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The classical static equation of motion for a relativistic vector field interacting through direct and derivative

coupling with a spinor source term is presented in spherical coordinates. The equation is generalized to
include the effects of form factors at the vector-spinor vertices. Using appropriate nucleon electromagnetic
form factors and nuclear single-particle wave functions resulting from relativistic self-consistent model
calculations of spherical nuclei, the contributions of the various components of the nucleon electromagnetic
form factors to the effective nuclear charge distributions and the elastic electron scattering cross sections for' Ca, "Ca, and ' 'Pb are analyzed.

NUCI, EAB STBUCTUBE Electromagnetic form factors, relativistic formalism,
P and o(0) calculated for elastic scattering of electrons off 40Ca, @Ca, and 208Pb.

I. INTRODUCTION

The existence of relativistic self-consistent
nuclear models which reproduce the experimental
bulk properties of finite spherical nuclei"' make
it possible to study in a natural and intuitive way
the contributions of the various nucleon electro-
magnetic form factors (Dirac and Pauli) to effec-
tive nuclear charge distributions. The Dirac form
factor of the proton will, of course, provide the
dominant contribution; however, the remaining
contributions (mainly the neutron and proton Pauli
form factors) may be important in understanding
fine details of the elastic electron scattering cross
sections of nuclei. These relativistic contribu-
tions, which have been investigated previously
within a nonrelativistic reduction, have been
shown to be important in understanding the iso-
topic shift anomaly in the ~'Ca-~'Ca isotopes. '

The appropriate relativistic formalism is most
easily obtained by considering the static classical
equations of motion for a spinor field interacting
with a vector field via both direct and derivative
coupling. Since the aim is to calculate effective
charge distributions for spherical nuclei, it is
convenient to consider the equations of motion
directly in spherical coordinates. Once these
equations have been reduced to radial form, it
becomes obvious how one should introduce the
nucleon electromagnetic form factors by folding
the appropriate point nucleon densities with their
respective coordinate space nucleon form factors.

The five parameter, monopole, I', =0, vector
dominance model of Iachello, Jackson, and Lande~
has been used for the nucleon electromagnetic
form factors. This model, which produces a re-
spectable fit to the experimental data (y2 of 1.75
per data point), results in coordinate space Dira.c

and Pauli form factors which are linear combina-
tions of Yukawa functions. These are very con-
venient for folding with the relativistic point nu-
cleon densities to obtain effective nuclear charge
distributions.

Application of the relativistic formalism to the
~ Ca-~ Ca, isotopes yields somewhat different re-
sults from those obtained in Ref. 3. One difference
is that the exact cancellation of the Pauli form
factor (analog of the spin-orbit term of Ref. 3) for
spin saturated shells does not persist in the rela-
tivistic formalism. The cancellation is still sig-
nificant, however, since the Pauli form factor
contributions to the spin saturated "Ca, nucleus
are much smaller than those contributions to the
spin unsaturated "Ca nucleus. Complicating this
discussion is the fact that there is also significant
cancellation between the proton and neutron Pauli
form factors.

In Ref. 3 the relativistic corrections were not
sufficient to remove the entire discrepancy be-
tween the theoretical and experimental isotopic
shifts of "Ca-"Ca. In the present work the re-
lativistic contributions are larger, and the dis-
crepancy between theory and experiment takes a
different sign from that of Ref. 3. This difference
is more likely due to differences in the nuclear
models used in Ref. 3 and the present work rather
than to differences in the formalisms.

For ' 'Pb the results with the present model are
interesting in that they give an effective charge
distribution with a definite central depression,
which was suggested some time ago' on the basis
of the experimental cross section. In the present
model the central depression results because the
Pauli form factor contributions near the origin
are particularly strong and remove the s-state
bump which is present in the Dirac form factor
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contribution of the protons. The Dirac form fac-
tor contribution of the neutrons in 2osPb is negli-
gible.

II. THEORY

The derivation of the static equations of motion
for a vector field interacting through direct and
derivative coupling with a static radially sym-
metric fermion distribution requires careful at-
tention to the conventions of relativity and tensor
analysis. It is appropriate to begin this section
with a careful exposition of the particular con-
ventions employed in this work.

