Decay schemes for high-spin states in ^{35,36,37}Cl and ³⁷Ar from heavy-ion fusion-evaporation reactions*

E. K. Warburton, J. W. Olness, A. R. Poletti,[†] and J. J. Kolata Brookhaven National Laboratory, Upton, New York 11973

(Received 4 May 1976)

The γ -ray decays of high-spin states in ^{35,36,37}Cl and ³⁷Ar were studied via heavy-ion-induced reactions involving ¹⁴N and ¹⁸O bombardment of targets of ^{24,26}Mg and ²⁷Al. Decay schemes and spin-parity assignments were deduced from $\gamma\gamma$ -coincidence measurements, γ -ray angular distribution and linear polarization measurements, and recoil-distance lifetime measurements. The observed levels are compared to predictions of the weak-coupling model. It is concluded that all the observed high-spin states can be assigned to configurations based on one- or two-nucleon excitations from the (2*s*, 1*d*) shell into the (1*f*, 1*p*) shell, and that not all the energetically available yrast levels of these configurations have, as yet, been found.

NUCLEAR REACTIONS (HI, xn, yp, $z\alpha$) studies for ^{35,36,37}Cl and ³⁷Ar, with ¹⁴N, ¹⁸O projectiles, ^{24,26}Mg and ²⁷Al targets, E = 20-60 MeV; measured $\gamma\gamma$ coin.; deduced levels; measured $\sigma(E_{\gamma}, \theta)$ and P_{γ} ; deduced J^{π} for high-spin levels; measured recoil distance; deduced τ . Natural and isotopically enriched targets, Ge(Li) detectors. Compared results to weak-coupling model predictions.

K

I. INTRODUCTION

In the last few years our knowledge of the spectroscopy of the low-lying high-spin states of nuclei in the region of $A \leq 60$ has been considerably extended by the use of in-beam γ -ray spectroscopy utilizing (α, n) and (α, p) reactions on the one hand and heavy-ion fusion-evaporation reactions on the other. In the heavy-ion (HI) induced reaction there are many open exit channels, i.e., in the reaction denoted by $(HI, xn, yp, z\alpha) - x, y, z$ take on all permutations of values between 1 and 3 with a practical limit $x + y + z \leq 4$. Since for all of these exit channels the cross section is large in the projectile energy range 30-60 MeV where the majority of the studies have taken place, the reaction is not very selective but is a very good survey tool. In addition, the large energy excess (highly exothermic reactions) results in a quite weak dependence on beam energy of the relative cross section for forming different high-spin states in a given nucleus.

In contrast, the α -induced reaction is selective not only because the (α, n) and (α, p) reactions dominate but also because the endothermic nature of the reaction to the higher-lying high-spin states causes the cross section to a particular level to be strongly energy dependent with a rather sharp threshold. For these and other reasons, the (α, n) and (α, p) reactions are more suitable for the detailed study of those states accessible by both α -induced and HI-induced reactions. However, the fusion-evaporation reaction is an excellent survey tool and, quite importantly, appears to form higher-lying yrast levels that have not been seen in the (α, n) and (α, p) reactions.

This latter point and the utilization of the fusionevaporation reaction in nuclear spectroscopy surveys is illustrated by the results presented here

TABLE I.	List of	fusion-evaporation	studies	with	com-
oound nuclei	having 4	$A \leq 47$.			

Identification No.	Projectile	Target	Compound nucleus	E_x^{a} (MeV)
1	¹⁸ O	²⁴ Mg	⁴² Ca	46.68
2	¹⁹ F	²⁴ Mg	43 Sc	43.08
3	¹⁸ O	²⁶ Mg	⁴⁴ Ca	48.10
4	¹⁸ O	²⁷ Al	45 Sc	47.08
5	¹⁹ F	²⁶ Mg	^{45}Sc	46.47
6	¹⁹ F	²⁷ Al	⁴⁶ Ti	48.92
7	¹⁴ N	²⁶ Mg	⁴⁰ K	46.18
8	¹⁶ O	²⁷ Al	43Sc	39.36
9	¹⁴ N	²⁷ A1	⁴¹ Ca	47.13
10	¹⁹ F	²⁸ Si	47 V	42.86
11	¹⁸ 0	²⁵ Mg	⁴³ Ca	41.17
12	¹³ C	²⁶ Mg	³⁹ Ar	33.48
13	¹² C	²⁶ Mg	³⁸ Ar	31.14
14	¹² C	²⁵ Mg	³⁷ Ar	30.73
18	¹⁸ 0	¹⁸ O	³⁶ S	49.09
19	¹⁶ O	180	^{34}S	43.24
22	¹² C	¹⁹ F	^{31}P	38.44
23	¹³ C	180	³¹ Si	42.08
24	^{12}C	180	³⁰ Si	39.66
25	¹³ C	¹⁶ O	²⁹ Si	38.21
29	180	¹⁰ Be	^{28}Mg	52,56
32	¹¹ B	¹² C	²³ Na	39.07
35	¹³ C	¹⁰ Be	²³ Ne	43.49

^a E_x is the excitation energy of the compound nucleus at a bombarding energy of 40 MeV.

14

996

dentification	Compound	$E_x^{\ a}$	³⁵ Cl		36CI		³⁷ Cl		³⁷ A1	٩
No.	nucleus	(MeV)	Channel	Intensity ^b	Channel	Intensity ^b	Channel	Intensity ^b	Channel	Intensity ^b
14	³⁷ Ar	30.73	ри	35	þ	V	:	:	•	•
13	^{38}Ar	31.14	p^{2n}	34	ud	44	þ	1	u	I 7
12	$^{39}\mathrm{Ar}$	33.48	p_{3n}	8	p2n	116	ud	14	2n	15
7	40 K	46.18	αυ	42	σ	26	2pn	44	p2n	184
6	41 Ca	47.13	αbu	96	αp	73	3pn	:	σ	6
1	42 Ca	46.68	$\alpha p 2 n$:	apn	80	αb	20	αn	37
11	⁴³ Ca	39.72	$\alpha p 3n$:	$\alpha p 2 n$:	apn	16	$\alpha 2n$	78
80	^{43}Sc	39.36	2α	65	$\alpha 2 p n$		$\alpha 2p$	9	$\alpha b n$	33
2	^{43}Sc	43.08	2α	21	$\alpha 2 p n$	÷	$\alpha 2p$	9	$\alpha b u$	37
°	⁴⁴ Ca	48.10	$\alpha p4n$:	$\alpha p 3n$	÷	$\alpha p 2 n$:	$\alpha 3n$:
5	^{45}Sc	46.47	$2 \alpha 2 n$	÷	$2 \alpha n$	21	2α	5	$\alpha p 3n$	≤2
4	^{45}Sc	47.08	$2 \alpha 2 n$:	$2\alpha n$	25	2α	80	$\alpha p 3n$	≤2
9	46 Ti	48.92	$2 \alpha p 2 n$:	$2 \alpha p n$	÷	$2 \alpha p$	က	$2\alpha n$	28
10	$4^{7}V$	45.84	3α	5	$2 \alpha 2 bm$:	$2 \alpha 2 b$:	$2 \alpha b n$	2

х рп 2	10 units (arbitrary). The	
2(Table I). age strength of	
$2 \alpha 2 p$	s $E_B = 40$ MeV (see stions have an <i>aver</i>	ities are ±25%.
:	for all other s for all read	quoted intens
2α2 pn	MeV (ID 11); e γ transition	unties on the
5	10) and 37.5 mbination th	The uncerta
3α	5 _B = 45 MeV (ID) jectile-target co	ne ground state.
45.84	ng energies i for each pro	eading into th
Λ,,	to bombardi lized so that	$ \gamma$ -ray flux l
10	^a The E_x corresponds ^b The data are norma	ntensities are the total

