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A three-body unitary transformation method for the study of three-body forces is pre-
sented. Starting with a three-body Haxniltonian with two-body forces, unitary transforma-
tions are introduced to generate Hamiltonians that have both two- and three-body forces.
For cases of physical interest, the two-body forces of the altered Hamiltonians are phase
equivalent (for two-body scattering) to the original and the three-body force vanishes when
any interparticle distance is large. Specific examples are presented. Applications for
s&dying the possible role of three-body forces in accounting for trinucleon bound state
properties are examined. Calculations of the He and H charge forxn factors and Coulomb
energy difference with hyperspherical radial transfox mations and with conventional Ã-X
potentials are performed. The form factor calculations demonstrate how the proposed
method can help obtain improved agreement with experixnent by the introduction of appro-
priate three-body forces. Calculations of the Coulomb energy difference confirm previous
estimates concerning charge symmetry breaking in the N-N interaction.

NUCLEAR STRUCTURE ~H 3He three-body forces introduced by unitary trans-
foxmations; charge form factors and Coulomb energies calculated; five force

models.

I. PfTRODUCTION

Faddeev calculations with realistic two-nucleon
(fV 8) potent-ials" do not yield predictions for the
properties of the three-nucleon (SiV) bound states
in agreement with experiment. Realistic inter-
actions predict neither the correct binding energy
of 'H (Er ='t MeV vs 8.5 MeV experiment) nor the
correct 'He charge form factor [E,„(q') ('He}].
The position of the diffraction minimum (g0') in

&d,(0') ('He) is not in agreement with experiment
(V0' & 14 fm ' vs 11.6 fm ' experiment} and the
height of the second maximum is at least a factor
of 3 below experiment. If possible off-shell vari-
ations of realistic interactions are considered, "
predictions of E& may improve, but only at the
cost of ruining the fit of E,„(g') ('He) even more
Another discrepancy is that the Coulomb energy
calculated from the 3N wave functions obtained
from realistic interactions gives 0.60-0.65 MeV
compared with the experimental enex"gy difference
between 'H and 'He of 6 E ('He-'H) =0.76 MeV.

The inability to explain the trinucleon bound
state properties with pure two-body forces has
suggested to some an important role for three-
body foxces in the 3N system. "From meson
field theory such fox'ces should exist and estimates
of their contributions to nuclear binding energies
range from 2.3 MeV for the triton' to anywhere
from 0.1 to 5 MeV/A for nuclear matter. ' Other
possible reasons for the discrepancies mentioned

above are the neglect of meson exchange currents
[for E,„(g')],' other relativistic effects, "and
charge dependence Bnd charge-symmetry-break-
ing in the N-N force."'"

This paper employs a three-body unitary trans-
formation method to generate three-body fox ces
for use in investigating the properties of the 3N
bound states. Section II describes the unitary
transformation method and gives specific exam-
ples. The method is similar, in spirit, to the
two-body unitary transformation method popular
for studying off-shell effects. " The three-body
forces generated are nonlocal and preserve the
SN binding energy (Er) predicted by a starting
"untransformed" two-body potential. While the
transformations leave E~ invax iant, the wave func-
tions and properties that depend on them (elec-
tromagnetic form factors, Coulomb energy)
change.

One of the main goals of this paper is to examine
the influence of different nuclear force models,
especially those containing three-body forces, on
3%bound state properties. In Sec. III we study
the effects of cextain transformations, and hence
of certain three-body forces, on the 3N bound
state properties. The "starting" N-N potential
is the Gras preliminary (GHP) potential" since
this potential gives both a satisfactory fit to the
N-N data and approximately the correct value for

We calculate the 'He and 'H charge form fac-
tors with the GRP potential and with two unitax"y
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transformations as well as with two conventional
H H-potentials [Reid (R}"and de Tourreil-Sprung
& (S)"]. The principal purpose here is to de-
termine how the three-body forces introduced
might help explain the experimental values of both

Er and F,„(Q'). Previously, Brayshaw' deduced
the necessity Of three-body forces by studying the
experimental 'He and 'H charge form factors and
extracting the 3N wave function in a hyperspher-
ical basis. He estimated that the required 3N
force contributes about 2.5 MeV attraction to E&.
This work differs from Brayshaw's in that an
explicit three-body force appears and the N-N
potentials considered have tensor components.
The three-body forces introduced are indeed help-
ful in fitting the form factor data in both 'He and
H.

