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The width fluctuation correction enhances, sometimes by large factors, small compound
cross sections that compete with channels having much larger transmission coefficients. The
effect is demonstrated by the results of statistical computer experiments. A simple numeri-
cal quadrature of the width fluctuation integral describes the effect much more accurately

than the formula proposed by Tepel et al.

[NUCLEAR REACTIONS Average compound cross sections ]

The basic expression for the average fluctuation
cross section o5, is a product of the Hauser-Fesh-
bach formula and the width fluctuation correction
factor'

ol =clfW ,, (1)
where
W= rycrud <;F#‘e>“ . (2)
;Fue <ruc>u<rud)u

The “partial widths” T, are randomly distribu-
ted in p in a way that can be represented by a y*
distribution with v, degrees of freedom where v,
lies between 1 and 2. The factor W, can be great-
er than unity, thus enhancing the fluctuation cross
section, for one of two reasons.

The first type of enhancement arises from a cor-
relation of the T, and the T, in Eq. (2). This
leads to the well known enhancement of the com-
pound elastic fluctuation cross section® by a maxi-
mum factor of

(T, AT, =1+2/v,. 3)

Nonelastic fluctuation cross sections between di-
rectly coupled channels can be enhanced by the
same mechanism.®*

The second and less widely discussed enhance-
ment arises from the fluctuations of the total
“widths” T =37,T' ,. When both channels ¢ and 4
in Eq. (2) are very weakly absorbed (have small
(I‘“c> and (I‘u,,)) but compete with strongly ab-
sorbed channels, then the fluctuations in r, will be
essentially independent from those of the weak T' .
and T, in the numerator of Eq. (2), leading to a
maximum enhancement factor of (Fu")(I‘u). If
there are N competing strongly absorbed channels,
eachfluctuating independently with v degrees of free-
dom, then T, is distributed according to x? dis-
tribution with v, =Nv degrees of freedom and the
maximum fluctuation enhancement factor is

%, Nv<2

O = z (1-—;—)-1, Nv>2.

(4)

Of course, the infinite enhancement is approached
only as both (1“,J o) and <Fud> approach zero. But
as we shall see, order of magnitude effects are
entirely possible even in realistic situations, and
5% enhancements can still occur even when Nv is
as large as 40.

The numerical evaluation of the fluctuation cor-
rection factor involves the following integration®

W.a=(1+28,/v,)

xf at [T (1 +2tv, X0, XT )~ C/2e0et 8500
0 f

()
which in general must be performed by numerical
quadrature, though in many cases (particularly
when all v,=1 or 2) the integral can be evaluated in
terms of elementary functions.

Recently an algebraic evaluation of W was pro-
posed by Tepel et al.*° which involves the solution
of the following set of simultaneous quadratic equa-
tions for the X_:

X, Ty X, +2X.2/v,=T,=2m(T )/ D. (6)

One then evaluates the average fluctuation cross
section by

ol (T = XX, + 26, X,%/v,- (7)

This formula includes the correlation enhancement
factor of Eq. (3) and also satisfies the unitarity
condition =,6% = 7,. But on evaluating the limiting
fluctuation enhancement by Egs. (6) and (7) we find
the factor to be

2
<1 +E> , all Nv. (8)

This factor is much smaller than the prediction of
Eq. (4) when Nv is a small number. It is still

764



14 EVALUATION OF THE FLUCTUATION ENHANCEMENT FACTOR 765

small by 4% when Nv is as large as 10.

The numerical solution of Eq. (6) by either ma-
trix methods of by successive approximations ap-
pears to present no substantial advantage over the
numerical integration of Eq. (5). However an ad-
vantage would be obtained if Eq. (6) could be ad-
equately solved by means of the approximation®

X, =Y (Z,Y,) 2,

~ T,
1+ Q/IVNT/ET)

Substitution of Eq. (9) in Eq. (7) leads to the same
value [Eq. (8)] for the limiting fluctuation enhance-
ment factor.

To investigate the accuracies and ranges of va-
lidity of these various methods for calculating the
fluctuation enhancement factor, we have evaluated
them for a variety of two, three, and four channel
models, each involving two groups of channels
with transmission coefficients differing by a factor
which ranges from 1 to 1000. Direct reactions
were assumed to be absent. The calculated inelas-
tic fluctuation cross sections between weak chan-
nels (weak channel elastic cross sections for the
two channel case) are plotted in Fig. 1. They are
compared there with the results of computer ex-
periments employing the program STASIG, as de-
scribed in Ref. 1. The statistical assumptions of
these computer experiments correspond also to
those reported in Refs. 4 and 5.

The following conclusions can be drawn from
these calculations.

(1) Systematic differences between the predic-
tions of the width fluctuation correction formula
(5) and the Tepel formula Eqs. (6) and (7) can be-
come very large when the ratios of competing
transmission coefficients become large. These
differences affect the small cross sections between
weakly absorbed channels.

(2) The results of computer experiments support
the predictions of Eq. (5) and are not consistent
with Egs. (6) and (7).

(3) When all competing transmission coefficients
have values within a factor of 5 of each other, Egs.
(6) and (7) can be expected to yield cross sections
within 5% of Eq. (5). For larger transmission ra-
tios, Egs. (6) and (7) can yield larger discrepan-
cies. [Egs. (6) and (9) cannot be relied on to better
than 10%.]

(4) When ratios of competing transmission co-
efficients are within a factor of 100, the 20-point
Gauss-Laguerre quadrature evaluation of the in-
tegral (5) yields results within 5% of the exact
values. For larger transmission coefficient ratios,
a precise calculation of small cross section values
may require more exact methods for evaluating the
integral (5).
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FIG. 1. Enhancements, compared to Hauser-Feshbach,
of small compound cross sections for a variety of two,
three and four channel cases. The predictions of each of
the two theories lie within the shaded regions bounded
by the curves for v =1 (all channels) above and v=2 (all
channels) below. In each case the upper shaded region
corresponds to the width fluctuation integral Eq. (5); the
lower region corresponds to the Tepel formula Egs. (6)
and (7). Curves corresponding to the 20-point Gauss-
Laguerre quadrature evaluation of the width fluctuation
integral are shown for v=1,2. The points show the aver-
age results and variances of computer experiments with
T (large) = 0.91 (two channel cases) and T (large) = 0.84
(three and four channel cases).

(5) Under certain conditions the differences be-
tween Eq. (5) and Egs. (6) and (7) can be compen-
sated for by adjustment of the channel fluctuation
indices v,. This probably accounts for some of the
differences in the dependences of v, on transmis-
sion coefficients, as reported in Ref. 1 on the one
hand and Refs. 4 and 5 on the other hand.

Because of the large relative effects involved,
the total width fluctuation enhancement factor
should have an appreciable influence on small com-
pound nucleus cross sections, such as charged
particle scattering or capture reactions below the
Coulomb barrier, when they compete with several
strong neutron channels.
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