TABLE III. ³⁵Cl γ rays observed in fusion-evaporation reactions

reactions.			
γ-ray energy ^b	Relative ^c	Angular di	stribution ^a
(keV)	intensity	A ₂ (%)	A4 (%)
[160.66(20)]	1408	-24(15)	0
517.26(10) ^d	(1330)	47(25)	0
680.22(15) ^e	15213	-20(2)	0
882,42(35)	1421	31(40)	0
971.38(20)	4830	28(7)	-18(7)
1059.17(20) ^f	2799	-4(15)	0
1184.80(20)	12867	-66(4)	8(4)
1579,15(30)	(1150)	-60(40)	0
1701.85(25)	5736	-20(3)	0
1739.25(40)	1040	•••	•••
1763.15(10)	19 098	-28(2)	5(3)
$1785.87(P)^{g}$	(380)	•••	•••
1946.40(30)	1122	-20(10)	0
2179.10(P) ^h	(3000)	•••	•••
2244.00(25) ^f	1910 2	23(2)	-8(2)
2465.85(30)	3543	-21(6)	0
2645.79(30) ⁱ	(15 800)	• • •	•••
3162.43(10)	60 4 50	37(3)	-4(3)

^a A synthesis of results from ¹⁴N + ²⁶Mg, ¹⁶O + ²⁷Al, and ¹⁴N + ²⁷Al. An entry for A_4 of zero is listed when the inclusion of a term in $P_4(\theta)$ does not improve the fit.

^b Uncorrected for nuclear recoil. An entry P (for error) means the energy is inferred from known level separations. A square bracket denotes an uncertain assignment to ³⁵Cl.

^c From ¹⁴N + ²⁷Al at $E(^{14}N) = 40$ MeV. The numbers in parentheses were estimated from known branching ratios or from the $\gamma\gamma$ -coincidence data.

^d Doublet with the ³⁶Cl 2469 \rightarrow 1951, 517.10(10)-keV γ ray.

^e Unresolved from the weaker ³⁷Ar 6474 \rightarrow 5793, 680.34(20)-keV γ ray.

^f Partially Doppler shifted in the angular distribution spectra.

 $^{\rm g}$ Inferred from the presence of 680–971 coincidences: not otherwise observed.

^h Observed in the $\gamma\gamma$ coincidences only.

 i Doublet with the $^{38}\mathrm{K}$ 2646 \rightarrow 0, 2646.41(70)-keV γ ray.

for ^{35, 36, 37}Cl and ³⁷Ar. These results were obtained from a variety of projectile-target combinations at projectile energies in the range 20-60 MeV. A full list of those surveyed is given in Table I.¹⁻³ The final nuclei under study were observed in all these projectile-target combinations for which $x+y+z \le 3$ (with $z \le 2$), and in some others as well as indicated in Table II. A brief report of the results for ³⁷Cl has already been given.⁴

Extensive and detailed studies of high-spin states in all four nuclei have been reported via the ${}^{32}S(\alpha,p){}^{35}Cl$ reaction, 5,6 the ${}^{33}S(\alpha,p){}^{36}Cl$ reaction, 7 the ${}^{34}S(\alpha,p){}^{37}Cl$ reaction, 8,9 and the ${}^{34}S(\alpha,n){}^{27}Ar$ reaction. 10,11 Thus, in this report heavy emphasis is placed on the new information obtained and the

14

TABLE IV. Summary of $\gamma\gamma$ -coincidence data from the ${}^{27}\text{Al}({}^{14}\text{N}, np\alpha){}^{35}\text{Cl}$ reaction. The intensities of coincident γ -ray pairs are indicated as being relatively strong (S), average (M), or weak (W): parentheses enclose cases where the observation is so weak as to be uncertain. An X indicates the coincidence was unobserved, even though from the decay scheme it should be expected.

E_{γ} (keV)	517	680	882	971	1059	1185	1579	1702	1763	1786	1946	2244	2466	2646	3162
517		M	w	М	w	М	(W)		W	X	W	М	S	S	
680	м	•••	(W)	W	s	М		W	(W)	(W)	•••	\mathbf{s}	W	W	\mathbf{S}
882	W	(W)	• • •	(W)	W	(W)	Х	W	\mathbf{S}	Х	Х	W	Х		
971	м	w	(W)	• • •	W	\mathbf{M}	м	W	Ŵ	(W)	\mathbf{S}	\mathbf{S}	\mathbf{S}	м	\mathbf{S}
1059	w	\mathbf{S}	W	W	• • •	\mathbf{S}		м	х	Х			W	м	W
1185	м	м	(W)	м	s	•••	\mathbf{M}		Х	Х	\mathbf{S}		W	Μ	\mathbf{S}
1579	(W)		х	м		м	•••	\mathbf{M}	Х		\mathbf{S}			М	W
1702		W	W	W	м		м	•••	х	Х	(W)		Х	\mathbf{S}	
1763	W	(W)	\mathbf{s}	W	Х	х	Х	Х	•••	Х	Х	Х	Х		
1786	х	(W)	Х	(W)	х	Х		Х	Х	•••		(W)		Х	(W)
1946	W		х	S		\mathbf{S}	\mathbf{S}	(W)	х		•••			W	Μ
2244	М	\mathbf{S}	W	\mathbf{S}					х	(W)		•••	\mathbf{S}	\mathbf{S}	\mathbf{S}
2466	м		х	\mathbf{S}	W	W		Х	Х			\mathbf{S}	•••	Μ	\mathbf{S}
2646	\mathbf{S}	w		м	\mathbf{M}	м	Μ	\mathbf{S}		Х	W	\mathbf{S}	м	•••	
3162		S		S	W	S	W			(W)	М	S	S		•••

systematics revealed.

The present results are a part of a general program for the nuclear spectroscopy of high-spin states in light nuclei. The experimental procedures and the methods of assigning spins, parities, and γ -ray multipolarities have been described extensively in previous reports^{1,2,12-14} and will only be briefly mentioned here. The experimental results are presented in Sec. II and discussed in Sec. III.

II. RESULTS

The bulk of the results will be presented in tabular form. For each of the nuclei 35,36,37 Cl and 37 Ar we present two tables: (1) γ -ray energies,

TABLE V. Energy levels of 35 Cl deduced from fusion-evaporation reactions and compared to previous results.

Energy level ^a	Е.,	γ-ray Bra	decay nching 1	ratio		Mean lifetim	ne
(keV)	(keV)	b	с	d	b	c	d
1763.20(10)	1763	100		100			0.46 ± 0.05
2645.31(14)	882			9 ± 1			0.25 ± 0.03
	2645			91 ± 1			
3162,58(10)	517			8 ± 1	41.8 ± 1.8	41.7 $\pm 1.7^{e}$	42 ± 3 f
	3162			90 ± 1			
3942.30(70) ^d	1297			10 ^g			$\textbf{0.35} \pm \textbf{0.045}$
	2179			90 ^g			
4347.32(18)	1185	69 ± 5	64 ± 2	69 ± 3			2.9 ± 1.1
	1702	31 ± 5	36 ± 2	31 ± 3			
5406.58(20)	1059	13 ± 4	9 ± 2			0.40 ± 0.10	
	2244	87 ± 4	91 ± 2				
5926.51(37)	1579	100		100 ^g			
6086.91(25)	680	•••	85 ± 5		7.7 ± 1.4	9.3 ± 0.8	
	1739	•••	15 ± 5				
7872.68(28)	1786	8 ± 5			$0.5 < \tau < 5$	0	
	1946	22 ± 5					
	2466	70 ± 5					
8844.07(35)	971	100			8 ± 2		

^a Deduced from the γ -ray energies of Table III. ^e

^b Present results ^c Reference 6. ^e Reference 16. ^f Reference 17.

