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If two particles are interacting via a short range potential and a repulsive Coulomb potential the t matrix can

be written as a sum of the Coulomb and the "nuclear*' t matrices. In order to solve the three-nucleon

problem with Coulomb interactions usually we need a separable representation of this nuclear t matrix. A.

recently proposed method for finding a separable expansion for local potentials is here extended to find a

rapidly convergent separable expansion, with analytic form factors, for the nuclear part of the t matrix of a
local potential„ in the presence of Coulomb interactions. The method is illustrated for a two-term Malfliet-

Tjon potential, In each rank the nuclear phase shift is close to the corresponding phase shift when the

Coulomb interaction is switched off.

NUCLEAR REACTIONS Finite rank approximations to the t matrix of local po-
tential considered in presence of Coulomb interactions, t matrices, phase shifts

calculated at different energies.

I. INTRODUCTION

Separable potentials and the corresponding t ma-
trices are very interesting in practice because of
the great simplicity they bring to the three-body
problem. There are quite a few separable expan-
sions already available for the short-range nu-
clear potentials' ' and some of them have been suc-
cessfully used in three-body calculations.

Because of the long-range nature of Coulomb in-
teractions it is not easy to find a separable repre-
sentation for the pure Coulomb interactions. ' How-

ever, in the presence of Coulomb interactions the
t matrix for a local short-range potential can be
written as a sum of the two terms —the "nuclear"
and Coulomb t matrices. The nuclear t matrix tc„
is defined by

fc„——(1+ VcGc)(V„+ V„GV„)(1+Gc Vc),

where V~ and V„are the Coulomb and nuclear po-
tentials. Here G~ and G are the Coulomb and full
Green's functions to be defined by Eq. (4). This
nuclear t matrix is well behaved and we can find a
rapidly convergent separable expansion for the nu-
clear t matrix. But it is this nuclear t matrix that
is called for in the approximate formulation of the
three-body problem in the presence of Coulomb
interactions such as given in Ref. 5.

There has been some work in this direction and

people considered (mostly Yamaguchi type) rank
one potentials in the presence of Coulomb interac-
tions. ' ' But rank one potentials cannot accurately
represent the actual t matrix for the problem.
Here in this paper we develop a scheme for finding
finite rank approximations to the nuclear t matrix.

In this paper we work with a screened Coulomb
potential. The main difficulty in working with a
screened Coulomb potential is that the phase shift
does not have a definite limit [see Eq. (24)] as the
screening radius goes to infinity. But in this ap-
proach the screened Coulomb phase shift gets can-
celled and in the end, when we go to the limit of a
pure Coulomb potential, the only limit we have to
take is that of the screened Coulomb wave function,
which converges to the pure Coulomb wave function.

A recently proposed method" for finding a sep-
arable expansion for the t matrix is here extended
to the case of the nuclear t matrix. Hence as in the
separable expansion of Refs. 1 and 2, the present
separable expansion for the nuclear t matrix does
not require the explicit solution of an eigenvalue
problem or an integral equation. The present sep-
arable expansion of any rank N also satisfies ex-
act two-particle unitarity and time reversal sym-
metry, because it is derived from a real Hermi-
tian potential.

The present separable expansion has analytic
form factors in momentum space for a special
choice of expansion functions and for a linear com-
bination of Yukawa potentials. The use of analytic
form factoxs is particularly convenient if the ex-
pansion is to be used in applications such as the
three-body problem, since it allows the contour
rotation method to be applied very easily. In fact
the only numerical operation required to find the
rank N nuclear t matrix is the evaluation of N' one-
dimensional integrals and the inversion of an XXN
matrix.

In Sec. II we give the general formulation of the
problem in the presence of Coulomb interactions
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and the method for finding the separable expansion
for the nuclear t matrix. In Sec. III we give the ex-
plicit partial wave forms for all the quantities con-
cerned. In Sec. IV we report numerical results for
the Malfliet-Tjon potential and finally in Sec. V we

give a brief discussion of the method.

II. GENERAL FORMULATION

Let us consider two particles interacting via a
short-range potential V„and a Coulomb potential

Vc, so that the total potential is given by'

V= V. + Vc.

The Lippmann-Schwinger equation can be written
as

In Eq. (9) V„ is the nuclear potential and if we
have a finite rank representation for V„, t„can be
found in a finite rank form. This has been done in
Ref s. 1 and 2 when Gc in Eq. (9) is replaced by G,.
The derivations of Refs. 1 and 2 can be easily ex-
tended to this case and we give a brief account of
the derivations here.

