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The h»» and h9» level systems have been studied experimentally and theoretically in ' Au. If multiplied by a

constant scaling factor, the two systems display identical relative energy spacings. This is in agreement with

particle-hole symmetry valid for triaxial odd-A rotors.

NUCLEAR STRUCTURE ~ Au, hi&~2 and he~2 bands, triaxial rotor description.

I. INTRODUCTION

The excited states of '"Au have recently been
studied' at UNISQB and some of the structural fea-
tures observed have been the subject of a short
communication. ' We discuss here the experimen-
tal details relating to the bye/2 and A9/2 level sys-
tems and a simple and remarkable intexpretation
of their unique behavior in "Au. These negative
parity bands are known in a number of odd-mass
Ir, Au, and Tl isotopes and are attributed to a
hole in the h„~, shell and a particle in the h, ~,
shel]. , respectively. Going from '"Ir to "'Au, for
example, the ordering of levels in these families
indicates that the coupling to the core undergoes
smooth changes as follows: hz&z Particle, decou-
pled- strongly coupled, h»&~ hoLe, strongly cou-
pled- decoupled. The different ordering of the lev-
els has been explained in terms of the particle-
rotor model. ' More recently this model has been
generalized' for tribally deformed cores. The
complementary behavior of the particle and the
hole bands in '"Au can be understood as a mani-
festation of the particle-hole symmetry underlying
this model.

The excited states of "'Au were populated through
the P' decay of high spin (J'"= '-,' ) '"Hg" (T,y,

——9
min) and low spin (J'= -', ) "'Hg' (T,~, = 8 min).
During the course of this work, two other studies
of the excited states of '"Au have appeared in the
literature: one, of the P' decay of '"Hg '~ which
was predominantly the high-spin isomer (Ref. 5);
the other, of the reaction "'Ta("C,4n)"89Au using
in-beam y-ray spectroscopy (Ref. 6). The major
features of all these studies are in agreement. Vfe

present more extensive details of the k»~, and h, ~,

band structures than Befs. 5 and 6 and demonstrate
that, if scaled, the two bands have almost identical
energy spacings and therefore display particle-
hole symmetry in a very striking way.

II. '89Au LEVEL SCHEME

Mass-separated samples of '"Hg ' were ob-
tained from the UNISQR isotope separator' operat-
ed on line to the Qak Ridge isochronous cyclotron
(OHIC). The high-spin (J'" = '-,' ) '"Hg isomer was
produced via the "'Ta("0,Pvs) reaction with 140
MeV "0'+ ions. The low-spin (J' = —', ) '"Hg' was
produced through electron capture and P' decay of
"'Tl(1.4 min), obtained in the ("0,Bn) reaction in
the same bombardment. The UNISQB in-beam tar-
get/ion-source arrangement' permits the con-
trol of the relative yield of Tl to Hg activity
thx'ough different choices of recoil catcher foil;
a tenfold increase in this ratio was made by using
graphite felt in place of tantalum foil. In view of
the close similarity in half-lives and the very com-
plex decay schemes of '"Hg and ' Hg, this pro-
vides a powex'ful technique for distinguishing clear-
ly between the y rays deexciting the high- and low-

spin levels in "'Au. The energy levels, their
spins and parities, the y-ray transitions and their
branching ratios, and the transition multipolarities
were estabLished by y-y, y-electron and y-x vs
time coincidence measurements, and y-ray and

conversion electron multiscaling, for the two
choices of the isomer yield ratio described above.

The system of h, ~, and h»~~ levels deduced from
the UNISQB experiments is shown in Fig. 1. We
make some limited commentax'y on our charactex-
ization of the bands to amplify the details given in
Fig. 1. When referring to corresponding members
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FIG. i. The experimental h&&~& and he/2 bands are based on the results of UNISGR experiments, together with the

member assigned to the h «/& band in Ref. 6. Multipolarities are included where known and if ambiguous are de-
noted (M i, E2) to mean an undetermined Ii/E2 admixture, the ambiguity generally being due to the complexity of
the spectra. Possible spin assignments rely mainly on multipolarities, population systematics from the decays of

Hg (—', ) and ' Hg~ (s ) and for the h«&I band, further support from the strong h«~I band energy systematics
through &88-&»Au (Ref. 2). The energy scale compression factors (0.636 and 0.7088) for the h I&~ band are determined
by the energy ratio of the 2& states in the effective cores (' Hg for h&~/2,

' Pt for he/2) and by an ed Roc ratio that
gives the closest analogy for the two bands, respectively. In the region of the j+4 states, the particle-hole symmetry
is less clear and transitions are only included for levels that have tentatively identified analogs: These levels are con-
nected by dots instead of dashes.