^d Reference 15.

^g Reference 5.

FIG. 1. ³⁵Cl energy levels and γ -ray transitions observed in the fusion-evaporation reactions of Table II. Level and γ -ray energies are in keV. The relative feeding intensities of the levels in the ²⁷Al(¹⁴N, $np\alpha$)³⁵Cl reaction at E (¹⁴N) =40 MeV are given on the far right. The spin-parity assignments for $E_x < 7$ MeV are from Refs. 5 and 6. The assignments for the top two levels are discussed in the text.

relative intensities, angular distribution coefficients, and linear-polarization and multipolemixing-ratio information (if available) and (2) the level energies, branching ratios, and lifetimes. For ^{35, 36}Cl we also summarize the $\gamma\gamma$ - coincidence data in matrix form. For each nucleus a level scheme is presented summarizing the γ -ray transitions observed in the present results and the final spin-parity assignments. Other figures are given to illustrate the data. We now consider the four nuclei in turn.

³⁵Cl

 γ -ray transitions identified as belonging in ³⁵Cl are listed in Table III. The most definitive $\gamma\gamma$ -co-

FIG. 2. RDM lifetime results for the ${}^{35}Cl$ 971-keV, 8844 \rightarrow 7873 transition. On the left is shown the decay of the intensity of the stopped component I_0 of the 971keV transition with the target-stopper distance D. To first order D = vt where v is the recoil ion velocity, and thus I_0 decays as $\exp(-D/v\tau)$ where τ is the mean life associated with the decay. The least-squares fit given by the solid curve was (to first order) to $A \exp(-D/v\tau)$ +B. The data which yielded the intensity versus Dcurve are illustrated on the right.

incidence results used to identify these transitions and place them in a decay scheme come from the ${}^{27}\text{Al}({}^{14}\text{N}, np\alpha){}^{35}\text{Cl}$ reaction at $E({}^{14}\text{N}) = 40$ MeV. The coincidence matrix summarizing these results is given in Table IV. This matrix and the γ -ray relative intensity, angular distribution, and energy information summarized in Table III lead to the energy level scheme of Fig. 1. Our best values for the level energies are given in Table V together with a comparison of our branching ratio and lifetime information with previous results.^{5,6,15-17} The spin-parity assignments of Fig. 1 for the levels below 7 MeV excitation are those determined or quoted by Alenius and Wallander⁵ and Lornie $et \ al.^6$ Our information pertaining to the spin-parity assignments up to and including the 6087-keV level of ³⁵Cl is in agreement with but much less definitive than those previous ${}^{32}S(\alpha, p\gamma){}^{35}C$ results.

Nann *et al.*¹⁸ observed ³⁵Cl levels at 7.87 ± 0.30 and 8.84±0.30 MeV in the ³³S(α, d)³⁵Cl reaction with definite L = 6 (i.e., $J^{\pi} = \frac{11^{2}}{2} - \frac{17^{*}}{2}$) angular distribution patterns. We associate these two levels

FIG. 3. RDM results for the ${}^{35}Cl$ 680-keV 6087 \rightarrow 5407 and ${}^{36}Cl$ 2795-keV 5313 \rightarrow 2518 transitions. For details see the caption of Fig. 2.

with the upper two of Fig. 1; hence, the even-parity assignments to these two levels. The γ -ray transitions deexciting these two levels were previously unobserved.

The most probable spin assignments of $\frac{13}{2}$ and $\frac{17}{2}$ to the 35 Cl 7873- and 8844-keV levels are based on the γ -ray angular distributions and the relative strengths of the direct feeding of the levels. That is, we have invoked the usual but well-established criteria for obtaining spin-parity assignments in fusion-evaporation reactions.^{1,2,19,20}

From Table III we see that the two measured angular distributions for the decay to $J^{\intercal} = \frac{11}{2}^{-}$ states from the 7873-keV level are both characteristic of pure dipole $J \rightarrow J \mp 1$ transitions while the 971-keV 8844 \rightarrow 7873 transition has a characteristic pure quadrupole $J \rightarrow J \mp 2$ pattern.²⁰ Also the relatively strong formation of the 8844-keV level strongly suggests it is an yrast level, i.e., $J > \frac{13}{2}$. These data jointly favor spin assignments of $\frac{13}{2}$ for the 7875-keV level and $\frac{17}{2}$ for the 8844-keV level.

The branching ratios obtained in the present work are in agreement with the previously quoted results.

The lifetime information was obtained mainly from the recoil distance method (RDM).²¹ However, in some cases, (e.g., the ³⁵Cl 7873-keV

FIG. 4. ³⁶CI energy levels and γ -ray transitions observed in the fusion-evaporation reactions of Table II. Level and γ -ray energies are in keV. The relative feeding intensities of the levels in the ²⁷Al(¹⁴N, $p\alpha$)³⁶Cl reaction at E (¹⁴N) =40 MeV are given on the far right. The spin-parity assignments for $E_x < 4$ MeV are from Refs. 7 and 19 while those for the top three levels are discussed in the text.

level) lower limits were obtained from the absence of any discernible Doppler shifts²¹ in the γ -ray singles spectra. The lifetime information for ³⁵Cl and ^{36}Cl was obtained from $^{14}N+^{27}Al$ and ^{14}N + ^{24, 26}Mg. The quoted lifetime for the 8844-keV level is an average of values of 7 ± 2 and 11 ± 5 ps from ${}^{14}N + {}^{26}Mg$ and ${}^{14}N + {}^{27}Al$, respectively. The results from ¹⁴N+²⁶Mg are illustrated in Fig. 2. The quoted lifetime of 7.7 ± 1.4 ps for the ${}^{35}Cl$ 6087-keV level is an average of four determinations (one of which is illustrated in Fig. 3): the four determinations comprise results on the 680and 2244-keV γ rays from the 6087 - 5407 and 6087 + 5407 + 3163 transitions observed in the ^{14}N + ^{27}Al and $^{14}\mathrm{N}+\,^{24}\mathrm{Mg}$ reactions. Since the 5407-keV level has a lifetime short compared to that of the 6087-keV level,⁶ the 680- and 2244-keV γ rays decay with a time characteristic of the 6087-keV level with a small effect (taken into account) due to feeding from the 7873and 8844-keV levels.

C.	D-1-(1) d	Angular ^a distribution			Linear ^b polarization	
γ-ray energy *	Relative -	(%). A.) A.	Exp	(%) Predicted	
(Ke V)	mensity			пур.		
292.13(10) ^e	(4060)		•••			
466.57(15)	1145	-19(11)	0			
517.10(10) ^f	(1300)	•••	• • •			
632,50(30)	1261	-21(10)	0			
[756.90(30)] ^g	(1430)	• • •	• • •			
786.04(50) ^h	(1430)	• • •	• • •			
788.44(10)	63919	29(2)	-3(3)	-28(5)	$-28(5), \delta = -1.1 \pm 0.3$	
859.41(30)	1322	16(9)	0			
1019.01(10)	14616	-25(3)	0	+31(26)	$+33(5), \delta = 0$	
1164.94(20)	2868	-17(5)	0			
1484.10(50)	1600	21(17)	0			
1729.80(20)	56 320	21(2)	-11(2)	-49(11)	$-49(11), \delta = +0.19 \pm 0.10$	
$1776.06(10)^{1}$	14996	57(11)	0			
1951.08(20)	2774	22(10)	0			
2022.15(20)	5313	-25(5)	0	+55(33)	$+33(7), \delta = 0$	
2312.14(50)	961	• • •	•••			
2518.30(30)	3751	52(7)	-9(8)	+90(90)	$+102(20), \delta = 0$	
2795.05(30)	9468	37(5)	-13(5)	-150(100)	$-62(12), \delta = 0$	
[3842.19(100)] ^j	<1000	•••	• • •			

TABLE VI. ³⁶Cl γ rays observed in fusion-evaporation reactions.