The metric employed for the rectangular co-
ordinate system (x'= ct, x', x', x') is

12 21 13 31

23
=

32
=cot8»

= —7"sin 8»

2 = —sln8 cos8»

0 0 0

( )
0 —1 0 0

0 0 0 1

The usual tensor transformation rules for contra-
variant and covariant tensors are employed,

Bx 8x 8x 8xt'8
gledt 8&u ~ » ~st 8ya 8@& ~u~'

The summation convention is employed over all
symbols which occur once as contravariant and
once as covariant indices. The relativistic spher-
ical coordinates (x'=x', x'=r, x'=8, x'= P) are
introduced, where

[mn pl= — ~"' + ~" — ~-).8 8 8

8+ tn 8+n 8+P

Covariant differentiation of a tensor is denoted by
a comma preceeding the index of the coordinate
with respect to which differentiation is performed:

( )~..

= & sln8 cosf»

g = g sln8 sing»

x'=~cos8.

The contravax'iant and covariant components of
the metric tensor in the spherical coordinates be-
come

The contravariant components of the Dirac y
matrix in rectangular coordinates are

0(w") = (w', y), w'=
0

where I and a are the two-by-two identity and
Pauli spin matrices, respectively. In spherical
cooxdinates the y matrices take the form

0 O i/~'

Lo O 0

1 0 0

( )
0 —1 0

0 0

—1jr' sin'8

0 0 0 —z' sin'8

Since this metric tensor i.s not constant, one finds
the following nonzero Christoffel symbols:

where o„, o» and o~ are the spherical coordinate
components of the Pauli spin matrices:
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cos8 sin8 e"'~
(X„=

sin8 e'~ —cos8

—sin8 cos8 e '~
0'g =

cos8 e sin8

tities must be replaced by covariant derivatives,
if the proper Lorentz covariance of the equations
is to be maintained. The Euler-Lagrange equa-
tion for A, (x) becomes

82(x) 82(x)
8A, (x) 8A„(x) q „

and the Lagrangian density becomes

Now consider the Lagrangian density of an elec-
tron field g, interacting via the electromagnetic
field A„with a static nuclear source denoted by
sums over single-nucleon wave functions P~
through both direct and derivative coupling,

&(x) = —g,(x)[- fy" 8„+m, ]y,(x) —e 7/), (x)y y, (x)A„(x)

2(x) = —g,(x}[-i y"8„+m, ]g,(x) —eg, (x) y "g,(x)A„{x)

—g e„iI„(x)y'g„, (x)A„(x)

—Q — »' y». (x)o""q».(x)[A„'"„' -A„'"'„]

—Q e», 71» (x)y g» (x)A„(x)
+ 2r"'g""A„„(x)A„,„(x). (16)

—g '"-
Yi „,(x)o""y .(x)[8„A„(x) 8„A„{x)] Application of Eq. (15) to the Lagrangian density

in Eq. (16) yields

+ 2 8, A"(x)8"A„(x), (12)
—[Z'"Ao,",'],~

= &4,(x)y'0, (x)+ g e» 4» (x) .yq. »( )x

+P +v ~v~g
2l.

One ordinarily derives the equations of motion for
field operators from Lagrangian densities like
Eq. (12) by application of the Euler-Lagrange
equat ion s

M (x) 88(x)
8&(x) ' g88„&(x),

vrhere $ is either the electron field operator or
the electromagnetic field operator. The matrix
element of the equation of motion for the electron
field between the vacuum state and the one elec-
tron state yields the Dirac equation for an electron
1110vlllg 111 the s'tatlc Coulolllb potelltlal Ao(x) of the
nuclear source, provided one ignores the quantum
fluctuation terms in the electromagnetic field.
For static rotationally invariant nuclear sources,
only the zeroth component of the electromagnetic
field can acquire a nonzero expectation value and
still satisfy all the appropriate invariance princi-
ples.

The interest of the present stork is to study the
equation of motion for the Coulomb potential AO{x)
and isolate the effective nuclear charge distribu-
tion vrhich generates it. Since the nuclear source
is assumed to be spherically symmetrical, it is
convenient to consider the equation of motion in the
spherical coordinate system. Eqs. (12) and (14)
must be modified in spherical coordinates to the
extent that all partial derivatives of tensor quan-

—Q 2M' [t»,.(x)o "t»,.(x}],.
Since the metr'ic tensor can be treated as a con-
stant vrith respect to covariant differentiation,
one recognizes the left-hand side of Eq. (17) to be
the negative of the second-order invariant differ-
ential operator (O'Alembertian} operating upon
the Coulomb potential A, (x). The first term on
the right-hand side of Eq. (17) is the contribution
to the Coulomb potential from the electron itself
and should not be included in the calculation of the
scattering of the electron from the nuclear source.
The equation for the Coulomb potential which
should be used in calculating the electron scatter-
ing cross sections is thus

