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Method for checking representations of three-nucleon Hamiltonians
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We describe a test for checking matrix elements of two-nucleon forces between three-nucleon wave functions

by a comparison with matrix elements between two-nucleon wave functions. The test can be used to check
both analytic and programming work. The test has been applied to a finite-difference representation of the
triton Hamiltonian with the Hamada-Johnston potential using Derrick's matrix elements, and the analysis has
been confirmed to high accuracy.

NUCLEAB STBUCTUBE Three-nucleon calculations; testing of xnatrix elements
in analytic and numerical fox m.

I. INTRODUCTION

Dex rick and Blatt' show that the wave function
for the ground state of the triton (J' = s') with non-
central forces may be expressed, after elimina-
tion of the center-of-mass dependence, as a finite
sum of terms:

P g i(+»& +ss~?'?,s) J?

(Euler angles, spin, isospin).

The three internucleon distances (s"»,r;„r») spec
ify the shape and size of the triangle formed by the
three nucleons, and the Euler angles specify the
orientation of this triangle in space. The 16 angle-
spin-isospin functions @; have definite values for
the orbital and spin angular momentum quantum
numbers, for parity (even), and for the total iso-
spin (T= s) and its z component (T, = s). They also
have definite permutation symmetry properties.
The analytic forms for the 'g, are given in Ref. 1.
The expansion (1) permits the reduction of the
Schrodinger equation for the triton to an eigen-
value-eigenfunction problem of the form

In (2), H is a 16 & 16 matrix whose elements are
the center-of-mass matrix elements of the triton
Hamiltonian H between the functions 'g, , p is a
weight function, and g is a j.e-component vector
whose components a.re the g, The explicit matrix
elements of H for the kinetic energy and for the
usual terms occurring in modern nucleon-nucleon
potentials are given by Derrick. "An individual
matrix element of H may contain contributions

from the kinetic energy operator and from all the
terms of the potential energy, and so may contain
functions and differential operators of first and
second ox'der in x, ,J', J' . The contribution to H
of each of the different terms of the potential (cen-
tral, tensor, spin-orbit, and quadratic spin-orbit)
consists in turn of a number of parts characterized
by spin and parity {singlet or triplet, even or odd).
If a function Q is expressible in the form (1) then
we have, by the definition of H, and introducing the
functions 5;,

i?y I(I s=
=- Q &;(?'»*ass*&is)X.

In Befs. 4 and 5, we have developed an approach
to the solution of (2) which involves a direct finite-
difference representation of H. The eigenvalue-
eigenfunction problem is replaced by a series of
eigenvalue- eigenvector problems defined on a
series of diminishing mesh sizes. The complexity
of H with the Hamada- Johnston potential, which
we use, or with any of the "realistic" potentials,
is such that in working with it, algebraic errors
and errors of transcription are hard to avoid. To
recheck Derrick's analytic work in obtaining H and
to check our numerical representation and pro-
gramming of it we have devised a searching test
which may also be of use to other workers in the
field of three-nucleon calculations.

The test is based on the following idea. Equation
(3) allows us to obta, in the action of the triton Ham-
iltonian (with c.m. dependence removed) on wave
functions &j5 of form {1)by performing operations
involving only the interparticle distances. If we
can calculate independently
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H' P= (T+ V„)Q

(T is the three-particle kinetic energy in the c.m.
system, V, , is the potential energy between nu-
cleons i and j), then H can be tested by setting
V„and V„ to zero ln the expression for H, cal-
culating HQ using (3), and comparing the result
with (4). This test will only be useful if (i) func-
tions P expressible in form (I) can be obtained
which also allow H'Q to be easily obtained ana1yt-
ically by a means independent of (3), and (ii) the
comparison between H'P and (3) (with V» and V»
equal to zero) can be easily made. If, further, H
has been represented numerically, the numerical
version of H may be used to calculate numerical
estimates of HP via (3) and these may be compared
with the analytic result H'Q. In this way the nu-
merical representation and programming of H may
be tested. While we have stated the test in terms
of the particular case of expansion in the functions
of Derrick and Blatt, it clearly may be generalized
to any ease where the Schrodinger equation for the
three nucleons is reduced by expansion of the
wave function in terms of special functions (for
example, it could be used to test the matrix ele-
ments of the Cohen-Willis classification" ). Both
of the above requirements (i) and (ii) are met if
Q is obtained by coupling two-nucleon wave func-
tions and free-nucleon wave functions of definite
angular momentum to give a three-nucleon wave
function with J = 2, T = 2 „and even parity. Since
H' is the sum of a two-nucleon Hamiltonian and a
free-nucleon Hamiltonian, H P is easily obtained
analytically. By means of a series of recouplings
of angular momenta Davles' has shown how such
a Q may be expressed in the form (I), and with
our choice for P, this is also true for H' P. Thus
we have