^a An entry for A_4 of zero (with no error) is listed when the inclusion of a term in $P_4(\theta)$ does not improve the fit.

^b The experimental results are from the ${}^{18}\text{O}+{}^{24}\text{Mg}$ results of Ref. 2. The predictions are for the spin-parity values of Fig. 4 and the indicated angular distributions and multipole-mixing ratios. For the 788- and 1730-keV transitions, the multipole-mixing ratio δ is derived from a comparison of the Exp. and Predicted polarizations. For the other transitions the indicated value of δ is *assumed* in calculating the predicted polarization.

^c Uncorrected for nuclear recoil. The number in parentheses is the uncertainty in the last place. A square bracket denotes an uncertain assignment to ³⁶Cl.

^d From the ${}^{27}\text{Al}({}^{14}\text{N}, p\alpha){}^{36}\text{Cl}$ reaction at 40 MeV. The numbers in parentheses were estimated and/or obtained from other reactions.

 e Obscured by the ^{173}W 291.719(8)-keV γ ray in the angular distribution studies.

^f Doublet with the 35 Cl 3163 - 2646, 517.26(10)-keV line.

^g Seen in ${}^{12,13}C + {}^{26}Mg$ singles and possibly in ${}^{14}N + {}^{27}Al$ coincidences.

^h Not resolved from the much more intense 788.44-keV line.

ⁱ Poorly resolved from the ²⁸Si 1779 \rightarrow 0, 1778.81(9)-keV γ ray.

^j Possibly seen in ${}^{14}N + {}^{27}Al$ coincidences and ${}^{13}C + {}^{26}Mg$ singles.

³⁶Cl

 γ -ray transitions identified as belonging in ³⁶Cl are listed in Table VI and the $\gamma\gamma$ - coincidence matrix from the ²⁷Al(¹⁴N, $p\alpha$)³⁶Cl reaction at $E(^{14}N)$ = 40 MeV is given in Table VII. The energy levels are listed in Table VIII where our branching ratio and lifetime results are compared to previous results^{7,15,16,22} and the level scheme shown in Fig. 4. The levels below 4 MeV were well studied previously and our results for these levels add very little that is new. The 4294- and 5313-keV levels were also observed by Rascher *et al.*¹⁶ via fusionevaporation reactions, and the 5313-keV level by Sherr, Kouzes, and Del Vecchio²³ via the ³⁴S(α, d)³⁶Cl reaction. The 467-keV γ ray is definitely identified with 36 Cl but its placement in the decay scheme is not definite—hence the dashed line for the 5780-keV level.

The spin-parity assignments for the upper three levels are based on the angular distribution and linear polarization data of Table VI and the relative direct feeding intensities shown in Fig. 4. The angular distribution of the 2795-keV γ ray is characteristic of a $J \rightarrow J \mp 2$ quadrupole transition and the strong direct feeding of the 5313-keV level indicates an yrast level; hence J=7. The linear polarization has a large uncertainty but favors M2 (over E2 which would have the opposite sign) in agreement with the even-parity assignment from the (α, d) results of Sherr *et al.*²³

The feeding suggests that the 5780-keV level is

FIG. 5. Typical $\gamma\gamma$ -coincidence results for ³⁷Cl and ³⁷Ar from ²⁶Mg + ¹⁴N at $E(^{14}N) = 40$ MeV. Energies are in keV. The inserts indicate the placement of the γ -ray transitions in the decay schemes.

TABLE VII. Summary of $\gamma\gamma$ -coincidence data from the ²⁷Al(¹⁴N, $p\alpha$)³⁶Cl reaction. The intensities of coincident γ -ray pairs are indicated as being relatively strong (S), average (M), or weak (W): parentheses enclose cases where the observation is so weak as to be uncertain. An X indicates the coincidence was unobserved, even though from the decay scheme it should be expected.

E_{γ} (keV)	292	467	517	633	788 ^a	859	1019	1165	1484	1730	1776	1951	2022	2312	2795
Gate				Phile de mont montre de 199											
292	•••	(W)			\mathbf{S}		W		\mathbf{M}	s					
467	х	•••			\mathbf{S}					\mathbf{S}					
517			•••	\mathbf{M}	W			W				Μ			
788^{a}	м	w	W	(W)	(W)	(W)	s	W	(W)	S	S		м	Х	\mathbf{S}
1019	W	(W)		W	\mathbf{S}	Х	•••		(W)	S	\mathbf{S}		(W)		
1730	м	W			\mathbf{S}		S		(W)	•••	\mathbf{S}				\mathbf{S}
1776		Х			\mathbf{S}		S			S	• • •				
1951															
2022		х			S		(W)		(W)						
2795		Х			s					\mathbf{S}					

 $^{\rm a}$ Assumed doublet of 786.04 and 788.44 keV.

FIG. 6. ³⁷Cl energy levels and RDM results. The energy level diagram indicates the levels and γ -ray transitions observed in the fusion-evaporation reactions of Table II. Levels and γ -ray energies are in keV. The relative feeding intensities of the levels in the ²⁶Mg(¹⁴N, n2p)³⁷Cl reaction at E (¹⁴N) = 40 MeV are given on the left. The spin-parity assignments are from Ref. 9. The RDM results were obtained using the branching ratios of Table X and the feeding intensities shown above. The fits were to the generalization of exp(- $D/v \tau$) to include the dependence on several different lifetimes.

an yrast level and the angular distribution of the 467-keV γ ray indicates a $J \rightarrow J \mp 1$ dipole transition; hence J = 8 for the 5780-keV level. The 1019keV γ transition has an angular distribution and linear polarization characteristic of a $J \rightarrow J \mp 1 E1$ transition; hence $J^{\pi} = 6^{-}$ is suggested for the 4294keV level. The fact that these assignments, although highly favored, are nonrigorous is indicated by parentheses in Fig. 4. We note that with these assignments the 1484-keV transition from the 4294-keV level to the 4⁻ 2810-keV level is E2 while the 1776-keV transition from the 4294-keV level to the 5⁻ 2518-keV level is, from its angular distribution, an E2/M1 mixture (with $\delta \simeq -0.6$). However, if the 4294-keV level had even parity these transitions would be M2 and M2/E1 and in

FIG. 7. ³⁷Ar energy levels and γ -ray transitions observed in the fusion-evaporation reactions of Table II. Levels and γ -ray energies are in keV. The relative feeding intensities of the levels in the ²⁶Mg(¹⁴N, 2np)³⁷Ar reaction E (¹⁴N) =40 MeV are given at the far right. The spin-parity assignments are from Ref. 11. The selectivity of the fusion-evaporation reaction is illustrated by showing the known non-yrast levels for $E_x < 5.4$ MeV on the right. No decays from any of these levels were observed in the present work.

view of the 10-ps upper limit to the lifetime (see Table VIII) this seems highly unlikely.

The 36 Cl branching ratio and lifetime information obtained in this work is in fair agreement with previous information. The RDM data yielding the lifetime of the 5313-keV level are illustrated in Fig. 3.

³⁷Cl

The γ rays assigned to ³⁷Cl are listed in Table IX. The best data were obtained from ¹⁴N+²⁶Mg and definite identification with ³⁷Cl was made with the aid of ¹⁴N+²⁶Mg $\gamma\gamma$ -coincidence data taken at $E(^{14}N) = 40$ MeV. An example of the information obtained from this data is illustrated in Fig. 5.