& 'A.(r ) = p (r ),

p„(r ) = g e q„(r ) y' iP (r )

P 2~'-[y„(r )o"q„(r)],

The expression in Eq. (19) would be the effective
charge distribution of a nucleus as measured by
electron scattering experiments, if the nucleons
could be considered point sources of the electro-
magnetic field. The presence of a term propor-
tional to the nucleon anomalous magnetic moment
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in the charge distribution is associated with the
fact that the wave functions g„describe nucleons
in motion about some fixed point even though the
matter density P~~ P„ is time independent. A mov-

ing magnetic dipole serves as a source for an
electr ic field )ust as a moving electric dipole
serves as a source for a magnetic field.

Now consider the last term of Eq. (19),

where the sum over the index j runs from 1 to 3. Making use of the nonzero Christoffel symbols given in
Eq. (5), one obtains the following expression for the covariant derivative on the right-hand side of Eq. (20):

[t)(f)y, 7'(' '( )]+,.=2M' ](8 + —)[(' (F)i'i'p„, (r)]+(—e cote)[t) (r)y'y*(t (F)]

The proof that the last two terms of Eq. (21) vanish is reserved for Appendix A. The remaining term may
be further reduced to the form

(22)

where F,.(r) and G, (r) a.re the large and small component radial wave functions as defined in Refs. 1 and 2.
The sum over the index i now covers the quantum numbers n, v, 8 of the single particle orbitals (see Ref.
2 or Appendix A for wave function and quantum number notation), the sum over magnetic substates having
been performed already. One finally obtains the following radial expxession for the point nucleon effective
charge distribution:

(23)

At this point the finite size effects of the nucle-
ons may be introduced by smearing the point nu-
cleon densities in Eq. (23) with the appropriate
electromagnetic form factors. The appropriate
form factors for the relativistic formalism are
the Dirac and Pauli (E, and E,) form factors ra-
ther than the electric and magnetic (Gs and G„)
form factors, which are appropriate for the non-
relativistic analysis. ' The folding of the first
term of Eq. (23) with the charge (Dirac) form fac-
tors of protons and neutrons proceeds in exact
analogy with the nonx'elativistic treatment in which
the matter distributions axe folded with the elec-
tric form factor (Gs) of protons and neutrons. The
folding of the second term of Eq. (23) with the
Pauli (anomalous moment) form factor is not so
obvious, since one appears to have the option of
folding either before or after the operation of the
operator (S/Sr+ 2/r) upon the point nucleon den-
sities. The latter option is chosen in the present
work, because the former introduces an unphysi-
cal singularity in the chax'ge density at the origin.

Application of the form factor corrections yields

&&F~(ir- r 'i)d'r',

xF2~((r —r ' ~)d'r',

x g „E(r')G(r ')
neutxeas

(25)

p.«(r) = p,'(r)+ p",(r)+ p,'(r)+ p,"(r), (24) The F f'," functions occurring in Eqs. (25)-(28) are
the Dirac and Pauli form factors pf protons and
neutrons. These are the three-dimensional Foux'-
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ier transforms of the momentum space form fac-
tors and are normalized such that the volume in-
tegrals of E~ and Ey are 1 and 0, respectively,
while the volume integrals of E~ and E," are 1.793
and —1.913 (proton and neutron anomalous mag-
netic moments), respectively.

III. NUCLEON FORM FACTORS AND NUCLEAR MODELS

The nucleon electromagnetic form factors of
Iachello, Jackson, and Lande~ are used for the
numerical calculations presented here. Their
models are based upon the vector dominance the-
ory of electromagnetic interactions and are fitted
to experimental data from all four nucleon elec-
tromagnetic form factors. They include contribu-
tions from the p, ~, and Q mesons, as well as an
intrinsic contribution which simply multiplies all
four factors. The particular model used here is
the five parameter, I', =0, monopole model which
gives a X' of 1.75 per data point. The use of the
model with zero p meson width is essential in
maintaining simple analytic expressions for the
form factors in coordinate space. The monopole
model (which refers to the intrinsic part of the
form factor) is chosen, since it provides the best
fit of the I",=0 models. It also leads to a simpler
expression for the form factor than does the di-
pole model.