The last part of Sec. III investigates the Coulomb
energy predictions obtained from wave functions
of different force models. We relate the ATE&

results with the form factor results and discuss
what the experimental form factors may imply
about 4E~. This type of investigation has been
previously carried out by Friar" and by Fabre de
la Ripell, "who estimate b, Ec; directly from the
experimental charge form factors with the result
AE~ =0.64 MeV. Our b, E~ and form factor cal-
culations yield a final estimate of

HAEC

in close
agreement with Friar and Fabre de la Ripell, con-
firming previous estimates of charge symmetry
breaking in the N-N force.

II. UNITARY TRANSFORMATION METHOD

The three-body unitary transformation method
described here is an extension of the two-body
unitary equivalence methods of Ekstein, "Baker, "
Coester et al. ,

"and others. The three- and many-
body extensions have been referred to by Villars"
and by Ristig, "but they have never, to my know-

ledge, been employed for three- or many-nucleon
calculations. Sfenz and Zachary" have considered
the many-body method from the viewpoint of time-
dependent scattering theory.

Analogous to the two-body unitary transforma-
tion method, we start with an untransformed Ham-
iltonian H for the three-body system

H=T+ V;),

where T is the total kinetic energy and Vi~ are
(for simplicity) two-body potentials. Since we
assume translational and Galilean invariance
throughout the discussion, we consider the Hilbert
space of the three particles in the center-of-mass
(c.m. ) system. The Hamiltonian H yields a spec-
trum (E„}with eigenstates jP„}(Hg„= E„g„)which

may include bound states. Since we have the 3N
system in mind, we assume one bound state with
energy —Er and wave function i(r. (This restric-
tion is not necessary in general. ) From g& one
can calculate, for example, electromagnetic form
factors [indicated collectively as (F(tf')}].

We now consider a "transformed" Hamiltonian
H= UHU, where U is a translationally and Galilean
invariant unitary operator consisting of two- and/
or three-body parts. By unitarity (UU = U U = 1)
U preserves the spectrum (E„}but changes the
wave functions (g„=Ug„}. Properties that depend
on the bound state wave functions may change
(i.e., H-

iver
—(F(g'}}+(F(q')}). In general the

transformed Hamiltonian can be written

H = UHU = T + ~ V +H~'~if
i&y

where V;& is a new pair interaction, which may
(or may not) differ from V&~, and Hi'i depends on
the coordinates of all three particles, i.e. , it is a
three-body force. Of course, in transforming
H to H, one usually would desire the same two-
body scattering properties of the potentials Vi&

and V;&. Skenz and Zachary, "from time-depen-
dent scattering theory, have derived general con-
ditions on U such that H and H are equivalent for
three- (or many) body scattering and for which

V;& and V&& are equivalent for two-body scatter-
ing. We present shortly specific examples of U

for which V;& and V&~ are phase-equivalent for
two-body scattering.

As in the two-body unitary transformation meth-
od, we do not regard U as a complete unitary
transformation of the quantum mechanical descrip-
tion of the three-body system. That would not be
of any physical interest. Rather we exploit U as
a means of manufacturing alternate Hamiltonians
that preserve spectra and certain scattering prop-
erties. These alternate Hamiltonians are ex-
pressed in terms of unchanging operators repre-
senting physical observables. One could distin-
guish between these Hamiltonians with varying
off-shell behavior and three-body forces, for ex-
ample, by their predictions of bound state prop-
erties.