Unlike ^{35, 36}Cl, no γ -ray transitions were observed in addition to those reported in the (α, p) work.^{8,9} The spin-parity assignments of Fig. 6 follow the ³⁴S (α, p) ³⁷Cl results of Nolan *et al.*⁹; our results are consistent with these previous ones but less definitive. The agreement of our conclusions with the previous (α, p) results of Nolan *et al.*⁷ is best illustrated by the comparison given in Table IX of the multipole-mixing ratios and in

1003

Energy level ^a	Ex	γ-ray c Br	lecay anching ratio			Mean li (ps	fetime)
(ke V)	(keV)	а	b	с	а	d	b
788.45(10)	788		100	100		23 ± 2	30 ± 1
1164.96(20)	1165		100	100		10.4 ± 0.5	7.1 ± 0.5
1951,14(20)	786		34 ± 8^{d}			2.95 ± 0.14	2.3 ± 0.2
	1951		66 ± 8^{d}				
2468.18(22)	517		100	91			<1
2518.30(18)	1730	94 ± 1	95.6 ± 0.5	93		2300 ± 160^{e}	2360 ± 160
	2518	6 ± 1	4.4 ± 0.5	7			
2810.54(14)	292	38 ± 4	39 ± 1			4.9 ± 1.0	3.3 ± 0.3
	859	12 ± 4	10 ± 2				
	2022	50 ± 4	51 ± 1				
3100.68(37)	633	57 ± 20		62		0.20 ± 0.05 ^c	
	2313	43 ± 20		38			
4294.41(21)	1484	9 ± 2			<10	<20 ^e	
	1776	91 ± 2					
5313.44(23)	1019	61 ± 3	53 $\pm 4^{e}$		32 ± 3	27.2 ± 1.7^{e}	
	2795	39 ± 3	47 ± 4^{e}				
[5780.01(25)]	467	100			$0.5 < \tau < 1000$		

TABLE VIII. Energy levels of ³⁶Cl deduced from fusion-evaporation reactions.

^a Present results.

^b Reference 7.

^c Reference 15.

Table X of the branching ratios extracted from the two experiments. The agreement is excellent.

The ³⁷Cl lifetimes determined in the present experiment were obtained as averages of the results from RDM measurements in the ${}^{18}O + {}^{24}Mg$ and $^{14}N + ^{26}Mg$ reactions. Data from the latter are shown in Fig. 6. The results are given in Table X for comparison to other measurements.^{9,17} As can be seen, the agreement between the present experiment and Nolan $et \ al.^9$ is excellent for the 4010-keV level, and at least fair for the 5270- and 4446-keV levels. For the 3104-keV level our re^d Reference 9.

^e Reference 16.

sult of $\tau = 22.0 \pm 4.0$ ps is in good agreement with the value measured by Brandolini *et al.*¹⁷ ($\tau = 27$ ± 4 ps), while both measurements are in serious disagreement with the value $\tau = 48 \pm 5$ ps given by Nolan et al.⁹ In the absence of any further information, it appears that the net data on the ${}^{37}Cl$ 3104-keV level favor the shorter lifetime.

³⁷Ar

The ³⁷Ar γ rays are listed in Table XI and the derived energy levels in Table XII. As was the

FABLE IX.	37 Cl γ ray	s observed	in	fusion-evaporation	reactions.
-----------	-------------------------	------------	----	--------------------	------------

γ-ray energy ^b	Relative ^c	Angular dis (%	stribution ^a	Linear polarization ^a	Multipole-	mixing ratio
(keV)	intensity	A_2	A_4	(%)	d	e
535.91(10)	25 071	-26(4)	8(4)	-26(7)	+0.02(2)	-0.04(2)
724.44(15)	10397	-22(6)	17(8)	-44(15)	-0.12(4)	-0.07(4)
906.33(10)	24252	30(3)	8(4)	-66(16)	-0.54(6)	-0.73(4)
3103.40(20)	33 926	29(7)	8(9)	+9(51)	-0.16(3)	$-0.18(1)^{\text{f}}$
4009.65(P)	10255	37(10)	7(10)	•••	0.0(1)	0.00(2)

^a From ¹⁸O + ²⁴Mg at $E(^{18}O) = 40$ MeV (Ref. 2). Although linear-polarization data were also obtained from ¹⁴N + ²⁶Mg (Ref. 2) those for ${}^{18}O + {}^{24}Mg$ were more accurate and are considered more reliable.

^b Uncorrected for nuclear recoil. An entry P (for error) means the energy is inferred from known level separations. ^c From ${}^{14}N + {}^{26}Mg$ at $E({}^{14}N) = 40$ MeV.

^d Present results from a simultaneous consideration of the angular distribution and linear-polarization results assuming the spin-parity assignments of Fig. 5 and the lowest and next to lowest allowed multipoles only. Data from both the $^{18}O + ^{24}Mg$ and $^{14}N + ^{26}Mg$ reactions have been used.

^e Reference 9.

^f Reference 15.

FIG. 8. $^{26}Mg + ^{14}N$ RDM results for ^{37}Ar . For details see the captions of Figs. 2 and 6.

case for ³⁷Cl, the best data were obtained from $^{14}N + ^{26}Mg$ and the ³⁷Ar decay scheme was constructed mainly from the $^{14}N + ^{26}Mg \gamma\gamma$ -coincidence data as exemplified in Fig. 5. The decay scheme in Fig. 7 includes only those γ rays observed in the

present work. As in the case of ³⁷Cl, all the γ rays of Table XI and energy levels of Fig. 7 were previously observed in ³⁴S + α .^{10,11} The spin-parity assignments of Fig. 7 are those of Gadeken *et al.*¹¹ Our results are consistent with these assignments but less definitive.

As is shown by a comparison of the last two columns of Table XI, the multipole-mixing ratios extracted from our angular distribution data are consistent with those obtained by Gadeken *et al.*¹¹ The branching ratios listed in Table XII are also in fair agreement with those of Ref. 11. Our RDM results are illustrated in Fig. 8. The lifetimes obtained for the 6473- and 6151-keV levels are in excellent agreement with the ³⁴S(α , n)³⁷Ar results, ¹¹ while for the 5213-keV level the agreement is within 1.2 standard deviations.

III. DISCUSSION

In this section we consider two topics. First, we shall discuss briefly the new results obtained in this work, and, second, we consider some aspects of the systematics of yrast levels in the region $35 \le A \le 43$ and the formation of these states by fusion-evaporation reactions. For both topics it is helpful to have as a basis for discussion weakcoupling calculations for the excitation energies of the yrast levels of ^{35, 36, 37}Cl and ³⁷Ar.

We use the weak-coupling model of Bansal and French²⁴ as discussed and applied by Bernstein²⁵ and more recently by Sherr, Kouzes, and Del Vecchio²³ and by Sherr and Bertsch.²⁶ As applied to the $d_{3/2}$ - ${}^m f_{7/2}$ ⁿ configurations under consideration here,²⁷ the model predicts the excitation energies of the multiplets formed by coupling the states of $d_{3/2}$ - m with angular momenta J_p , i.e., the multiplets formed from $J_p + J_h$. No residual interaction is introduced to split these multiplets so that the predicted excitation energy is taken to correspond

TABLE X. Energy levels of 37 Cl deduced from fusion-evaporation reactions and compared to previous results.