The momentum space expressions for the form
factors may be obtained from Ref. 4. Using the
parameters of the chosen model and performing
the Fourier transform to coordinate space, one
obtains:

F s(r) = 0.568 e-s.ss "/r+ 0.417 e '"'/r
+ 3.470 e '""/r 4.53-3 e '"'/r

Fs(r) — 0 588 e-s.ssr/r+0 417 e s.esca/-r

+ 3 470 e '""/r - 4 700 e s'ss "/r

F,o(r) = 3 578 .e '"-/r O 3OO .e '""-/r

+ 0 541 e '""/r 3.—819 e '"'/r,

(29)

(3o)

(31)

F"(r)= —3 578 e '""/r 0300 e—'""/r
+ 0.541 e '"'/r+ 3.337 e '""/r.

0.5

For convenience of comparison with other models,
these functions (multiplied by 4wrs) are shown in
Figs. 1 and 2. The simple form of these coordi-
nate space form factors make them very conven-
ient for folding with numerical density distribu-
tions. One may note that the Dirac form factor

E

l.G—
4

l,G 2.0

FIG. i. The coordinate space charge (F~&) and ano-
malous magnetic moment (F~&) distributions of the pro-
ton.

FIG. 2. The coordinate space charge P'&) and anomal-
ous magnetic moment (F2) distributions of the neutron.
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TABLE I. Values of the meson masses and coupling
constants of the self-consistent nuclear model. The col-
umn labeled J refers to the spin and parity of the me-
son. The column labeled I refers to its isospin. The
masses are given in units of MeV, and the coupling con-
stants quoted are the conventional g /47t values. For
those parameters which correspond to physical mesons,
the conventional symbol for the meson is included.

Meson J+ I Meson mass Coupling const.

0' 0
0
1

0

370.65
782.8
763.0
135.0

5.1604
15.0
1.455
0.0878

of the neutron is much smaller than the other form
factors. Indeed, this is the form factor which, as
noted by Foldy, ' contributes almost nothing to the
scattering of neutrons off bound atomic electrons
and may even be rigorously zero.

The self-consistent nuclear model for the pres-
ent calculations is a relativistic Hartree model
which differs from the model used for the calcu-
lations in Ref. 1 only in that different parameters
have been chosen for the effective nucleon-nucleon
interaction. The model parameters which are
characterized as effective masses and coupling
constants of exchanged bosons are listed in Ta-
ble I. It should be noted that only two of the four
mesons in Table I correspond to physically ob-
served mesons. The parameters of Table I are
chosen such that the binding energy per particle
of balanced nuclear matter is 16 MeV at the mini-
mum of the saturation curve which occurs at k&
=1.24 fm '. The symmetry coefficient is 31.5
MeV. These numbers are calculated with the re-
lativistic Hartree formalism for infinite nuclear
matter which was developed by Walecka. ' Since
the main purpose of the present work is to dis-
play and illustrate the relativistic form factor for-
malism rather than to discuss the dynamics of the
relativistic self-consistent model, further con-
sideration of the relativistic Hartree formalism
is reserved for Appendix B.

IV. CALCULATIONS

The bulk properties of the doubly magic nuclei' Ca, 'Ca, and "'Pb, resulting from relativistic
Hartree calculations with the model parameters
shown in Table I, are given in Table II. The ex-
perimental total binding energies are taken from
the standard mass tables. ' The experimental rms
charge radii are taken from the paper of Frosch
et al. ' for the Ca isotopes and from Heisenberg
et al. ' for '"Pb.