The main advantage of the proposed method over
the ad hoc introduction of three-body forces is
that one never has to solve the Faddeev equations
with the generated three-body forces. One only
has to transform wave functions obtained from a
solution of the Faddeev equations from the starting
potential. Of course, if one desires to assess the
influence of H ' in the Hamiltonian H, one may
want to calculate 3N properties in the absence of
Hi", i.e., with the Hamiltonian H=T+Q V;J. The
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three-body forces produced in this method are„
like the two-body forces generated in off-shell
transformations, very nonlocal. In this respect
they are quite different from the types of three-
body forces derived from meson field theory. ' We
now present some examples.

One of the simplest types of three-body trans-
foxmations are those that operate on the depen-
dence of the wave function on the hyperspherical
radius (Jt). Here

&fly( U( Jt'y'& = U(H, Jt') 5(y -y'), (3)

where 8 ='Y~ + p~ ~ r; =xy —xy~ p~ =(xy+xy —2xg}j
W3(i,j, 0 cyclic —assume equal masses} x; is the
position vector of particle i, and y represents all
additional coordinates needed to describe the
three-body system in the c.m. frame. The hyper-
spherical radius is exchange symmetric, i.e., it
is independent of i. Therefore, U is exchange
symmetric, and g = UP satisfies the Pauli prin-
ciple if P does. Fuxthermore, since A depends
on the coordinates of all three particles, U is a
pure three-body operator and V;& = V;&. The hyper-
spherical radius A becomes infinite if any inter-
particle distance is infinite; thus, if U is short-
ranged in A and A'

[i.e., U(A, ft'}, = 5(R —A') jest']

the three-body term (Ht" = UHU T-Q F, ,) —is a
three-body force in the usual sense: It vanishes
when any pair of particles is infinitely separated.
Two examples of such operators are the rank-two
separable hyperspherical transformation

[&a Ig~& =5i~, &r» Pale& =g (@]
and the radial scale distortion (Baker) transforma-
tion

f ft) ~/2

[f'(ft}l "P(f(ft), s)

These are hyperspherical analogs to the two-body
txansformations described by Coester et aE."

An example of U (for nonidentical particles)
with V;, & V;& is

where u is a unitary operator in the space of the
relative motion of particles 2 and 3. Here V»
= V», V» = V» and V» = U(t»+ V») U —t», where
t» is the relative kinetic energy of particles 2 and

3. The three-body force is Ht"= U(V»+ V») U
—V„—V„. If u is short ranged, V„and V„give
equivalent two-body scattering results.

A three-body transformation with V;& & V;, suit-
able for identical particles is a three-body version
of the Bohm-Baker Qross txansformation 'o'"
which is discussed by Saenz and Zachary. " Here

g(x„x„x,) =J ' '(x„x„x,)(t(y„ y„y,), ("t)

where

y, =x, + g F((x, —x, () (x; —x,)j(x; —x, (

and J is the Jacobian of the transformation. For
this transformation V;& is just the potential, phase
shift equival. ent to V;;, obtained from the two-body
radial scale distortion transformation'o' " (of the
relative displacement} r~-r, +2F(r~) i~. All of
the transformations proposed above satisfy the
required symmetries (translational, rotational,
etc. ) and the scattering equivalence conditions of
Sfenz and Zachary. " All three-body forces van-
ish when any interparticle distance is large.

