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The soft photon theorem for bremsstrahlung has been derived nonrelativistically for two par-
ticles interacting via a nonlocal spin and isospin dependent potential. The result is in a simple
form easily applicable to the special cases in which one or both particles have zero charge,
spin, or isospin.

NUCLEAR REACTIONS N(N, Ny); derived nucleon-nucleon bremsstrahlung
amplitude in soft photon limit, potential model, including nonlocality spin and

iso spin.

I. INTRODUCTION

The soft photon theorem for bremsstrahlung was
originally proved by Low for two spin-zero parti-
cles and for one spin-zero, one spin-one-half par-
ticle in the framework of quantum field theory. '

According to the theorem, the two leading terms
of the expansion of the bremsstrahlung amplitude
in powers of the photon momentum depend only on
the on-shell elastic scattering amplitude. The de-
rivation was extended to the two-nucleon ease by
Nyman. ' Feshbach and Yennie proved the theorem
in the potential model for two spin-zero particles.
Their approach avoided expansion of the T-matrix
with respect to the energy, making the result bet-
ter suited to the energy regions in which reso-
nances occur in the elastic scattering. Their re-
sult, however, contained derivatives of the T ma-
trix with respect to the scattering angle. ' It was
shown by Nyman that the angle derivatives can also
be avoided if the result is expressed in terms of
overlap integrals outside the range of the potential,
which depend only on elastic scattering phase
shifts. Heller derived the theorem for local po-
tentials in the case of two spin-zero as well as two
spin-one-half particles. ' Liou extended Heller's
result to the case of nonlocal potentials, ' as did
Woloshyn. ' It was shown by Liou and Sobel that the
theorem also holds for isospin-dependent poten-
tials, and they obtained an expression for the spin-
less case. ' An excellent review of the nucleon-
nucleon bremsstrahlung problem, including soft
photon theorems, has been given by Nyman. '

The purpose of the present work is to include non-
locality, spin, and isospin simultaneously, while
maintaining the simple appearance of the original
results obtained by Low. We achieve this by (a)
avoiding expansion of the T matrix with respect to
either energy or angle, and (b) by avoiding the
parametrization of the T matrix in terms of dif-

ferent scalar invariants in the final result. In ad-
dition, we demonstrate the complete equivalence of
obtaining the bremsstrahlung amplitude either di-
rectly from the full electromagnetic interaction
Hamiltonian or using gauge invariance to calculate
the "internal" part of the amplitude from the singu-
lar "external" part.

II. DERIVATION OF BREMSSTRAHLUNG AMPLITUDE

Using the two-potential formula" with the elec-
tromagnetic interaction treated linearly, one gets
for the bremsstrahlung amplitude in the center of
mass frame
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l
K

l p,', p,
' )

= &(Pl'+P2" +k)&P" P2" IM e lp', P2& (1)

with

M. e = (1+t "g")V,m(1+g't'),

where the g's and t's are the usual propagators and
elastic t matrices corresponding to the initial and
final relative energies of the nucleons:

1

E -H, +s» '
/I— 1

E"—Ho+i» '

t' = V(1+g't ') = (1+t'g') V;

ill V(l +gt it/ l) (] + tl/gl /t)V
(4)

H, is the relative kinetic energy operator for the
nucleons, and V their interaction potential. V, is
the interaction Hamiltonian with the electromagne-
tic field A(x), where

A(x) = we '" ", e ~ k = 0. (5)

E' and E" are the relative energies of the nucleons
in the initial and final states, respectively, so that
in the center of mass frame
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gradient of ie '" ", and a partial integration on Eq.
(13) followed by the use of charge-current continu-
ity equation gives"

V, (e -k) = — te ""dxBp(x)

=[H, QeZ e ""~]

Pl 1 + 'Pl o Hl2 Vg

p', +p.', =p,"+p,"+k=0, m =m, m, /(m, +m, ).
A

The part of M ~ E mhich is singular at k =0 and
corresponds to photon emission before and after
scattering is

with
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Here Z and p, are the charge and magnetic mo-
ment operators for nucleon Q. :

Z. =k(1+ r.,); p. = [t.+ (p, —p.)Z.], (10)

p =(-1)"'p, r =(-1)" r„ol, , 2(11)

mhere r and p are the relative position and momen-
tum operators, respectively.

