Recently, a quasispin formalism has
been developed by Kuriyama, Marumori, and
Matsuyanagi®® to explain odd-mass nuclei. Arguing
that recoupling vertices [e.g., middle part of Fig.
1(a) or Fig. 10(a)] are larger than “one-three”
vertices [e.g., Fig. 2(b)] by a factor of 2uv/u®—2?,
coupling to one-quasiparticle states is neglected.
Their method yields a matrix problem similar to
Kuo’s ERPA, with ETDA neglected. In a calcula-
tion of anomalous (j — 1) coupling states, the au-
thors find that the “dressed three-quasiparticle
modes” which describe these states are essentially
phonon-plus-quasiparticle configurations with EPV
corrections.

Goswami and co-workers,* as well as Klein with
his collaboraters,® have authored on-going theoret-
ical efforts to describe even- and odd-mass nu-
clear states self-consistently. The algebraic
framework for both theories is the equations-of-
motion method combined with spectral decomposi-
tion. While the “bootstrap” method of Goswami
works in the bogolon or BCS representation, the
generalized Hartree-Fock approximation of Klein
works in the particle representation, i.e., the QPC
and BCS parts of the Hamiltonian are diagonalized
at the same time. We have argued earlier in this
section that QPC does not interfere substantially
with BCS in realistic cases. In both of the above-
mentioned methods, the interaction between pho-
non-plus-quasiparticle configurations is equivalent
to several third-order graphs of Fig. 9, while the
second-order graphs are ignored. Also, the in-
termediate quasiparticles are not self-consistent.
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However, as discussed in Ref. 1, the main dif-
ference between SCQPC and the spectral decompo-
sition approach is in the calculation of the back-
ward amplitudes, namely that ours have diagonal
energies — E,— Eg, in contrast to their value - E,
+Eg. Not only does their treatment result in a
matrix diagonalization which does not have eigen-
values in pairs (E¥’, - E‘*>) — hence violating the
spirit of the Migdal-Gorkov approximation and
making the separation of physical states ambigu-
ous — but it seems to require an extensive ortho-
gonalization procedure. In calculations in which
the backwards quasiparticle amplitudes were prop-
erly orthonormal, their effect on energies was ab-
sent.®

We also want to mention that the method of bo-
sons which has recently been applied to odd vibra-
tional nuclei. Of course, the introduction of the
ideal quasiparticle and the coupling to ideal bo-
sons by a transcribed Hamiltonian represents an
alternative picture of nuclear structure, when
compared to the Green’s function or spectral de-
composition approaches. The most important re-
sult of the boson methods that we have noted is to
include® an expression equivalent to the EPV dia-
gram, Fig. 1(a). An earlier calculation by Simard
and Banville® was shown to yield results equivalent
to Kuo’s ETDA.

The method of boson expansion has been widely
applied to even nuclei.’®3* In the limit of strong
quadrupole correlations, the boson expansion can
even yield a Hamiltonian which transcribes a
strongly deformed potential.®® A number of cal-
culations have focused on the less ambitious goal
of predicting the static quadrupole moment (due to
anharmonic corrections to RPA) of the lowest 2 +
state. However, it should be pointed out that, in
the calculation of 2+ moments, it is unnecessary
to explicitly include anharmonic admixtures into
the wave function. An RPA-type wave function is
sufficient if the Migdal theory of effective opera-
tors is used to deduce the anharmonic enhance-
ment of the quadrupole operator.®*

The second modification of RPA that is of wide
interest is the effect of explicitly including ground
state correlations [i.e., Fig. 1(b)] on the one-nu-

cleon Green’s function and the consequent raising
of the phonon energy or prevention of it becoming
imaginary. There are two causes for this phenom-
enon when viewed through the equations of Sec.

IV A: first, the two-body matrix elements are re-
duced by a multiplicative factor of the order (1

— z)? where z is the quasiparticle strength re-
distributed from the N +1 to the N ~ 1 nucleus by
ground state correlations; secondly, the quasi-
particle diagonal energies are pushed up from their
unperturbed values. In the approaches of Hara®
and also Ikeda,® the reductions in residue strength
are taken from the RPA Y amplitudes. The re-
normalization of quasiparticle energies is not con-
sidered. The latter effect is included by Neergard
and Vogel®*® who estimate the energy change from
perturbation theory. Due to the simplicity of the
quadrupole-quadrupole interaction, they are able
to include additionally the effects of the small com-
ponents of the quasiparticle strength. While we
have included these components for normal sys-
tems in Ref. 1, we have neglected them here in the
small-backward-amplitude approximation. The
open-shell RPA®" and Hartree-Fock theory for nu-
clear bosons,® as well as the boson expansion
methods,**"3® give expressions for the even-even
energy that include both the renormalization of
residues and quasiparticle energies. The results
for several of these approaches have been com-
pared in Refs. 6 and 38 for a simple model. It
was found that they yield very similar results. In
the SCQPC® there is a slight improvement due to
self-consistency of the intermediate Green’s func-
tions in the mass operator.

In summary, the foregoing sections have pre-
sented a consistent treatment of Green’s functions
for even- and odd-A nuclei. Not only does the
SCQPC provide a more rigorous theoretical foun-
dation for the time-honored QPC description of nu-
clear structure and a straightforward prescription
for higher-order calculations, it also can be un-
derstood fairly simply from the Feynmann dia-
gram equivalents of the Green’s functions or by an
inspection of the configuration interaction implicit
in the SCQPC matrix diagonalization.

*This work was performed in part under the auspices
of the U. S. Energy Research and Development Ad-
ministration under Contract No. W-7405-Eng-48 and
in part under the Bundesministerium fiir Bildung und
Wissenschaft.
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