This work applies two examples of hyperspher-
ical tra, nsformations, one of the rank-two type
and one of the Baker type, to study the possible
effects of three-body forces on the 3N bound state
observables. The forms of the transformation
functions we choose are

a(ft) e~"(P.i-+ P, i ft + P„ft'),

f(H} =A+s(e s~' —e ')

for the rank-two and Baker transformations, re-
spectively [see Eqs. (4) and (5)]. We choose the
Graz preliminary potential (GRp), "whose two-
body properties are described in Ref. 14, as the
"starting" potential, since this potential gives
approximately the experimental Er (see Sec. III).
It also fits the two-body phase shifts up to 350
MeV and yields a qualitatively satisfactory deu-
teron quadrupole moment and electric form fac-
tor." As with most two-body potentials that give
more binding in the 3N bound state, this potential
has a "softer" short-range (or off-shell) behavior2'
than "realistic" local potentials, and a lower deu-
teron D state probability" (PD =3.'I% vs 6.5% of
Reid" }. We investigate the two unitary trans-
forms, labeled QBPA and QRPB, whose param-
eters appear in Table I. We employ these trans-
formations to consider the effects on 3N bound
state properties of 3%wave functions that have
the correct E& yet not of the type that are nor-
mally obtainable from two-body forces that fit E~.
Predictions for the 'He and 'H charge form factors
and the Coulomb energy (DEc) under these trans-
formations appea, r i.n the next section.
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TABLE I. Three-body unitary transformation param-
eters.

Potential

GHPA' eg = e2 = 2.i fm, pop = p02 = 0

Pgg =-$.0 fm, P(2= l.5873 fm

p2g =0.3 fxn p22=-$. 0 fm -2

s=-3.2 fm, f2=i.4 fm, b=i.0 fm

See Eq. (8a).
b See Eq. (8b).

The main weakness of our starting potential
(GRP) is that it does not have a one-pion-exchange
(OPE) tail {GRP is separable). To date, there
does not exist a potential in the literature that has
an OPE tail yet predicts the precise value of E~.
However, the one-boson-exchange model of Bryan
and Qersten, "which has an OPE tail, gives F&
=7.8 MeV, which is not in too poor agx cement
with experiment. Reasonably one could expect a
moderate off-shell transformation. of this potential
to achieve the needed 0.6 MeV binding yet retain
the OPE tail. %'e do not here consider the Bryan-
Qex sten potential, but merely point out its exis-
tence to add credence to the starting point of our
method —that is, the necessity of starting with a
two-body potential that fits E&. %e now consider
the possible influences of unitary transformations
on the SN bound state.

III. RESULTS AND DISCUSSION

To calculate the SN bound state properties, we
first solve the three-channel Faddeev equations
for E~ and the related off-shell Faddeev ampli-
tudes, which essentially give the wave function
in momentum space before antisymmetrization.
%e retain only the '8, and 'S, +'D, intexactions and
the three trinucleon channels: I =/ = Z = 0,
8=0 8=-' I.=/=0 2=0 5=1 3=—' l. =2 /=0

2 = 2, 8 = 1, 8 = &, where the notation is that of
Harper and co-workers. '27 Table II gives the
E& values obtained in our three-channel calcula-
tions for each potential we consider and those
obtained by more complete calculations. Qen-
erally speaking, the three-channe1. calculations
underestimate E~ by about 0.6 MeV. Therefore,
the QHP potential, which gives E& =7.94 MeV in
the three-channel calculation, would probably give
close to the experimental value (8.48 MeV) in a
full calculation.

Once the Faddeev equations are solved, wave
functions are obtained by antisymmetrization of
the Faddeev amplitudes. From the wave functions
we can calculate electromagnetic form factors,
Coulomb energies, and other properties. A com-
plete discussion of the SN bound state equations,
from the Faddeev equations to obtaining the form
factors„appears in a series of articles by the
Purdue group. '" %e adhere to their notation
throughout this section. Of course, for the trans-
formed potentials QRPA and QRPB we do not have
to solve the Faddeev equations again, but merely
transform the SN wave functions obtained fx'om the
GRP potential.