By inspection of the rms radii of the Ca iso-
topes in Table II, one can begin to compare the
results of the present work with Ref. 3, where
similar effects were calculated with a nonrelati-
vistic formalism. In Ref. 3 the contribution of
the spin-orbit term to the effective nuclear charge
density vanishes except when spin unsaturated
shells are occupied. Such an exact cancellation
does not obtain in the relativistic formalism;
nevertheless, one sees that in 4'Ca the rms charge
radius remains unchanged to four significant fig-
ures when the Pauli form factor contributions and
the Dirac form factor contribution of neutrons are
added. In Ref. 3 the rms charge radius of "Ca
decreases by 0.021 fm when the spin-orbit and
charge form factor contributions of the f ,' neu-—
trons are included. For the present work one
notes that the "Ca rms radius decreases by 0.052
fm when the Pauli form factor contributions and
the neutron Dirac form factor contribution are
added to the proton Dirac form factor contribu-
tion. This is roughly twice the effect found in
Ref. 3. For the nuclear model used in Ref. 3,"
the point proton radius of "Ca is 0.04 fm larger
than the point proton radius of "Ca. The reduc-
tion of 0.021 fm in the "Ca charge radius found in
Ref. 3 thus removes roughly half of the discrep-
ancy between theory and experiment, inasmuch as
the experiment' indicates that the "Ca charge ra-
dius is 0.01 fm smaller than the "Ca charge ra-
dius. The fact that the form factor corrections
to the "Ca charge radius found in this work are
twice those found in Ref. 3 would be very encour-

TABLE II. Binding energies and rms radii of various distributions in Ca, Ca, and Pb.
Both proton (rms&) and neutron (rms„) rms radii are given for the point nucleon distributions
as well as charge radii (rms ) resulting from smearing the proton density with the Dirac form
factor (P-D) and from smearing both proton and neutron densities with both Dirac and Pauli
form factors (P1V-DP).

Nucleus Theo.
E/A

Exp.
Point radii

rms& rms„ P-D
rms

PN-DP Exp.

4'Ca
Ca
Pb

8.71
9.07
8.71

8.55
8.67
7.87

3.440
3.436
5.502

3.390
3.659
5.793

3.510
3.506
5.549

3.510
3.454
5.534

3.49
3.48

5.50—5.54
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FIG. 3. The effective charge distribution of 40Ca. The
solid curve contains all form factor contributions, while
the dashed curve contains only the contribution from the
Dirac form factor of the protons.

FIG. 4. The effective charge distribution of @Ca. The
solid curve contains all form factor contributions, while
the dashed curve contains only the contribution from the
Dirac form factor of the protons.

aging were it not for the fact that, unlike Ref. 10,
the present model gives a point proton radius in
"Ca that is already 0.004 fm smaller than the "Ca
point proton rms radius. In more recent calcula-
tions based on the methods of Negele and Vauth-
erin, "the difference in point proton radii for 4'Ca
and "Ca, using the model of Ref. 10, has decreased
from 0.04 to 0.016 fm,"which is more like the re-
sult with the present model.

In Figs. 3 and 4 the effective charge distributions
for "Ca and "Ca ax'e shown. The solid curves
contain the contributions from all nucleon form
factors, while the dashed curves represent the
contribution of the Dirac form factor of the proton
only. As in the case of the rms radii, itis observed
that the form factor corrections ( p f+ p,"+p",) al-
most vanish in the spin saturated "Ca nucleus,
while they are quite noticeable for the spin un-
saturated "Ca nucleus.

Figure 5 shows an example of the overall fit of
the present model to the experimental differential
cross section for the elastic scattering of 497
MeV electrons off "Ca. The experimental and
theoretical curves differ by a small angular shift
which increases as the scattering angle increases.
This is the signature of the fact that the rms
charge radius of the present model is about 0.025
fm larger than the preferred rms radius of the
data. The positions and heights of the maxima
are good, indicating that, aside from the overall
need for a slightly smaller rms radius, the shape
of the charge distribution of the present model is
satisfactory. The theoretical model used in Fig.
5 has contributions from all form factors. The
data are those of Heisenberg et al."

IOO

40Ca

497 Mev

La

Ll
E IO-~

Xl

b

IO I

25
l l

45 50

FIG. 5. Comparison between theory and experiment
for the differential cross section for the elastic
scattering of 497 MeV electrons off Ca.

In Fig. 6 the experimental isotopic shift' in the
differential scattering cross sections of "Ca and

a 18 compared with the theoretical calculations
both with (solid line) and without (dashed line) the
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which give the correct symmetry energy of infinite
nuclear matter and yet still predict a charge den-
sity with a central depression. Nevertheless, the
present model still overbinds the "'Pb nucleus
by 0.84 MeV/A, so the central depression may
still vanish when the model is refined to give a
more accurate description of the bulk properties
of this nucleus.