We construct a separable expansion V„") of rank
N for the short-range local potential V„, according
to the prescription'

v'„"' =p g v„lf,&A„,&f, ,
l v„,

where

t = V+ VGpt V+ tGp V,

where

G, =(s-H, )-'

is the two-particle free Green's function, with s the
complex energy parameter and 'lp the free Hamil-
tonian.

If we define two more Green's functions by

The T represents a complete set of labels for the
real functions f,. As Vts~ is real and Hermitian,
the resulting t matrix will satisfy the correct two-
body unitarity and time reversal symmetry con-
ditions in any rank. The approximate t matrix t~")
of any rank N is then obtained by replacing V„ in
Eq. (9) by Vt s~ and solving the equation for t„The.
solution is

arid

C,(s}=(s-H, —v,)-'

G(s) = (s —B,—V —V„) ',
(4)

tt"& =p g v„lf&D„,&f,, lv„

where

(12)

we have 4'r =&fr'I(V Vnccvn)lf~&' (13)

and

1+GV= (1+ GV„)(1+GcVc)

1+ VG = (1+ VcGc)(1+ V„G).

Then it is easy to see, with the help of Eq. (5),
that the total t matrix defined by

t= V+ VGV

can be written as

t=t, +t,„,
where

tc= Vc+ VcGp c = Vc+tcGpVc

is the Coulomb t matrix and tc„ is the nuclear t ma-
trix defined by

The only difference with the pure nuclear case is
that in the pure nuclear case Vc is zero and Gc in
Eqs. (9), (12), and (13) is replaced by G, . Equa, —

tions (12) and (13) define the required separable
expansion.

An alternative derivation of Eqs. (12) and (13)
can be given starting from a modified form of the
Schwinger variational principle' for the t matrix
t„ in the Coulomb state representation

&
p't-& lt Ip&' && =&p'I- &

I
v lq'-'&+&q&. 'I v l~p'»

—&q';, '
I ( v„- v„c,v„& I

q'-,',,'&,

(14)

where

IP'c'& = [1+Gc(u) V,]1% = [1—G, (u) Vc]IP&

tc„=(1+ Vccc)t„(1+Gc Vc),

where t„satisf ies

(8) and

&$ct '1=&p'l[1+ Vccc(u)] =(p'1[1 —Vcc.(u&]

(15)

t„= V„+ V„G,t„=V„+t„G,V„. (9)

It is to be noted that neither t„nor tc„ is the pure
nuclear t matrix but tc is the actual Coulomb t ma-
trix.

are the outgoing and ingoing Coulomb states, where
u [the complex energy parameter in Eq. (15)] is
(p'/2p, )+to, and the Coulomb potential is screened
at a suitable very large distance. The expression
(14} is stations. ry under variations of g and gz ~,g+ ) g-)

]'c
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the off-shell functions defined by

ly' '& = Ip{;»+G,v„I{}';"'&,

The trial wave functions in the variational ex-
pression (14) are taken to be of the form

&
= Q a, (p) ~ f,&

&O';; I
= g &f, lk, (p').

(p', '~ v„~p,""&=—
2 g v, (P)v,*„(P')2 I'

I„N

x(p )
vcn{ 4)

~p I)

It is to l)e noted that Eq. (18) ls identical ln appear-
ance to an ordinary Lippmann-Schwinger equation.

With this normalization the on-shell Coulomb and
the total t matrices ax"e given by'"

S
(kJ T,')k) = „e"-«-»si~,'(k)

To find a vax'iational expression for t„we substi-
tute Eq. (17) in Eq. (14) and demand that the right
hand side be stationary with respect to variations
of a, (p) and b, (p ). In this way we can easily solve
for a, (p) and b, (p') and hence recover Eqs. (12) and

(12).

(k) T,'"[k)+ (k] T,'[k) = - „e"«»-sinn, (k),ih

where the energy is k k /2g +ie and where (k(T (k)
is the pax'tial wave component of t~ defined by

III. EXPLICIT PARTIAL VfAVE FORM

In this section we develop explicit partial wave
expressions for the separable expansion, assuming
that the potential for each partial wave is local.
We follow the conventions and noxmalizations of
Ref. 2. We also assume that the Coulomb inter-
action is repulsive so that it does not have any
bound state.

We work in the outgoing and ingoing Coulomb
state representation ~p{c' )), because { c will be di-
agonal in this representation and the partial wave
projection of Eq (9) will . be identical in appearance
to an ordinary partial wave I ippmann-Schwinger
equation.