Q Ci(»&»& 13)Sf '

Comparison of the easily calculable e,. with the
h, , when V» and V» have been set to zero in H,
then checks H, since the 'JJ,- are orthogonal. If the
two-nucleon wave function is taken to have a cer-
tain spin and parity, the corresponding part of the
potential is the only one contributing to Hg (i.e. ,
to the b, ) By taking .different spin-parity values
for the two-nucleon wave function, all the contri-
butions to H may be tested lndlvldually. By using
permutation properties V and V„may also be
tested in the same way. Considerations somewhat
similar to the above seem to have been used by
Davies' to check analytic derivations of matrix
elements but they have broader use in the testing
of the numerical representation and programming
of the analytic expressions, as we shall see in

more detail in Sec. III.
In Sec. II we illustrate the method by showing

how the triplet-odd contribution to the quadratic
spin-orbit term may be tested. We also present
explicit expressions for Q which can be used for
testing the singlet- even and singlet-odd contribu-
tions, the results for the triplet-even having al-
ready been presented by Davi. es.' In Sec. III we
show how a finite-difference version of H may be
tested by numerically representing g, calculating
the b,. on a series of mesh sizes, and extrapolating
to zero mesh size. The extrapolated numerical
results may then be compared with the analytic
results, the c, This extrapolation is based on the
same idea of "deferred approach to the limit"
used"' to obtain the lowest eigenvalue of (3). Some
numerical results for the testing of the triplet-odd
quadratic spin-orbit term are given.

II. ANALYTIC APPLICATION

In the center-of-mass system for the three nu-
cleons (each of mass M) we introduce the vectors
r» and p, where

l~r»= r, —r» p= r, —2 r, + r2).

3 5' , 8'

In the following, I"' (2) (where 2 is a unit vector)
denotes a spherical harmonic (m is the z com-
ponent of I), X'» denotes a two-nucleon spin

s12
state and X'3, a single-nucleon spin state.

Since we only wish to illustrate how the triplet-
odd contribution may be tested, the following dis-
cussion is particularized to this case. The rele-
vant expressions for the case where the two-
nucleon wave function is a singlet spin state
(s» = 0) are obvious from the expressions for the
triplet case.

Two-nucleon triplet spin-state wave functions
(s» = I) of total angular momentum j„may be de-
fined as follows:

u&r & sv&p & +
gr g12812 3 12~ y $12 $12S12+ ' 12~ P J12l12S12

J12 +1 $12 jl2

I » =j»+ I, I» ——j» —l. In (6) the F are defined by

F/3 3» — (I»s»m) Bt ~J3 m )j l S
y12 12 12 ~12

P f12 X$12
f8 ~12 fftS12

The coefficients are the usual Clebsch-Gordan
coefficients. The functions u and sv are arbitrary.

A three-nucleon state of definite total angular
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momentum J is obtained by coupling in the spin s3
of the third nucleon and then its orbital angular
momentum 1,. %e define successively K= ~»+ s,
and J=K+1,. %e define

@grci, P g (Ea3mzmr, Ime&
E p

l3 E s3 j12

%e use the isospin functions of Hlatt, ' and since
we want T = 2 the appropriate function is either v,
or v2. The three-nucleon isospin functions v, and
v, are defined in Ref. 9, Eq. (A2); v, has nucleons
1 and 2 in the triplet isospin state; v2, in the
singlet isospin state. Finally, then, we define the
function qb which we shaO use in our test:

x gr'~n»+ s 1' 3 (p)lg j12 Sfs3 Stl3 y'(p) a(~ ), and gr(~ ) are arbitrary functions,
but for convenience of calculation we shall take

The function E(p) is arbitrary. To obtain a three-
nucleon wave function, (7) must be multiplied by
an appropriate isospin function for three nucleons.

y'(p) =e "', u(r») =e s"j2, w(r») =e 8"i2.

The calculation of Hsg is straightforward, using
(5):

H'p = h y' - ' ', g + , g ( E, , ~

J' ,&(j„ . . . ~

K ) " r' (p) (H, W' ),
3 E, (E, + 1) F(p)

4M p2
l3 E s3 j12

where Hv = —(h'/M) V„»'+ V».
For the case of the Hamada- Johnston potential, the action of H~ on TV'»s» may be obtained using Eqs,

(5), (6), and (7) in Ref. 10. The result is of the form

a(r )yi »lf2s»'+d(r )y J&2lf2s»
12 Pg j12

%ith the above choice of ~ and u we have

The different V's occurring a,re the different potential term functions (central, tensor, spin-orbit, and
quadratic spin-orbit) and should further be differentiated by a label indicating whether they are the triplet-
even, triplet-odd, singlet-even, or singlet-odd functions.