In calculating SN bound state properties, we x'e-

tain the wave function components listed in Table
III. The notation is of Harper, Kim and Tubis. '"
with the spin-isospin states WI (8, I) listed in the
Blatt-Derrick basis. 2' %e operate with the unitary
transformations only on the spatially symmetric
S -state component of the wave function. One can
do this while satisfying unitax ity and the Pauli
principle thanks to the exchange symmetries of the
hyperspherical transformations and of the Blatt-
Derrick state Ii'3 A (spatially symmetric, spin
isospin and antisymmetric). Of the states listed
in Table III, only state I (spatially symmetric 8-
state with I =I, =2=0) is changed by the unitary
transfox mation GRPA and QRPB. This state ac-
counts for over 95% of the wave function. "

Figure 1 illustrates the charge form factors for

TABLE II. Triton binding energies.

Potential E~ (three channel) (MeV) ' E& (MeV) —type of calculation

Graz preliminary (GHP)

GRPA b

6.7—Five channel Faddeev ' (Ref. i)
7.0—Faddeev t' space (Ref. 2)

7.64—Faddeev r space (Ref. 2)

8.5—Estimate

8.5—Estimate

8.5—Estimate

~ Only 80 and 8&+ D& interaction retained.
b GRPA and GRPB must give exactly the same E& as GRP.
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TABLE III. Three-nucleon bound state wave function
components.

C omponent

'He and '8 for the QRP potential and the unitary
transformations QRPA and QRPB. Also included
for comparison are results for the Reid soft-core'~
(R) and de Tourreil-Sprung A 18 (S) potentials —two
potentials that fit the N-N data but underbind the
triton. All form factor calculations for Fig. 1 em-
ploy the impulse approximation, the expression
for which appears in Eq. (1) of Harper et a/. ' For
the two-body potentials (R, S, GRP), S gives a
good fit to the sHe, H data for q ~10 fm 2, while

8 slightly underestimates the experimental form
factors and QRP seriously overestimates them,
especially for q'&6 fm '. Potential GRP exhibits
a typical trend for two-body forces that give the
corx ect E~: The trinucleon charge form factors
are poorly predicted. This trend has been cited as
evidence for three-body forces. ' ' Indeed, models
GRPA and QRPB, which contain 3N forces, repro-
duce closely the good agreement with experiment
obtained by potential 8, yet are more consistent
with the experimental E~. All models we consider
predict the position of the 'He diffraction minimum

(qo ) 'too fal' GUt alld 'tile llelght of tile secolld maxi-
mum an order of magnitude too low. All unitary
transformations we have tried that move in q,'
substantially further can do so only at the cost of
ruining the low q' fit and none appreciably raises
the height of the second maximum. Nevertheless,
the q,' predicted by QRPA and QRPB are much
more satisfactory than that given by the two-body
potential GRP.

Of course, one could fault the above calculations
for their neglect of meson exchange currents.

} i( He)
1.0

(b)

R———GRP
GRPQ
S

~ 0140 ~ ~ ~ ~ 0 GRpa
0.1

R
——GRP——6RPA

S"""GRP8

N
U

0.01

0.001:

i
L

0.001

L

4

$ ~

I I I I )' II I I I I I I I

2 6 10 14 18 22 26

q (fm )

I I I I I I I I I I I I I

2 6 10 14 18 22 26

q (fm )

FIG. jL. The (a) 3He and (b) 3H charge form factors for various potentials and unitary transformations. The abbrevia-
tions are as follows: 8-Beid soft core; S—de Tourreil-Sprung A, GBP—Graz prelj~&~~ry, GBPA, GBPB—unitary
transformations of Table I applied to the GBP wave function. The proton and neutron charge form factors used in the
calculations are taken from Bef. 30. The experimental points are taken from Bef. 32: heavy dots —McCarthy et al. ,
squares —Bernheim et ul. , triangles —Collard et al.
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Future publications"' "consider the effect of these
unitary transformations on F,h(q') when exchange
cu~~ents are taken into account. The authors
demonstrate that the main effect of the exchange
currents in He is to move in the predicted qo'
close to the experimental point and to improve the
behavior of the second maximum for all potentials.
For q'&10 fm ' they show that GRPB gives a good
fit in 'He, GRPA is slightly below the 'He data,
and GRP is considerably above the 'He data (but
not as far above as in the impulse approximation).
The exchange effects are small in H and do not

change the px'evious remarks concerning impulse
approximation I esults in SH. The 3N forces are
evidently critical in simultaneously fittings E~ and
F.h (q')('H)