The partial wave representation of Eq. (9) in the
Coulomb representation is'"

(P I
T:"IP')= (P I v.'"IP ')

&PI &" ) lq)(qI T:"IP '&

(2p, S/k') -q'

and where 5~(k) is the total phase shift. Here o~~(k)

is the phase shift for the screened Coulomb poten-
tial and is related to the Coulomb phase shift
argI'(I. +I+i))) by

oi(k) = rgal'(I. + 1+i))) —)) In2kR, (24)

(k~ Tf"
~
k) = ——exp[i[5~(k) + 2o~~(k) P sin5~(k).

(25)

Hence (klT~"lk) carries the nuclear phase shift.
The Coulomb scattering states defined by Eq. (15)

have their partial wave projection

2 @2 j./2 g &-Ip{:.»v.*.(p)

where )) = p, e'/k'k and e is the charge on each parti-
cle and R is the cutoff radius of the screened Cou-
lomb potential.

Now if we define the nuclear phase shift 5~~ by

5~(k) =5~(k) -o~~(k),

then from Eqs. (21), (22), and (25) we see

where p. is the x educed mass and where the partial
wave i-matrix element (p ~

T~"~p') is defined by

(p', ) (t„~p,"'& =—
2 Q ~z~(P)I'g~(p')(PI&~") IP')

and the partial wave elements (p ~

V~+') P') are de-
fined by

where 5'~ is a, solution of the Schrodinger equation
with the screened Coulomb potential and in the lim-
it kit»f, (I, ~1)+ ( q)aknd ft») approaches the
Coulomb wave function Ji~(pr) defined by
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F,(pr) =(»)-'-'C. (n}M,„,„„,(»pr), (28)

where C~(q) is the Coulomb penetration factor de-
fined by

-ff 1}/2

c,(q)=, Ii (L+I+tq)l,

(D, ') ~ = g, (r) V.,(r)g, (r)r'«
0

&t. .l v.lq';. '&&4'.—,'I v„lf.,&v, (2ps/g') —q2

where

(30)

We now define a t matrix (pl T~c"Ip') by
S 8

(p IT""Ip'} = e """-(p
I
T'"Ip')e (37)

and M is the Nhittaker function. "
Now we take f, in Eq. (12) to be eigenfunctions of

L' and L,„ thus v-m, J,M, where' runs from 1
to tq and we define the components of f, in momen-
tum space by

. ~C
(klT~ "Ik) = ——e' &I" sin6~(k), (38)

then we see by Eq. (26) that the on-shell quantity

(NITS"Ik), given by

&~p If, &
= exp(+ to,')f', (p)V,„(p)

and in coordinate space by

&rlf, &= g, ( }r'tV, (r).

Then f c~(p) and g„~(r}are related by

(31) carries the nuclear phase shift.
Then from Eqs. (34), (35), (36), and (37) we have

(plT.""Ip') = g t..(p)(f:,)...t. ,(p'),

(38)

g.,(r) =(2/v)"(1/r) Jf p dp IV, (pr)f.', (p)
0

f.', (p) = (2/a) "(1/p) r «IV, (pr)g.,(r)

(33} h, (p) = (2II, /g')'t'p 't -r «gt, (pr) V„,(r)g, (r)
J0

(4o)

The partial wave form for the separable expan-
sion (12) in the Coulomb state representation is
given by

(D, '} „= ' g, (r) V.,(r),(r)r'«

2 "", h (q)h, (q)
v ., (2ps/3') —q' '

%e assume that the interaction in the Ith partial
wave is a local potential V„~(r); then the form fac-
tor integral is explicitly given in coordinate space
by

&p'c,'I V.If.g =&f.il V. I
p'c~'&

S
= (2p, /h')'t'(I/p)e"~"'

x r«IV~(pr) V„~(r)g ~(r)
&0

It is clear from Eq. (13) that (D '}...vanishes for
a central potential unless I,'= I. and M'=M and is
independent of M. There are two terms in (D '), ,,
It is easy to evaluate the first term in coordinate
space in our case and the second term reduces to
a one-dimensional integral in momentum space.
So we give one part of D ' in coordinate space and
the other part in momentum space and we have'

P
V„~(r) =g V, r 'e "", (42)

where usually P =1, 2, or 3. The expansion func-
tions used in coordinate space arenar- (43)

So far we have been working in terms of the
screened Coulomb potential. To get the results for
the Coulomb potential we have to take the limit when

when the cutoff distance .2 goes to infinity. The
main problem in taking this limit is that the
screened Coulomb phase shift cr~ does not have a
definite limit as ft goes to infinity I

see Eq. (24)].
But we do not face this problem here, because cr~~

is cancelled and does not occur in our final formu-
las (39), (40), and (41). The only limit we have to
take is that of TV~, the screened Coulomb wave
function, which smoothly goes to the Coulomb wave
function I' ~, defined by Eq. (28), as R goes to in-
flnlty.