We may obtain the remaining part of M ~ E, de-
noted by M,.„,~ e, in tmo equivalent mays. In the
first method, me invoke charge conservation to
calculate M,.„,~ k and, relying on the analyticity of
M,.„, as k-0, read off the k' term of M,.„,. The
second method involves the straightformard cal-
culation of M,.„using an expression for V,"' valid
to the same accuracy.

The first method assumes that the charge densi-
ty operator for the system is known and is indeed
localized at the position of the particles:

n

p(x) =Q eZ 5(x —r ), (12)

where me have generalized the number of particles
to n. Nom, if in the formula

V, = — jx ~ Axdx (13)

n = 1, 2, p&
——2 793e/2m. ~; p.„=—1.913e/2m&.

Note that since me are working with relative co-
ordinates, the operators r1 F2 or p„p, are not in-
dependent:

= [H,f],
where H =H, + V and

nf-=geZ. e-'"' .
0.=1.

(ls)

p -p —eZ, A(r, ),

together with the proper treatment of isospin de-
pendence, gives

=Vm Ve

= V, —i eZ~& r +Ok

= [V, h]+O(h), (18)

2

h= igeZ. ~ r. --
We may also write the k -0 limit of Eq. (9):

V,"'= [Ho, h]+o(h).

Using Eq. (18) and (20), we find directly

M. ~ e = t "g "[Ho, h] g't'+ (1 +t "g")[V,h](1+g 't')

To find M ~ k, we simply use Eq. (14) with n =2 in
place of V, in Eq. (2):

M k=(1+t"g")[H,f)(1+g't').

To get M,.„,~ k, me subtract from this M,„,~ k,
which results from Eq. (8) and (9), namely,

M,„, I= [Ho,f]g't'+t "g"[Ho,f]. (16)

The result is

M,.„,~ k = t "g"[H„f]g't'+ (1+ t "g")[V,f ](1+g't'),

(17)

where me have dropped the term V,"' from M ~ E be-
cause it does not contribute to radiation.

Before completing the calculation of M,.„,~ e, me
demonstrate the equivalence of the tmo methods by
writing the expression obtained for M,.„,-6 using the
second method. As shomn by Ref. 12, the so-call-
ed minimal electromagnetic interaction Hamilto-
nian obtained through the gauge-invariant substitu-
tion

we modify A(x) by cha.nging & to k, A becomes the +o(h), (21)
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which is identical to Eq. (17) except for the ap-
pearance of h instead of f within the commutators.
As a matter of fact, when Eq. (15) for f is expand-
ed in powers of k, the constant term gives zero in
Eq. (17) by charge conservation, and the leading
term comes from

f= —i g eZ k ~ r, +O(k'), (22)
a=1

identical to Eq. (19}except for the substitution e
-k. Hence, the two methods, i.e., evaluation of
Eq. (17) and Eq. (21), are indeed identical, and we
only proceed with the former.

We use Eq. (3) to evaluate the first term and Eq.
(4} to evaluate the second term in Eq. (17):

M k t l Ifg lt I + t / lg/ /E I Ifg /t I + t / /g l lft l

—t "g"fE'g't'+ t "f(1+g't') —(1+t "g")ft'

ol

M t i= —zE' t', eZ r +Ok, (28)

where we have again used the fact that the differ-
ence t' —t is of order k. We add Eq. (8) and (28)
to get the total bremsstrahlung matrix:

M g = V„,',&g't'+t"g" V,~'& —iq ~ t', eZar +0 k,
a= 1

Finally, we note that the third term in Eq. (23)
is exactly equal to (t' —t")f by virtue of the Lipp-
mann-Schwinger equations (4), and cancels the
second term in the above equation as expected
from the discussion preceding Eq. (22). Hence

tl + ttl 2

M k=, -i eZ k r +Ok' 27

fief fte + (Eee Ee)teegeefgete (23) (29)

Now, in the third term, (Eee —E') is already of
order k, and we may use

f=Let. 0}e), (24)

tl t// 2 tll tl 2

t"f ft'=-, —i g eZ, k r, +,geZ
e=l e=1

+O(k). (26)

which, being the total charge operator, can be
commuted to the left. The first two terms may be
written

t"f ft' = [-,'(t'+ t-"),f]+(,'(t" —t'),fj. -(25)
Here, in the commutator term, the leading term in

f does not contribute, and we use Eq. (22) for f,
whereas in the anticommutator term t"—t' is al-
ready of order k, and we use Eq. (24). We get

with
2

V,''}= -e ~ g ' i+p„k&& oe '~'~
Qe J ma

(30)

i. t, e g-Zr-.

mee g ~
e .~ (-1) Z)p ~, .