Energy level ^a	γ -ray decay			Mean lifetime			
(keV)	(keV)	a	b	а	b	с	
3103.54(20)	3103	100	100	22.0 ± 4.0	48 ± 5	27 ± 4	
4009.88(22)	906	69 ± 2	69 ± 1	34.0 ± 2.0	31 ± 3		
	4010	31 ± 2	31 ± 1				
4545.79(24)	536	100	100	4.7 ± 1.2	2.7 ± 0.6		
5270.24(29)	724	100	100	4.4 ± 1.5	2.7 ± 0.4		

^a Present results.

^b Reference 9.

^c Reference 17.

γ-ray energy ^a	Relative ^b	Angu distrib	ular oution ^c	Linear polarization ^c	Multipole- mixing ratio	
(keV)	intensity	A2 (%)	A4 (%)	P (%)	d	e
322.80(12)	22 295	-36(3)	+1(4)	-20(10)	+0.10(3)	+0.05(2)
521.12(25)	13641	-25(10)	0	• • •	-0.03(10)	-0.11(7)
597.92(15)	$11 \ 992$	-29(8)	+10(10)	-22(14)	+0.03(3)	-0.01(1)
680.34(20) ^f	(9497)	• • •	• • •	• • •	• • •	+0.03(3)
836.90(40)	2607	• • •	•••		•••	+0.02(7)
937.55(20) ^g	(19572)	-17(5)	+11(5)	-43(15)	-0.14(3)	-0.10(1)
1180.90(70)	3457	•••	•••	• • •	•••	•••
1191.50(30)	4270	-5(3)	0	•••	-0.11(5)	-0.14(2)
1260.45(30)	1583	+36(12)	0	•••	+0.04(3)	• • •
1263.80(26)	9095	•••	• • •	•••	•••	• • •
1506.98(20)	$14\ 650$	+32(4)	+9(4)	•••	+0.09(6)	+0.08(4)
1573.68(20)	55153	+32(4)	+7(5)	-54(20)	-0.49(8)	-0.64(5)
1611.24(9) ^h	130551	+14(2)	-3(2)	-14(6)	+0.14(5)	+0.12(2)
1805.41(40)	4262	•••	•••		•••	+0.00(2)
2028.26(40)	7300		• • •	•••		+0.08(2)
2087.80(50) ⁱ	4038	•••	• • •		•••	•••
2094,90(30)	$52\ 642$	+24(13)	-4(3)	+47(28)	+0.02(3)	+0.04(4)
2216.80(20)	$54\ 304$	+26(3)	-2(14)	-72(74)	+0.03(5)	+0.00(2)
2411.18(60)	444	• • •	•••	•••	•••	-1.9(4)
2608.15(35) ⁱ	6221	+6(16)	0	•••	+0.05(5)	-0.01(3)
2996.52(50)	8161	+35(6)	+6(6)	• • •	-0.08(8)	-0.02(2)
3602.20(50)	2141	•••	•••	•••	• • •	-0.16(9)

TABLE XI. ³⁷Ar γ rays observed in fusion-evaporation reactions.

^a Uncorrected for nuclear recoil.

^b From ${}^{14}N + {}^{26}Mg$ at $E({}^{14}N) = 40$ MeV. The numbers in parentheses have been corrected for unresolved contaminants, using information on branching ratios and intensities obtained from other data.

^c An average of all reactions studied.

^d Present results from a simultaneous consideration of the angular distribution and linearpolarization results assuming the spin-parity assignments of Fig. 6 and the lowest and next to lowest multipoles only.

^e Reference 15 for $E_x < 3$ MeV and Ref. 11 for $E_x > 3$ MeV.

^f Unresolved from the ³⁵Cl 6087 \rightarrow 5407, 680.22(15)-keV γ ray. The energy is from ¹³C + ²⁶Mg at $E(^{13}C) = 20-25$ MeV.

^g Unresolved from ¹⁸F 937 \rightarrow 0, 937.21(12)-keV γ ray from transfer and contaminant (¹²C, ¹⁶O targets) reactions.

^h Unresolved from the ²⁵Mg 1612 \rightarrow 0, 1611.63(13)-keV γ ray from transfer and contaminant reactions.

ⁱ Intensities quoted for the 5793-keV level may be too low, by as much as a factor of 2, because a possible Doppler-broadened component could not be reliably extracted by the line shape analysis.

to the centroid of the multiplet or, more usually, to it's maximal-spin member. We have recently discussed the comparison of the weak-coupling model to the yrast spectra of ³⁸Ar¹⁴ and ³⁹Ar.²⁸ In these two cases the root-mean-square (rms) difference between the predictions and experiment for yrast states of maximal spin is approximately 400 keV which is as good as current large-basis shell-model predictions.

The weak-coupling predictions for the yrast levels of $^{35, 36, 37}$ Cl and 37 Ar are shown in Fig. 9 together with the experimental yrast levels. In all cases, the $d_{3/2}^{-m}$ states are well-known experimentally¹⁵ and described adequately by shell-mo-

del calculations. The $f_{7/2}$ states involved are the ⁴¹Ca-⁴¹Sc $J = \frac{7}{2}$ ground states, while the $f_{7/2}^{-2}$ states are the yrast 0⁺, 2⁺, 4⁺, and 6⁺ states of ⁴²Ca and the low-lying $J^{\pi} = 0^{+}$, T = 1 and $J^{\pi} = 7^{+}$, T = 0 states of ⁴²Sc.¹⁵ Inspection of Fig. 9 leads one to the conclusion that all the high-spin ($J \ge 5$) yrast levels of ^{35, 36, 37}Cl and ³⁷Ar can probably be accounted for by configurations generated by promoting one or two nucleons from the (s, d) shell to the (f, p) shell. We shall return to this observation below, but now we consider the incorporation of the present results into local systematics.

In ³⁶Cl our data suggested but did not establish a level at 5.78 MeV which, if present, is most

$ \begin{array}{r} $	35 _{C1} 7.64 1-15 ⁻ 5.93 1-13 ⁻ 5.08 3-11 ⁻ 2.96 7 ⁻	$\frac{10.26}{9.25} \frac{7-21}{9-19^{+}}$ $\frac{7.84}{7.40} \frac{9-15^{+}}{5-11^{+}}$ $\frac{7.28}{1.1-17^{+}} \frac{11-17^{+}}{5.46} \frac{11^{+}}{1^{+}}$ $\frac{4.65}{3.5} \frac{3^{+}}{3.5}$	$ \frac{5.78}{5.31} = \frac{8}{7^+} 4.29 = 6^- 2.81 = 4^- 2.47 = 3^- $	36 C1 <u>4.74 0-7</u> <u>3.86 1-6</u> 5 ⁻ 2.09 2-5	$ \underbrace{\begin{array}{ccc} 6.08 & 5-9^+ \\ 4.54 & 3^+ \\ 3.95 \underline{4.08} & 7^+ \\ \overline{3.64} & 4^+ \\ 2.41 & 2^+ \end{array} $
0 <u>3</u> + EXP.	1p-6h	2p-7h	$\frac{2.41}{1.95} = \frac{5}{2^{-1}}$	lp-5h	<u>0.89 0</u> + 2p-6h
5.27 13	37 _{Cl}	6.77 - 7 ⁺ 6.00 9-15 ⁺ 5.55 5 ⁺	$\begin{array}{c cccc} 7.07 & 17^{+} \\ \hline 6.47 & 15^{+} \\ \hline 6.15 & 13^{+} \\ \hline 5.79 & 13^{-} \\ \hline 5.21 & 11^{+} \end{array}$	³⁷ Ar <u>5.84 1-15⁻</u> 5.13 3-11 ⁻	8.05 9-19 ⁺ 6.29 11-17 ⁺ 5.23 1-7 ⁺
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	4.20 3-11 ⁻ 2.95 7 ⁻	<u>4.33 I-7</u> ⁺ <u>2.81 3</u> ⁺	$ \begin{array}{r} \hline 4.89 ≥ 9 \\ 3.71 11^{-} \\ 3.19 9^{-} \\ \underline{2.22 7^{+}} \\ 1.61 7^{-} \hline 7 $	3.39 3-11	<u>3.70 3</u> +
<u>0 3+</u> EXP.	lp-4h	2p-5h	0 3 ⁺ EXP.	<u>1.42</u> 7 ⁻	2p-5h

FIG. 9. Comparison of the high-spin spectra of 35,36,37 Cl and 37 Ar to the predictions of weak-coupling calculations. Energies are in MeV. For the odd-A nuclei, 2J is shown instead of J. The weak-coupling predictions use the parameters [defined by Bansal and French (Ref. 24)] a = -0.25 MeV, b = 2.5 MeV, c = -0.5 MeV.

likely J = 8. The weak-coupling predictions would then suggest $J^{\mathbf{T}} = 8^+$ from ${}^{34}S(J^{\mathbf{T}} = 2^+) \otimes {}^{42}Sc(J^{\mathbf{T}} = 7^+)$.