We calculate the Coulomb energy difference
(n @)by evaluating the difference in the Coulomb
interaction matrix element between that of the
'He wave function and that of the 'H wave function.
If the 3He and 'H wave functions are assumed equal
(aside from total isospin projection), the expres-
sion for 4Ec becomes, in momentum space

q'de'&Pp"~P'lg(P, q, («)«&, 44(P', q(«)&ling, ~)

p'(p'+f "—2f P'x) -f.'(p+I"-2' 'x) —1 jx dxP (x

In this expression 4)3 is the bound state wave func-
tion, IVY' are the spin-isospin functions in the
Blatt-Derrick basis, "I and I, are the total iso-
spin quantum numbers, and 7„ is twice the iso-
spln projection of particle s. All wave functions
for the 3N bound state are coupled to total angular
momentum Z= —,', a e independent of Z„and are
Qol mallzed by

q'de'dP 14(P, q, («)&, &&" '~ ) I' =1

The second integral term in Eti. (9) (the one in-
volving Q, ) is the result for point charge protons
while the first term takes into account the ex-
tended chaxge distributions of the proton and neu-
tron thxough the proton and neutron charge form
factors If~(q'), f„(q')]. The Q, in the point charge
term is a Legendre function of the second kind and
has a logarithmic singularity at P =P'. We handle
this singularity by standard subtraction techniques.

Table O'I gives the Coulomb matrix elements and
total Coulomb energy for each potential for both
the point-charge case and the extended proton
case. We take f~(q') from tbe analysis of Janssen
et a/. " We take f„(q'}=0; the inclusion of the
f„(q') of Janssen et al. has a miniscule effect (less
than 0.1%) on n.Ec The result of.0.580 MeV for
the Reid potential and =0.604 MeV for the de Tour-
reil-Sprung A. potential are both very close to the
calculations of Gignoux and Laverne, ' (0.575 MeV
for R, 0.611 MeV for 8}which take into account
moxe three-body states.

We see from Table IV that some sensitivity of
+Eg to the wave function exists lQ the polQt-charge
case. Percentage-wise, this sensitivity is some-
what less than that of E~ for the two-body poten-
tials. Nevertheless, if GRP satisfactorily des-
cribes the 3N wave function, the Coulomb energy
anomaly in 3He-3H could be explained —for a point
Coulomb interaction. For the true extended pxo-
ton case, however, the sensitivity of AE~ is about
60-79/0 tha't of the point-charge case for most po-
tential comparisons, and in all cases 4E~ is re-
duced. The strong (singular at r = 0) short-range
Coulomb interaction here is "smeared out" be-
coming less a probe of the short-range N-N be-
havior. Given the results for the wave functions
that satisfactorily explain the 3He and 3H charge
form factors (8, GRPA, GRPB), the data would
seem to favor a value of DEC =0.62 MeV —only
0.04 MeV more than the Reid value. Calculations
of F,z(q')('He, 'H) in Refs. 25 and 29 indicate that
exchange currents would change this estimate by
at most to 0.63 MeV. Eventhe wave function of
GRP, which is definitely excluded by the data,
brings DEC only up to 0.6'(t MeV for the extended
proton case. With an estimated possible error of
0.02 MeV due to our various approximations, our
estimate of AE& is certainly consistent with Friar"
and Fabre de la Ripell. "

Given the xelative "stiffness" of DEC to the wave
function, especi. ally to those that fit the electron
scattering data, a certain amount of charge asym-
metry must exist in the nuclear force. The re-
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TABI E IV. Three-nucleon Coulomb energy difference and contributions from component
pair matrix elements.