As an example of the effects of the form factor
corrections upon the elastic differential scattering
cross sections, the cross sections for scattering
of 502 MeV electrons from the '"Pb charge dis-
tributions in Fig. 7 are shown in Fig. 8. The dif-
ferences between the two curves become noticeable
at the larger angles. The two charge distributions
in Fig. '7 have been used to calculate electron scat-
tering cross sections and muonic x-ray transitions
for the broad range of experimental data consid-
ered by Friar and Negele" in their earliest study
of the "'Pb charge distribution. This data favors
the curve in Fig. 7 which includes the form fac-
tor corrections over the curve without form factor
corrections (p,"+p,"+p~) by a factor of 2 in the
total y'. The improvement in the y' comes mainly
from a better fit to the muonic x-ray data. Since
muonic x-ray calculations are very sensitive to
small changes in rms radii, it is not obvious
whether the better fit is due to the shape change
induced by the form factor corrections or simply
due to the slight reduction in rms radius as shown
in Table II. In order to answer this question the
two charge densities in Fig. 7 have been scaled
such that the rms radius of both is 5.505 fm, the
radius preferred by the experimental data. Upon
repeating the calculations with the scaled distribu-
tions, the situation is reversed with the p~ curve
being favored over the full result by a factor of
two in total y'. Within the present model calcula-
tions the data do not exhibit a clear preference
for the form factor corrections. This same con-
clusion was reached recently by Chandra and
Sauer. " They used a formalism similar to that
of Ref. (3) and model "'Pb wave functions of Kolb,
Cusson, and Schmitt. "

form factors.
Numerical calculations are presented which dis-

play the relative importance of these form factor
contributions for a particular local self-consistent
nuclear model. The role which these form factor
contributions play in understanding the isotopic
shift anomaly in the "Ca-"Ca charge distributions
is discussed. The Pauli form factor contributions
are shown to lead to a central depression in the
'"Pb charge distribution for the simple model
employed. Comparisons of the model calculations
with the various experimental data do not at this
point show a clear preference for the inclusion of
the Pauli form factor contributions in the effective
charge distributions. Since the theoretical justifi-
cations for the inclusion of these effects are im-
peccable, one can only conclude that the nuclear
model upon which these calculations are based
must be refined before one can draw firm quanti-
tative conclusions regarding the overall import-
ance of these form factor contributions to the
electromagnetic properties of nuclei.
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APPENDIX A

The purpose of this Appendix is to show that the
last two terms of Eq. (21) vanish:

V. CONCLUSIONS

A formalism is presented whereby the finite
size effects of the nucleon electromagnetic form
factors may be included in the calculation of ef-
fective nuclear charge distributions when the nu-
clear single-particle wave functions are Dirac
spinors. In the special case where the nuclear
distribution is radially symmetric, the contribu-
tions of the anomalous magnetic moment distribu-
tions are shown to be as simple and straightfor-
ward to include as the contributions of the charge

In accordance with Ref. 2, the single nucleon wave
functions are required to have the form

(2A)

where J and m are the usual angular momentum
and magnetic quantum numbers, and co is related
to the parity of the state such that
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( 1)gee& /2 (3A)

The gz (8, Q) are central field spinors which are
defined by

The 'JJ, of Eq. (4A) are the usual spherical har-
monies, and the notation for the two-component
Pauli spinors is conventional. One should be re-
minded that the bar over the wave functions in Eq.
(1A) represents the usual bar notation for Dirac
spoor s,

+ (eT+ co m+ — ieTBl)

(7= (y's)',

while the bars over the Dirac matrices of Eq. (1A)
indicate that the spherical coordinate y matrices
defined in Eq. (10) are being used.

Consider a term from the summation which is
differentiated with respect to P in Eq. (1A),

Upon performlQg the matrix px'oducts this becomes~

(VA)

Now using the relation,

r 8 zm J'fft &

tentials are obtained by folding Yukawa functions
associated with the meson parameters in Table I
with the scalar and vector density distributions
of the occupied positive energy states.

as well as the fact that o'„ is Hermitian, one can
obtain

(10A)

One obtains the same result for terms in the first
summation of Eq. (1A) by reducing it to a form
similar to Eq. ( IA) and notlIlg that EQ. (QA) holds
when o~ is substituted for o'. This establishes
the validity of Eq. (1A).

The techniques of relativistic Hartxee ealeula-
tions fox'finite nuclei and infinite nuclear matter
for the vector-scalar model considered here are
thoroughly discussed in Hefs. 1 and 2 and Ref. 7,
respectively. A short review of these works is
presented here.