of each band, me designate states by their splns j,
j+1, j+2, j-1, etc. , where j is the spin of the
band head. The band members with j—2, j+2,
j+ 1, and j—1 are very mell established by the
UNISOR measur'ements and by those of Refs. 5 and
6. There are a number of differences between the
UNISOR work and that of Ref s. 5 and 6; however,
none are crucial to our interpretation of these
structures. Our identification of a j -4 member
of the h, ~, band is tentative, since the transition
deexciting to the j—2 state must have pure E2 mul-
tipolarity and we observe E2+ 20rc Ml; however,
we have evidence that at this energy ther'e is more
than one line in the y-ray spectrum. The level at
1120 keV in the h»~, band probably has 4' = ~7

based on the stable systematic trend of the ~7 lev-
el through the hx, /~ bands of ~9i.i93.ie'Au where it
has been observed by in-beam spectroscopy" to
lie just below the a' band member (see also Ref.
2). The level at VV9 keV in the h, ~, band is as-
slglled ( 2, v, a ) ~

coll'tl'al'y to the collclllslolls of
Refs. 5 and 6 (where it is assigned & ), because
intensity balances support direct P-decay feeding
from the ~ Hg isomer. At higher energies, mem-

bers of both bands are included to illustrate the
possible validity of the analogy.

III. DISCUSSION AND CONCLUSIONS

The theoretical interpretation of these results
is based on the model' of a particle (or hole) cou-
pled to a triaxially deformed core. It has been
shown' that the model describes mell the lom-ener-
gy unxtlue parity 8'tR'tes of tl'Rllsl'tloIIRl odd-A Illlclel
in the 2=190 mass region. The model spectrum
EI(P, y, )tI,) depends on the deformation P, the shape
asymmetry y, and the Fermi energy )tI,. (The sub-
script I is the nuclear spin. ) Particle and hole
spectra are connected by the symmetry relation

EI(P, y,j particle)=EI(P, y, jhole),
where X~ is located well below the j shell of the
odd nucleon for the paxticle spectrum and well
above the j shell for the hole spectruxn. This con-
dition is essentially met in the Au isotopes with
respect to the h, h shell (XI, below) and the h»f,
shell ()tI, above). Taking into account that El is
weakly dependent on j and depends on P strongly
only through a scale factor 1/P ', but much less
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otherwise, we have appxoximately

P„& 'E,(y, h, t, particle)
= P~,„,Er+s(60'- y~ h~it2 hole) .

Based on this relation, the close resemblance of
the proportionally scaled k9~, and h»~2 systems in
"'Au (see Fig. l) indicates that y„&,= 60'- y„
This includes the possibility of axially symmetric
shapes, e.g. , a prolate (y = 0 ) shape for the Its/2

and an oblate (y= 60') shape for the h»t, system,
and also permits an asymmetric shape with the
same y„=y„=30' for both systems. The ac-

9/2 11h
tual level spacings of the h»~, spectrum, which
appear to be almost identical for '" "'Au (Hefs.
2 and 4), indicates y„„=(37+ 2)'. Consequently,
we deduce y„,&,

= (23+ 2 ' for '"Au. These values
should be compared with y = 24 g 2 derived from
the '"Pt spectrum and y= (38+ 2)' derived from
the "'Hg spectrum, specifically from the first and
second 2' energies. Also, the ratio of the first 2'
energies E,('"Pt)/E, ("'Hg) = 0.64 is close to the
scaling ratio E~(ttgt2)/E~+1(tl»t2) = 0.7088~ which ls
found to give the best match in "'Au (see Fig. l).

From these results it is concluded that the h, ~,
and h»~, systems in '89Au are based on different
shapes (asymmetric prolate and asymmetric ob-
late) which are essentially those of the "'Pt and
'"Hg cores/ respectively. In the experiments' it
was observed that the M1 transition between the
h, ~, and h»~, band heads is retarded by a factor
15000 relative to the %6isskopf single-particle
estimate, and the relationship of these bands to

the neighboring doubly-even cores was recognized.
Interpreted within the frame of the triaxial parti-
cle-core model, the striking similarity in the lev-
el spacings of the two systems reflects a basic
particle-hole symmetry and follows from the fact
that the y values in "'Pt and "'Hg happen to lie
symmetrically about y= 30'. (It should be noted
that the triaxial rotor spectx'um of a doubly-even
nucleus has reflection symmetry about y=30 and
thus, the odd-A spectrum must be used to deter-
mine whether the nuclear shape is prolate or ob-
late. ) Comparing this model with the Alaga mod-
el, '0 which also describes the h»~, spectra well in
odd-A Au isotopes, one notices that a correspond-
ing symmetry relating the It»t, and h, t, systems is
not apparent there. This is because the Alaga mod-
el describes the h»~, levels as three-proton hole
clusters coupled to phonons in closed-shell Pb and
should treat (not done so far) the It, t, levels as
four-holes-one-particle clustex"s. The micr oscop-
ic model of Hecht, "based upon the pseudo SU, cou-
pling scheme appears to have the same limitation.
TAe particle-Aole symmetry aris8s under 028 as-
sumption that the open-shell' nuclei I't and Hg
are stable enough to be used as effective cores:
This is done in the particle-core model by treating
the core correlation in terms of triaxial shaPes
The '8'Au spectrum provides strong evidence that
such a treatment is justified and further, that the
shapes of the even-A nuclei in this mass region—or at least their averaged paxameters —axe rela-
tively stable in contx'ast to general belief.
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