In ³⁵Cl we observed the γ -ray decay of two levels previously observed only in the ${}^{33}S(\alpha, d){}^{35}Cl$ reaction.¹⁷ The most interesting aspect of the γ decay is that the 971-keV 8844 - 7873 transition between the $\frac{17}{2}$ and $\frac{13}{2}$ states has a lifetime of $8 \pm 2 \text{ ps cor-}$ responding to a single-particle strength of 17 ± 4 Weisskopf units (W.u.). By contrast, a recent survey¹⁶ of E2 transitions between high-spin $d_{3/2}$ -"" $f_{7/2}$ " states in $37 \le A \le 43$ nuclei is remarkable in that 23 of 26 E2 transition strengths lie between 0.05 and 7 W.u., with an average value of 3 W.u. Only three transitions have strengths greater than 7 W.u., and two of these are in ³⁷Ar. The explanation of this apparent anomaly would seem to lie in the complexity of the states involved. In ^{35}Cl the A = 33 nuclei contributing to the states describable as two particles and seven holes (2p-7h) relative to the doubly-closed shell of ⁴⁰Ca lie near the middle of the (s, d) shell and have a relatively

high density of low-lying states which can couple to $(f_{7/2}^{2})_{J=6+7^{+}}$ to form $\frac{17_{*}}{2}$ and $\frac{13_{*}}{2}$ states in 35 Cl. Thus, the complexity needed for collective phenomena is present. This complexity is expected to diminish rapidly as the doubly-closed shell at 40 Ca is approached. Hence the single-particle nature of the E2 transitions for $A \simeq 40$ is not unexpected. In other words, where the weak-coupling model works well and generates unequivocal predictions, noncollective E2 transitions are expected; where the weak-coupling predictions are ambiguous, collective E2 transitions are not surprising. In this regard, note that there are three different weak-coupling multiplets in Fig. 9 which can contribute to the 35 Cl 8.84-MeV $\frac{17_{*}}{2^{*}}$ state.

Two interesting conclusions can be deduced from the comparison of weak-coupling predictions and experiment shown in Fig. 9. First, not all the yrast levels from $d_{3/2}$ - $m_{7/2}$ and $d_{3/2}$ - $m_{7/2}^2$ which are energetically available were observed in these reactions and, second, no states were observed

Energy level ^a	E	γ-ray decay Branching ratio			Mean lifetime (ps)		
(keV)	(keV)	b	C	d	b	e	
1611.28(9)	1611	100	100	100		6300 ± 200	
2216.87(20)	2217	100	100	100		0.52 ± 0.07	
3185.00(22)	1574	100	100	100		0.30 ± 0.04	
3706.18(23)	521	18 ± 2	15	14		0.37 ± 0.095	
	2095	82 ± 2	85	86			
4021.84(38)	837	36 ± 4	26 ± 2			$\textbf{0.040} \pm \textbf{0.015}$	
	1805	58 ± 6	68 ± 1				
	2411	6 ± 2	6 ± 2				
4887.10(73)	1181	100	100				
5213.36(24)	1192	12 ± 3	11 ± 2	•••	6 ± 2	3.6 ± 0.3	
	1507	41 ± 4	41 ± 2	52			
	2028	16 ± 4	19 ± 1	16			
	2997	25 ± 4	20 ± 5	32			
	3602	6 ± 3	9 ± 4	•••			
5793.36(39)	2088	60 ± 10	~45			0.125 ± 0.025	
	2608	40 ± 10	~ 55				
6150.92(31)	938	75± 5	~75		4.5 ± 1.0	4.6 ± 0.6	
	1264	25 ± 5					
6473.72(34)	323	67 ± 5	66 ± 3	60	7.5 ± 1.2	6.3 ± 0.6	
	680	28 ± 5	34 ± 3	•••			
	1260	5 ± 2	•••	40			
7071.64(37)	59 8	100	100	100		0.55 ± 0.12	

TABLE XII. Energy levels of ³⁷Ar deduced from fusion-evaporation reactions and compared to previous results.

^a Deduced from the γ -ray energies of Table XI.

^b Present results.

^c Reference 11.

^d Reference 10.

^e Reference 15 for $E_x < 3.5$ MeV, Ref. 10 for $E_x > 3.5$ MeV.

with more complexity than two-nucleon excitations out of the (s,d) shell. Enlarging the discussion to the fusion-evaporation studies of $d_{3/2}^{-m}f_{7/2}$ states of $35 \le A \le 43$ nuclei carried out since 1972, these two statements still stand (except for the 4p-4h states of 40 Ca which are, however, excited relatively weakly^{29, 30}).

As regards the first point, note that in ³⁶Cl the predicted 9^{*} level was not observed, in ³⁷Cl none of the even-parity levels have been observed, and in ³⁷Ar the $\frac{19^*}{2}$ level is still unobserved.

As regards the second point, an example would be the ³⁶Cl 3p-7h state formed from the 3123-keV $\frac{19}{2}$ state of ⁴³Sc coupled to the $\frac{3}{2}$ ground state of ³³S. This 8-11⁻ multiplet is predicted at an excitation energy of 8.6 MeV and is energetically available to the reactions studied.³¹ A more detailed consideration of three- and four-nucleon excitation out of the (2s, 1d) shell indicates that numerous yrast levels from configurations more complicated than the ones identified are energetically accessible in these fusion-evaporation reactions in $30 \le A \le 50$ nuclei. A very worthwhile program of study would be a detailed theoretical investigation of the dependence of the $(HI, xn, yp, z\alpha)$ cross section on the excitation energy, spin, and *structure* of the levels of the final nucleus. The quite puzzling difference in formation of even-parity 2p-5h states in ³⁷Cl (where none are seen) and ³⁷Ar (where states up to $\frac{17^*}{2}$ are seen) would be a natural part of this study. Although some very successful studies^{13,19} of (HI, $zn, yp, z\alpha$) reactions have been carried out using the Hauser-Feshbach form of the statistical model, these studies have not gone into the questions raised here in any detail, but, by and large, have dealt instead with understanding the formation of levels that were observed.

Note added in proof. Additional lifetime measurements have recently been reported for ³⁶Cl and ³⁷Cl which are in agreement with, and thus support, the present results given in Tables VIII and X. These additional results are as follows: ³⁶Cl (1165-keV level), $\tau = 13 \pm 4 \text{ ps}$; ³² ³⁷Cl (3104-keV level), $\tau = 20 \pm 3 \text{ ps}$, ³² 16 $\pm 9 \text{ ps}$, ³³ 19.6 $\pm 3 \text{ ps}$; ³⁴ ³⁷Cl (4010-keV level), $\tau = 34 \pm 4 \text{ ps}$, ³² 32.8 $\pm 2.0 \text{ ps}$. ³³In particular, these data clearly support the present result $\tau = 22.0 \pm 4.0 \text{ ps}$ given in Table X for the ³⁷Cl 3104-keV level.