We have then

H'P ---8' y' — ' '-, Q+ v,a(y»)
3 E,(E~+ 1) e "'

4M p p
(Ea,m m, ~Zm &Q„s,m,. m, ~Z'm )X'3 1'& (p)y'~2'»'»

YP

+ v d(y„)
p

l3 E s3 j12

(ZE,m m, ~Zm &(j„s,m,. m, ~fern )X'~ 1'~ (p) lj '2»' ».

The following type of term occurs in both Q and H'qb:

(ZE m m, ~Zm &(j„s m& m ~SCm &y&»'& '& X' 1"~ (p) .
fft l3~IC~s3fft j12

That the two conditions (i) a.nd (ii) of Sec. I can be
met follows from the paper by Davies, ' who shows
how (11) may be expressed in form (1), given that
l» and l3 satisfy certain conditions, and J = 2.
(Davies also considers the 7=-, case, for which an
expansion of form (1) is also possible, but with

more terms. ) The first step in this is to recouple
the angular momenta to the more symmetrical
order

J'= (1„+I,)+ (s„+I,) .

This may be done by the standard methods using



5 j symbols, ' and (11) may be expressed as a
linear combination of states of definite I. and 8,
$(/»lg; s»s2S;d'). Davies in Eq. (20) gives the
formula only for the cases l» equal to 0 and 2.
The general expression for the expansion of (11) is

I I) I»+2»+22+ 12 I -2-
Vg

x [(2'+ 1){2S+ 1)(2I, + 1){2q„+ 1)]"'
4

12 12 12 ~»
y(1 ip ~ s s S.d)

K 8

(12)

In Eq. (25) Davies shows how v, p(l »l g;s12s28; J)
may be expressed as a linear combination of the
'I/; of Eq. (1).

To summarize, we have shown that, for the
form of P chosen, HP can be evaluated using the
matrix H. H'Q is easily evaluated independently,
and the comparison of HP and H'P follows directly
by compaxison of the coefficients in the respective
expansions in the 'JJ, .

%e shall illustrate the testing of the triplet-odd
quadratic spm- orbit contribution to H.

A. Oeflvation of app&op&at@ 4

By choosing the two-paxticle state to be triplet-
odd the different V's occurring in a(2'») and d{r»)
will be the triplet-odd parts of the respective po-
tentials. Choosing the two-parti. cle state 'Po, we
have

%=2.1

The requirement of even parity for the three-
necleon function requires that E3 equal 1. The re-
levant isospin function is v, and the four functions
occurring in (12) are It(110;122;2), p(111;122;2),
$(I I I; 1 2 2,' 2), and $(I 12; 1 2 -'„2). Using Davies
[Eq. (25)] we obtain for the expansion of P

'12
gg(2 ) 1

~2 COSI/(g2 —y2, )

Sln7/(JI4+ 'jj2 2 + 'lj2 2)

243~COS7fjj2 1 —2COS(I/ —28)'//2 22 2

+

islI1�(I/
—28)'jj12 2 (12)

The labeling scheme for the 'JJ's is that of
Derrick, ' and cosy, etc. , are functions of the in-
terparticle distances, also given by Derrick. The
following corrections should be made in Davies's
Appendix I, where he tabulates the expansion coef-
ficients occurring in his Eq. (25): C,",' = (20 5/4~7)
(cos21/- 2), D', l, l = I/E2 and C",,', C",,' have the
wrong sjgn Davxes's span functions X"2'3 ax'e
related to the spin functions of Derrick and Blatt'
(Appendix 2) by

Xy =- q~, X) = —q2, XI » =q3.

In the definition of V' 2, (P„T) given by Kalotas
and Delves" in Eq. (2), the spin function occurs
before the isospin function. This differs from the
convention of Derrick and Blatt and means that
V t& (a, 2, 2) is —Vt(a, -„-,). Davies uses Vi {a,—,', —,),
not Vi&, (a, —,', —,'), in Eq. (25).

B. Calculation of H'fthm

Kith the results in Sec. IIA we can check all the
triplet-odd contributions to H. The different terms
(kinetic energy, central potential, etc.) can be
tested separately by setting all the othex s to zero.
Consider the quadratic spin- orbit potential term
and let V denote the quadxatic spm-orbit triplet-
odd potentxal function. The coefflclent of ~io 2 1Q

H'p (i.e. , CI2) is -sin(I/- 28) Ve 2"»e "'/2»p, since
ll21S f12+ 1, a(t») ls zero', alld d(2'») ls —2Ve "12/