Potential
Coulomb matrix element 'b (MeV)

(1„1) (1,2)+ (2, 1) (2, 2) (3, 3) (5, 5) Total

Reid (R)
Point protons
Extended protons

0.616
0.584

-0.042
-0.037

0.007
0.007

0.003
0.003

0.024
0.023

0.608
O. 580

de Tourreil-Sprung (S)
Point protons
Extended protons

0.651
0.611

-0.037
-0.032

0.006
0.005

0.003
0.003

0.018
0.018

0.640
0.604

Graz Preliminary (GRP)
Point protons
Extended protons

0.780
0.686

-0.078
-0.045

0.013
0.008

0.004
0.004

0.016
0.015

0.735
0.668

GRPA
Point protons
Extended protons

0.711
0.643

-0.074
-0.045

0 013 ' 0.004 ' 0.016 ' 0.670
0.008 0.004 0.01 5 0.625

GRPB
Point protons
Extended protons

0.716
0 ~ 647

-0.074
-0.045

0.013 ~

O.OO8 ' 0.004 c 0.016 ~ 0.674
O.OO4 ' 0.01.5 ' O 629

The wave function component numbers in the matrix elements correspond to the component
numbers in Table III.

Component pairs that do not contribute to ~&, such as (1,3) and (4, 4), etc. , do not appear.
c Exactly the same as GRP.

suits above confirm the previously estimated
amount of char ge asymmetry" —enough to account
for a 0.10-0.15 MeV discrepancy in the 'He-'H
energy difference. Extrapolating from the work of
Gibson and Stephenson, " this amount of charge-
symmetry breaking (CSB) would be consistent with

u» —a'„„=5 fm or r~~-x„'„=0.1 fm. The former
eventuality is very unlikely since estimates of CSB
from the field-theoretic origins of the nuclear
force" give a»-a„'„=—1 fm. The more likely
case is that x~~- r„'„=0.1 fm.

IV. CONCLUSIONS

%e have calculated some of the properties of the
3N bound state with both typical two- and three-
body forces generated from the unitary transforma-
tion method described in See. D. The results in
Sec. III demonstrate the usefulness of the unitary
transformation method in studying the possible
role of three-body forces in the 3N bound state.
Sizable changes occur in the 'He and 'H charge
form factors when one, through this method, intro-
duces alternate 3N wave functions consistent with
the experimental E~ to those typically obtained by
two-body forces that fit E~. Much improved fits to the
'H and 'He charge form factors occur over those

yielded by two-body potentials that fit E~. The
form factors predicted by the unitary transformed
cases (GRPA, GRPB) of the GRP potential are
quite similar to those predicted by the de Tourreil-
Sprung potential, ' which also gives satisfactory
charge form factors. The de Tourreil-Sprung po-
tential, however, gives 0.9 MeV less binding than
GRP (or GRPA, GRPB), and also underbinds the
triton by about this amount.

%e also investigated the 3N Coulomb energy dif-
ference (nEc) for various 3%wave functions, in-
cluding those generated in the unitary transforma-
tion method. The Coulomb energy is not very sen-
sitive to the 3N wave functions considered if one
uses an extended proton charge distribution. Even
the extreme wave function of the GRP potential
fails by almost 0.1 MeV to explain the Coulomb
energy anomaly in SHe-3H. %ave functions favored
by the experimental charge form factor favor
values of 4E~ =0.62 MeV —close to those estimated
by Friar" and by Fabre de la Ripell" as well as
those calculated from "realistic" potentials. Most
previous estimates of the amount of charge sym-
metry breaking in the N-N force are thereby con-
firmed in this work. Results of calculations with
exchange currents, "'"to be published shortly,
do not appreciably change the conclusions regard-
ing E,„(q') and n.Fc in this paper.
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