]
(-1) Z~I

(31)
Taking the matrix element of Eq. (29) with re-

spect to the relative-momentum plane-wave final
and initial states, we get

We recognize in the third term of Eq. (29) the
commutator of the t matrix with the total electric
dipole moment operator in the center of mass sys-
tem. Making use of Eq. (11) and charge conserva-
tion, we may write this term as

2

&pl', pl'I Mlp', pl& =&p"
I Mlp'&= Z &:(p".It'I p'& +&p" It"

I p.'&R
a= g

(-
~ (I(p" IIe, i }Ip'),p I ~I(p'l}e', ' lip'), p })I o)e),

ma
(32)

Ja= (-1) (2m/m )eZ„p' —2imp„k&&o„,
p// 2 p/2

P"-=p" + (-1)"' —k = (-1)"'(p" + k),
a

where

(-1)~(2m/m )eZ~p" —2imt)~k&&o„
a PP 2 P//2 7

a
(33)

(34)

(35)

&p" l&t', i~lip'& =(v, , -v,.)(p" lt'Ip'&

= -2&,&p"
I
t'I p'), (37)

p„'—= p'+(-1) —k=(-1) "(p' —k+ k).
ma mq+ m2

(38)

We simplify the last two terms of Eq. (32) by writing
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&p"lit', 2rllP'& =(&, +&,-)&p"It'lp'&

=~, &p"It'Ip'&,

where q and Q are defined as follows:

q-=P' —p', Q=l(p"+p'),

(38)

(39)

and the gradient with respect to each is taken with
the other kept constant.

The remaining task is to expand the half-off-
shell t matrices occurring in the first two terms
about suitably chosen on-shell "points" and to
demonstrate that all the off-shell derivatives can-
cel against similar terms coming from the last
two terms. Rather than expanding both t matrices
about the same (average) value of the energy, ""
we shall be guided by the method of Ref. 3, which
avoids an expansion with respect to the energy of
the on-shell "leg" of the t matrices. This method
makes the t matrices on shell by changing only the
magnitude of the off-shell momentum. In this way,
at least the singular part of the result remains
valid when the energy lies in a resonance region
whose width is comparable or smaller than the
photon energy. In this method, the energy deriva-
tives are replaced by angle derivatives in the final
answer. %e also avoid angle derivatives in the
final answer by modifying both the on-shell and the
off-shell relative momenta in such a way as to
keep the momentum transfer vector unchanged.
This can be done by adding a vector 4 of order &

to both the initial and final relative momenta of
each off-shell t matrix. To leave the magnitude
of the on-shell momentum unchanged (within order
k2), Z must be perpendicular to it, and to keep the
plane of scattering intact, 4 must be in the plane
of scattering. These requirements uniquely deter-
mine h. %'e write

&p."It'lp'& = &p'."~."It'lP" n".&

—&."~Q &6"
I
t'I p'& + o(~'),

&p" It"
I
p'. &

= &p"+&'.
I
t" IP.'+&.'&

-&' ~,&P"lt'lp'&+o(&'),

(40)

(41)

n=
2( siX t)2 P (P P )~

$2 /l2

2(p" && p'p'

(42}

The first t matr1ces on the right-hand sjde of Eqs.
(40) and (41) are now fully on shell, and the second
ones can be replaced by on-shell f matrices gfter
taking the gradients, as could those in Eqs. (37)
and (38}, without affecting the two leading terms of
the final answer. Substituting Eqs. (37), (38), (40),
and (41) into Eq, (32), we will have four gradient
terms to simplify. These simplify as follows when

Eqs. (39}and (42) are used:

1l ~1
2~"'~Q&'&+~' '~a&'&, 2 +~ —,vQ&t& +Lg, &, &t&)

(Z„- i, Z„- 2Q qn(n ~ V )&t& ~ + —" 2v — q V Q g &t& (43}
2 & Q

} 2 & 2 q2 Q 2q2 Q

where

&t& = &p"It'lp'&;

q ~ p p
~tl y ~l

lq&&QI lp" &&p'I
'

(44)

(45)

An on-shell t matrix is characterized by

Q'+q'/4 =2222E, q Q=o.