*Work performed under the auspices of the U. S. Energy Research and Development Administration.

[†]Guest physicist. Permanent address: University of Auckland, Auckland, New Zealand.

- ¹E. K. Warburton, J. J. Kolata, J. W. Olness, A. R. Poletti, and Ph. Gorodetzky, At. Data Nucl. Data Tables <u>14</u>, 147 (1974).
- ²J. W. Olness, A. H. Lumpkin, J. J. Kolata, E. K. Warburton, J. S. Kim, and Y. K. Lee, Phys. Rev. C <u>11</u>, 110 (1975).
- ³Most of the results for the first 10 projectile-target combinations have been compiled. See Ref. 1 for a list of γ -ray energies, relative intensities, angular distribution coefficients, and excitation function results. Some linear-polarization results are compiled in Ref. 2. A compilation for all 23 projectile-target combinations is available on request to one of the authors (EKW).
- ⁴J. W. Olness, Ph. Gorodetzky, J. J. Kolata, E. K. Warburton, and A. R. Poletti, Bull. Am. Phys. Soc. 19, 75 (1974).
- ⁵N. G. Alenius and E. Wallander, Phys. Scr. <u>8</u>, 129 (1973).
- ⁶P. R. G. Lornie, E. M. Jayasinghe, G. D. Jones, H. G. Price, M. F. Thomas, P. J. Twin, and P. J. Nolan, J. Phys. A (London) 7, 1977 (1974).
- ⁷P. J. Nolan, P. A. Butler, P. E. Carr, L. L. Gadeken, A. N. James, J. F. Sharpey-Schafer, and D. A. Viggars, J. Phys. A (London) <u>6</u>, L37 (1973); P. J. Nolan, A. J. Brown, P. A. Butler, L. L. Green, A. N. James, C. J. Lister, J. D. MacArthur, and J. F. Sharpey-Schafer, J. Phys. G (London) <u>2</u>, 249 (1976).
- ⁸N. G. Alenius, O. Skeppstedt, and E. Wallander, Phys. Scr. 6, 303 (1972).
- ⁹P. J. Nolan, L. L. Gadeken, A. J. Brown, P. A. Butler, L. L. Green, A. N. James, J. F. Sharpey-Schafer, and D. A. Viggars, J. Phys. A (London) <u>7</u>, 1437 (1974).
- ¹⁰N. G. Alenius, O. Skeppstedt, and E. Wallander, Phys. Scr. 6, 296 (1972).
- ¹¹L. L. Gadeken, P. J. Nolan, P. A. Butler, L. L. Green, A. N. James, J. P. Sharpey-Schafer, and D. A. Viggars, J. Phys. A (London) 7, 83 (1974); P. J. Nolan, L. L. Gadeken, A. J. Brown, P. A. Butler, L. L. Green, C. J. Lister, A. N. James, J. D. MacArthur, J. F. Sharpey-Schafer, and D. A. Viggars, J. Phys. G (London) 1, 35 (1975).
- ¹²J. J. Kolata, Ph. Gorodetzky, J. W. Olness, A. R. Poletti, and E. K. Warburton, Phys. Rev. C <u>9</u>, 953 (1974).
- ¹³A. R. Poletti, E. K. Warburton, J. W. Olness, J. J. Kolata, and Ph. Gorodetzky, Phys. Rev. C <u>13</u>, 1180 (1976).
- ¹⁴J. J. Kolata, J. W. Olness, E. K. Warburton, and A. R. Poletti, Phys. Rev. C <u>13</u>, 1944 (1976).

- ¹⁵P. M. Endt and C. van der Leun, Nucl. Phys. <u>A214</u>, 1 (1973).
- ¹⁶R. Rascher, K. P. Lieb, and M. Uhrmacher, in Symposium of Nuclear Structure, Balatonfüred, Hungary, 1975 (unpublished); J. Keinonen, R. Rascher, M. Uhrmacher, N. Wüst, and K. P. Lieb (unpublished).
- ¹⁷F. Brandolini, M. de Poli, and C. Rossi-Alvarez, Nuovo Cimento Lett. <u>8</u>, 342 (1973).
- ¹⁸H. Nann, W. S. Chien, A. Saha, and B. H. Wildenthal, Phys. Lett. <u>60B</u>, 32 (1975); H. Nann (private communication).
- ¹⁹J. Dauk, K. P. Lieb, and A. M. Kleinfield, Nucl. Phys. A241, 170 (1975).
- ²⁰A detailed manual for the practical application of these criteria is given by P. Taras and B. Haas, Nucl. Instrum. Methods 123, 73 (1975).
- ²¹See, e.g., D. B. Fossan and E. K. Warburton, in Nuclear Spectroscopy and Reactions, Part C, edited by J. Cerny (Academic, New York, 1974).
- ²²G. J. Costa, T. K. Alexander, J. S. Forster, A. B. McDonald, and I. S. Towner, Nucl. Phys. <u>A256</u>, 277 (1976).
- ²³R. Sherr, R. Kouzes, and R. Del Vecchio, Bull. Am.
- Phys. Soc. <u>19</u>, 499 (1974); Phys. Lett. <u>52B</u>, 401 (1974). ²⁴R. K. Bansal and J. B. French, Phys. Lett. <u>11</u>, 145 (1964).
- ²⁵A. M. Bernstein, Ann. Phys. (N.Y.) <u>69</u>, 19 (1972).
- ²⁶R. Sherr and G. Bertsch, Phys. Rev. C <u>12</u>, 1671
- (1975). ²⁷We use the notation $d_{3/2}^{-m}$ and $f_{7/2}^{-m}$ to stand for the full $(s, d)^{-m}$ and $(f, p)^n$ space. The implication is that the
- (s, a) and (j, p) space. The implication is that the most important components of the wave functions are $d_{3/2}^{-m}$ and $f_{1/2}^{n}$.
- ²⁸E. K. Warburton, J. W. Olness, J. J. Kolata, and A. R. Poletti, Phys. Rev. C <u>3</u>, 1762 (1976).
- ²⁹J. J. Simpson, S. J. Wilson, P. W. Green, J. A. Kuehner, W. R. Dixon, and R. S. Storey, Phys. Rev. Lett. <u>35</u>, 23 (1975).
- ³⁰A.M. Nathan and J. J. Kolata Phys. Rev. C <u>14</u>, 171 (1976).
- ³¹The p, n, and α separation energies of ${}^{36}\overline{\text{Cl}}$ are 7.97, 8.58, and 7.64 MeV, respectively. However, the angular momentum barrier for a state of $J^{\pi} = 11^{-}$ would be sufficient to render γ emission competitive with particle emission for several MeV above these energies. Note that the ${}^{35}\text{Cl}$ 8.84-MeV $J^{\pi} = \frac{17}{2}^{+}$ level is nearly 2.5 MeV above the proton separation energy.
- ³²B. E. Cooke, R. L. Kozub, W. McLatchie, T. K. Alexander, J. S. Forster, C. Broude, and J. R. Beene, J. Phys. G2, 131 (1976).
- ³³D. A. Hutcheon, D. C. S. White, W. J. McDonald, and G. C. Nielsen, Can. J. Phys. 52, 1090 (1974).
- ³⁴J. C. Merdinger, N. Schulz, M. Toulemonde, J. Phys. (Paris) <u>37</u>, 1 (1976).