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Hartree-Fock-Bogoliubov calculations have been performed for even-even N= Z isotopes
using the Kuo-Brown reaction matrix elements for the Hamada-Johnston potential. The
possibility of generalized pairing is explored by considering T =1, T=0 and T =1 plus
T =0 correlations for the axial and triaxial shapes. It is found that only for the nuclei with
N —Z =2 there is a small contribution by the 7 =0 pairing correlations. Only the |T,|=1
pairing correlations are important for the ground-state solutions.

NUCLEAR STRUCTURE Even-even N = Z isotopes of Ti, Cr, Fe, Ni, and Zn;

calculated ground-state energies using 7’=1, T=0, and 7'=1+ T =0 pairing

correlations; quadrupole moments pickup strengths for the lowest-energy so-

lutions. Hartree-Fock and Hartree-Fock-Bogoliubov methods. Kuo-
Brown interaction.

I. INTRODUCTION

The Hartree- Fock- Bogoliubov (HFB) theory,!
treating the field producing effects and the pair-
ing effects due to the nuclear interactions on the
same footing and in a self-consistent manner, has
been used for many years now for the nuclear
structure studies. All the earlier calculations,?-®
however, were performed by including only neu-
tron-neutron (n-n) and proton-proton (p-p) pair-
ing correlations and thus completely neglecting
neutron-proton (n-p) T=1 and T =0 pairing cor-
relations. Goswami® and Camiz, Covello, and
Jean' independently formulated a procedure for
treating n-p T =1 correlations along with n-»n and
p-p T=1 correlations in an approximate way (BCS
approximation). Later on an n-p T=0 pairing
theory!! and eventually a generalized'? T=1 and
T =0 pairing theory were reported although no
numerical calculations were carried out. The
isospin problem and, in particular, the restora-
tion of the isospin invariance, had been studied by
Ginocchio and Weneser'® in the random phase ap-
proximation.

A full HFB calculation for N=Z nuclei in the
2s-1d shell by including generalized T=1 and
T =0 pairing correlations was reported by Good-
man and collaborators.!* These studies showed
the importance of the T =0 pairing rectifying many
of the failures of the Hartree-Fock theory. For
example it was found that the 7= 0 pairing re-
stores axial symmetry to the equilibrium shapes
of #*Mg and 32S and explains the vibrational nature
of %A, Wolter, Faessler, and Sauer’® per-
formed some calculations for a few N#Z nuclei
in the 2s-1d shell and two nuclei in the 2p-1f

shell. In these calculations, however, the T=1
and T =0 pairing correlations were considered
separately and the possibility of existence of
T=1 and T =0 correlations simultaneously was
not explored.

The object of the present work is to study the
importance of 7=0 and T =1 pairing correlations
for even-even N#Z isotopes of Ti, Cr, Fe, Ni,
and Zn in a systematic way. The calculations are
performed in three steps, namely by including
(i) T=1 plus T=0 correlations simultaneously,
(ii) T=1 correlations alone, and finally (iii) T=0
correlations. A *°Ca core is assumed, and the
calculations are carried out for the renormalized
Kuo-Brown matrix elements'® for the Hamada-
Johnston interaction. The single-particle energies
for neutrons and protons are —-6.5, 0.0, —4.5, and
2.5 MeV corresponding to the orbits 1f,,,, 1f;,,,
2p,,,, and 2p,,,, respectively.'”” The harmonic-
oscillator parameter (b) for the entire calculation
is 2X 1073 em.

The self-consistent HFB formalism as used in
the present calculations is given in Sec. II. Re-
sults of the calculations are discussed in Sec. III
and Sec. IV is a summary and discussion of the
results.

II. SELF-CONSISTENT HFB FORMALISM

The main feature of the formalism is the gen-
eralized Bogoliubov transformation:

CLT= Z (ua'l‘, kuaZu + Uar, kual-zu.) ’ (la)
ki
_ Xk *
Car= Z (uE'r,EuaEu. +Var, Eualfw) . (1b)

R
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This linear canonical transformation relates
the single-particle creation (a},) and annihilation
(a,,) operators in the shell model basis (&
=l J g, 1L =+%, the z component of the nucleon
isotopic spin) to the quasiparticle creation (¢,
and annihilation (cm) operators which are con-
venient for the description of the pairing phenom-
ena. The bar denotes the time reversed state,
ie. |k, )= (=)e™"%|n,l,j, — m,,un). The ground
state of the nucleus is approximated by the va-
cuum for the quasiparticles

Car ‘ Pyrp)=0. (@)

The transformation coefficients # and v are, in
general, complex. The quasiparticles defined in
Eq. (1) are required to be fermions and the re-
sulting conditions on # and v are equivalent to
requiring the transformation defined in Eq. (1) to
be unitary. Further, if one imposes the restric-
tion of time reversal symmetry on the quasipar-
ticles one obtains

— ¥
Ugr,ku _uoﬂ,ku ’ (33)
*
Vat,rp = =Var,%u - (3b)

The quasiparticle transformation (1) can be
written explicitly in the isotopic spin space as

t T

¢ Uy Uy =Vyp =V, a,

cl Usp Usy —Vpp =Ty aYTl
= , (4)

Cl 'Uu, vln ulp uln ap

Cs Vop Vop Uzp Uy, a,

where p and n refer to the isotopic spin indices
for the proton and neutron, respectively. Since
this transformation mixes the particle creation
and annihilation operators, the ground-state wave
function |®z5) defined in Eq. (2) above will not
conserve the particle number. This forces us to
impose the constraints that the number of protons
and neutrons be conserved on the average

@yrs Il(; |4rs) = (Prrs | Z k1o sz |®urn) =2,
%

(5a)

(®yrn lﬁnIHFB> =(®yps | Za;-xlzak-uz |®yrp) =N.
P

(5b)

These constraints are imposed in the calculation
through two Lagrange multipliers A, and A, in the
Hamiltonian which takes the form

H=3" (it [€ = 848,000,172~ N,8,_1/5) | W)al,ay,

i3

+711- > (kulv |V, |mpno)al,a}a 4, , (6)

kimn

nvpo
where € is the single-particle energy for a nucleon
outside the *°Ca core and V is the effective two-
body interaction between the nucleons outside the
core. The suffix a indicates that the matrix ele-
ments are evaluated between antisymmetric two-
particle states.

To determine the transformation coefficients u
and v, and therefore the ground-state wave func-
tion |®,p5), the Hamiltonian (6) is expressed in
terms of the quasiparticle operators and on ig-
noring the residual quasiparticle interaction re-
sults in the HFB equations

[€+F—7\ A u}:Eliu ’ )
At —e-T+2r ]| v v

where I' and A are the Hartree-Fock (HF) and the
pairing potentials, respectively, and E represents
the quasiparticle energy. Explicit expressions for
the elements of I" and A are:

rku.lv= Z <k“mD | Va lle'I)P,,am ’ (8)
e
and

B iu= Y Rl |V, | 7 5 ©)

mn

Aku'i"‘ = Z «kl_T =1 ‘ V. |mﬁT: 1>R9X mis, it

mn

+ikI T =0|V,|mnT =0)Imx ,,, 7.,.) -

(10)

The single-particle density matrix p and the
pairing tensor x appearing in the above expres-
sions are defined as:

Pru, = Burn |2}, au |Pxrs) = E Var, wlar, ku
aT

and 1)

Xew, v = <q)HFB |a7uaku Iq:