12-

C. Calculation of HQ usini H

Using Derrick's matrix H calculated with the
unmodified D states, "we can obtain Q+„gI
(l.e. , 512)) 'tile coefflclell't of I/12 2 ill H&f&, wlleI1 ills
other terms besides the quadratic spin-orbit term
have been set to zero. The result is

g ~"~2e-&&
= —sin(I/- 28) V

sin(28- I/)
cos2/ — sin(I/ —28)+ (-c) — COSI/ +E[-—cos(I/ —28)]+ 28[—sin{I/ 28)]

3

3 sing 2 3 2 3

1 e-Bf(2 e-tP
+ —', dC' — ICOSI/ + 22c[-2cos(I/- 28)]+ —', d'2sin(I/- 28) V

12

The quantities 8, g, e, e, and d are functions of
~», x», and x», and B, C', and E involve first-
order derivatives in these variables. For the de-

finitions see Derrick's papers.
Agreement between the results of the two calcu-

lations (Secs. II 8 and IIC) checks the triplet-odd
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contribution of the quadratic spin-orbit term po-
tential to the matrix elements in the 16th row of H.
Proceeding in the same way, we could check all
the contributions of all the terms of the potential
to all the matrix elements. The functions P used
in the testing of the other spin-parity states and
their expansions are: (i) TriPlet even-. These are
given expanded in the $(l»lg; s»s, SJ) by Davies
in Appendix 4; (ii) Singlet even-. We used the 'D,
state and so the functions occurring are
t/i( 22 0; 0—,

'
—,'; —,') and P(211;0—,

'
—,'; —,'): we have

e "' u(r„)
(COS2'g+ 3)('gi+ 'JJ~ 2)

p

+ 4 &3S1112TJ ('JJ 5 + 'g 6 ~)

(iii) Singlet odd We u.sed the 'P, state and so the
functions occurring are P(110;0—,

'
—,'; —,') and

g(111;0-, —,; —,). We have

(2cos'I)("92+'ls 1) —2sm n(&4+'96'2) j.e "'u(r„),
p

III. NUMERICAL APPLICATION

In our numerical method for solving (2), the
matrix II is replaced at each point by a finite-
difference representation in which the operators
are replaced by finite- difference formulas. We
can test both our finite- difference representation
of H and our programming of it by performing a
numerical version of the analytic test described
in the previous section. The 16 functions g, in the
expansion of P may be represented by a three-
dimensional array of numbers and, on a particular
mesh size, an approximation to Hg at a particular

point in space may be obtained by acting with the
representation of H on the numerical version of g.

Setting V» and V» to zero in the finite-difference
version of H, we can calculate, at a particular
point on a particular mesh size, 16 numbers which
are approximations to b, —b«. By extrapolating to
zero mesh size the numerical results calculated
for a particular point (corresponding to fixed val-
ues of r„, r», and r»), we can get an estimate
for the analytic results at that point (which a,re
given by c, —c„). The two results typically agreed
to about six figures for the meshes we used and
this was taken as sufficient accuracy for checking.
In setting up our numerical Hamiltonian we actually
used the matrix elements calculated with the modi-
fied D states" so that the test also checks the
work involved in obtaining these.

Particular terms of the Hamada- Johnston po-
tential are tested by setting the other terms to
zero in the program and the different contributions
to each term (triplet-odd, etc. ) by corresponding
choice of a two-nucleon state, as described in
Sec. II. In this way we were able to carry out a
complete check of the programming of the Hamada-
Johnston potential in the program that was used to
compute the eigenvalues. The test may be adapt-
able by other workers in the three-nucleon field
and used to check their own representations of the
triton Ham iltonian.

Table I illustrates the testing of the triplet-odd
part of the quadratic spin-orbit term of the po-
tential. The extrapolation table gives the extrap-
olated value for b„. The first column gives the
estimates for b„ for various mesh sizes h. The
remaining columns contain extrapolations to h =0.
The leading term in the error of the estimates of
the analytic result in the nth column is propor-
tional to h", and the most accurate estimates of
the limit occur on the lowest line of the table,

TABLE I. Example of the extrapolation of a series of numerical estimates of bf6 to zero
mesh size, h=0.

Estimate

16
—2.153 701 0

—2.244 666 8

—2.276 731 4

~64
—2.293 216 6

—2.303 272 9

—2.310 050 996

—2.335 632 6

—2 ~ 340 860 5

—2.342 672 3

—2 ~ 343 497 9

-2.343 941 3

—2.343 474 5

—2.344 484 1

—2.344 736 2

—2.344 828 2

—2.344 820 6

—2.344 904 2

—2.344 920 2

—2.344 925 1

—2.344 928 2

—2.344 928 8
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since these pertain to the finest mesh sizes. The
analytic result for comparison, obtained from
H' P, is -2.344928 9 [the value of -sin(q- 28)
V(e ~"'/r»)(e "'/p), i.e. , e»]. All results were
printed out to eight figures.
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