Fox' finite nuclei the single-particle wave func-
tions P, which are used to calculate the effective
charge distribution defined in Eg. (19), are ob-
tained from numerical solutions to the following
Dirac equa. tion

(n ' p+ p[M+ U(r)+ y'U„'(r)]}g(r) = Ep(r). (18)

The single particle scalar (U,) and vector (U'„) po-

This is an obvious relativistic analog of the non-
relativistic self -consistent Hartree approximation.
For isoscalar mesons the contribution to the scalar
potential is attractive while the contribution to the
vector potentia, l is repulsive.

For isoveetox mesons the expressions in Eqs.
(28) and (38)must be altered to include an over-
all factor r, (the third component of the isospin
operator) and the density functions become the
difference between the occupied neutron and pro-
ton states rathex than the sum.

If the nucleus under consideration consists of
closed shells, then the density functions are angle
independent and the single-particle potentials U,
and U„become functions dependent only upon the
radial coordinate r. For this ease the single-
partiele wave function may be written in the form
shown by Eci. (2A), where the large and small
component radial wave functions E and 6, respec-
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tively, obey the radial form of the Dirac equation:

dF (d+ 2)F + (M+ U, —U'„+ E)G, (4B)

= (M+ U, + U2 —E)F+ & G.
dG (J+ ~2)

(5B)

The quantum numbers v and J are those defined in
Appendix A.

The analogous treatment of infinite nuclear
matter has been given in Ref. 7. It is of interest
in the present work because it allows the para-
meter search which resulted in the values shown
in Table I to be constrained by the infinite nuclear
matter parameters discussed in Sec. III.

For infinite nuclear matter the density functions
and potentials in Eqs. (2B) and (3B) are constants

4
(2x)'

M+
[k'+ (M+ U )']'/2 (9B)

U =—s g, '/9, —k2. '(M+ U,)
scalar mesoIIs

&& (I+a )' -2a'In, (10B)

where a is given by

M+U,
k~

(11B}

where use has been made of the properties of the
solutions to the Dirac equation [Eq. (1B)]when U,
and U2 are constants. If the integral in Eq. (9B)
is performed and the result inserted into Eq. (6B),
one obtains

U, =

Uo

sca?ar mesoas

vector mesons

Eq. (109)may be solved numerically for the self-
consistent scalar potential in terms of the Fermi
momentum kz and the model parameters (g,'/g, 2).
The equation for the constant vector potential is

pa = Z &s&s

2pa=, k~ .3

3m

(8B}

The scalar density is more complicated but can
be written in the form

For balanced nuclear matter characterized by a
Fermi momentum k~, the vector density is just
the baryon density

UO
v

vector mesoIN

(12B)

The quantity of most interest in an infinite nuclear
matter calculation is the saturation curve, or the
binding energy per particle as a function of the
Fermi momentum k~. This can be obtained by
conventional techniques for a sea of relativistic
nucleons with momenta ranging from P to k~ and
moving in the constant potentials U, and U„'. The
result is

(1+g2)1/2+ I ~ 2l, U
2 2 Uo)2

E/~=U&& My —,'k (Iyg')'/2y(lys')' ' —'t2 lnv (I yg2)&/2 1 &2 g 2/k 2 &2 g 2

(13B)

where U, and U'„are the self-consistent potentials
which satisfy Eqs. (10B) and (12B). Unlike the
nonrelativistic theory of infinite nuclear matter
which is unstable under scalar interactions in
Hartree approximation, the result of Eq. (13B) is
stable whether or not the repulsive vector ex-
changes are included.

One obtains from Eq. (13B)the result that the
saturation curve for infinite nuclear matter de-
pends upon only two combinations of the model
parameters:

2 2

Q = Q
sm, +s vmo+v

(14B)

where the sums are only over the isoscalar meson
exchanges. Knowledge of the binding energy and

the fermi momentum of the ground state of nuclear
matter thus fixes the values of &, and a„and
introduces two constraints on the parameter vari-
ations that are used for the finite nucleus calcula-
tions.

The infinite nuclear matter formalism provides
a third constraint upon the model parameters
which are associated with isovector meson ex-
changes. Such exchanges do not affect the cal-
culation of balanced nuclear matter but do con-
tribute when the fermi momenta associated with
neutrons and protons become different. For the
model shown in Table I, this constraint fixes
completely the value of the coupling parameter of
the p meson. The use of these three infinite nu-
clear matter constraints greatly simplified the
parameter search which led to Table I.
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