The A„have the general forms

(48)

&0"
I t(E)IP'& = g &.t. ,

where the t„are functions of Q2+q2/4, q2, q Q,
Z, „2a2n'2d(the last three not exhibited}:

t =t (9'+q'/4 q' q Q). (4

(46)

To simplify Eq. (43) further and to make it
apparent that no off-shell derivatives survive, we
resort to the rotation invariance of the t matrix to
write, temporarily,

1, o .L, , or (o, .L, }(o, I., ), (4

where I; stands for any one of q, Q, or n. ' All
the A. „satisfy the identities

(n'VQ)A„= . I(cr, +Q2) q, A„],

I(.. .).q, ~.lQ' 2$g

valid on shell, i.e., when q' @=0, which is true
within order k.
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The expression for the bremsstrahlung amplitude
is arrived at by carefully evaluating Eq. (43) with
the help of Eqs. (44) through (51) and adding the
result to the nonderivative terms. It involves
only the on-shell T matrix, which is a spin and

isospin dependent function of energy, momentum

transfer, and scattering plane, denoted by

T=T(E, q, n) (52)

The final answer, valid in the center of mass
frame, is

(p, , p, , k, &}Alp, , p, )

(53)

where

—2(m/m „)eZ~p'„' —2i mk && p„o„
p/ 2

(
II k)2

—2(rn/m )eZ p'„—2imkxp~~
I p" + [m „/(m, + m, )] k }' —(p' —k + [m /(m, + m, )) k }' ' (54)

q -=(-1)"(p' -p" -k), (55)

p' &&(p" +k)

(p' -k+[m /(m, +m, )]k}&&(p'„'+[m /(m, +m, )]k}
](p'„- E + [m „/(m, + m, )]k }x ] p" + [m „/(m, + rn, )]k }~

(56)

Here again, the terms under the summation are
the pole terms as k-0, and the remaining terms
go to a constant. That is why the arguments of
the T matrices occurring in the latter are not
specified. They may have the same arguments
as any of the T matrices in the singular part or
anything that differs by order k.

Note that the only surviving derivative of the
T matrix occurs in the last term of (53), which
term is nonzero only if the forces are isospin
dependent. This derivative is with respect to
the magnitude of momentum transfer, keeping
the direction of momentum transfer, the energy,
and the plane of scattering constant.

It should be pointed out that the only conditions
imposed on the potential V to arrive at the result
(53) are, translation, Gallilean, and rotation
invariance, and charge conservation. The po-
tential may have otherwise arbitrary nonlocality
(p dependence) and spin and isospin dependence. "

Equation (53) can be evaluated from the elastic
scattering data. For two nucleons, one uses the
usual parametrization of the T(E, q, n) in terms
of five operators:

(o, +o, ) n, a, o„o, qa, q, a, ~ na, ~ n, (57)

the coefficients being functions of E, q', and
Equation (53) needs to be sandwiched be-

tween the final and initial spin and isospin states,
and then antisymmetrized. It sufficies to anti-
symmetrize only the final state with no v2 in the
denominator. The masses must either be equal
or isospin dependent for two nucleons.

For proton-proton bremsstrahlung Z, —Z, is
zero, and the last two terms do not contribute.
The singular terms also cancel to a large extent
because the system has no electric dipole moment.

For isospin independent forces, the last term
(commutator with Z, —Z, ) drops out, and for spin
independent forces, the second term (anticom-
mutator with Z, /m, —Z, /m, ) drops out.

Although Eq. (53) is derived for the nucleon-
nucleon case, it applies to a large class of other
cases as well. For example, if one or both par-
ticles have spin zero, the corresponding 0 oper-
ator (s) is set to zero. We get for the simplest
case, namely two spin-zero particles with only
one having charge &,
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m, ~' "' p,"-(p,"+k)' [p,"+(mjm, ) kj'- [p,'-k+(m jm, )R]'

%'hlch ful ther simpl, ifles lf the stRtlc approxima-
tion k p++ PPs ls made ln the energy denomlnRtol's.
It then reduces to Low's equation (1.7 N.R.}if the
T DlRtrlces Rre expallded Rbout the RverRge ener-
gy 2(&'+&").

For nucleon-nucleus bremsstrahlung with an
effective-potential interaction, we set Z, and Z~

equal to the charges of the nucleon and the nu-
cl.eus, respectively, which may be operators in
lsospln spRce. The ordlnRry spin dependence will
carry through, however, only if the nucleus has
a constant total spin of zero or one-half. The
presence of resonances will not affect the accuracy

of the singular term, but corrections of order
k to the constant term can be large if the width
of resonance is comparable or smaller than k.3
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