%e consider potentials that are linear combina-
tions of Yukawa potentials given by
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where' =1,2, . . . , IVand e is a parameter, that
can be varied to improve convergence.

In the limit when P. goes to infinity Wi in Eq. (40)
is replaced by the Coulomb wave function FL and
h ~(p) has the analytic form

IV. NUMERKAL RESULTS

To see how' the separable expansion works in
practice we report 9-wave numerical calculations
with the Malfliet- Tjon potential defined by

V(r) = —V„r '8»" + V„r 'e &s", (46)

xg V, (p'+4, .') i 'exp[2q arctan(p/4&)],

where A&
= p,. +ma. The first term in Eq. (41) has

the analytic form'

(2L, +1)!(mm') ' g V,.(m'a+mo+p, .)
'i '

(46)

and the second term can be evaluated by breaking
it into principal-value and imaginary parts. The
principal-value part is evaluated by performing the
integration by an even order Gaussian quadrature
symmetrically located about the pole.

where V„=181.5422' MeVfm, V~ = 457.8828m

MeVfm, p, „=1.55 fm ', and p, z
——3.11 fm ', which

has single bound state at an energy E = —0.35 MeV.
The parameter a in the expansion functions of

Eq. (43) can be varied to improve the convergence
rate. The value finally chosen as in Ref. 2 was
u =0.5 fm '.

The potential considered ha.s a bound state at an
energy F = —0.35 MeV and the corresponding pure
nuclear t matrix has a pole at this energy. As in
Ref. 1 we found that low rank results were far from
the converged results unless this pole is adequately
included in the t matrix. This was done for the pure
nuclear t matrix at zero energy as in Ref. 1, with
a modification of the basis function, where the m = 1
basis function was replaced by a suitable linear

TABLE I. S-wave pure nuclear phase shift ~L and Coulomb corrected nuclear phase shift
&&c for different N. N=1, 2 results have been calculated with a modification of the basis func-
tions described in the text.

& c.m.

(Me Vi Exact
N
4

24

104

gc

gc

6L

gC

EL

gc

gCL

1.4701

1.4680

1.2420

1.2513

l.0997

1.1123

0.8370

0.8513

0.5501

0.5631

0.3730

0.3850

0.2083

0.2190

0.0358

0.0311

1.4614

1.4603

1.2259

1.2375

1.0732

1.0885

D.7764

0.7935

0.4358

0.4503

0.2340

0.2453

0.0790

0.0868

0.0009

0.0018

D.D058

0.0042

1.4612

1.4603

1.2252

1.2371

1.0718

1.0876

0.7721

0.7899

0.4208

0.4368

0.2005

0.2142

0.0066

0.0178

—0.1675

—0.1591

-0.2237

—0.2162

1.4665

1.4636

1.2400

1.2492

1.0982

1.1108

0.8363

0.8506

0.5457

0.5593

0.3515

0.3644

0.1515

0.1633

—0.0692

—0.0592

—0.1507

-0.1417

1.4702

1.4680

1.2420

1.2513

1.0997

1.1122

0.8370

0.8513

0.5490

0.5623

0.3722

0.3841

0.2076

0.2182

0.0312

0.0405

-0.0374

-0.0286

1.4701

1.4680

1.2420

1.2513

1.0997

1.1123

0.8369

0.8513

0.5498

0.5630

0.3728

0.3848

0.2074

0.2181

0.0344

0.0437

—,0 ~ 0323

—0.0235
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Because the expansion functions g„~(r) used in
this calculation are similar for different n, at some
stage, the D ' matrix becomes too singular for the
purpose of matrix inversion. In the present calcu-
lation (carried out in single precision —to about 13
significant figures on a CDC CYBER series VO

model 72 computer) numerical difficulties with the
inversion of D ' appeared only for values of N
greater than 8. On the other hand it is always pos-

sible to use a nearly orthogonalized set of functions
as in Ref. 1 and in some of the articles of Ref. 9,
so that we can easily go to higher N, but all the
integrals are to be evaluated numerically.
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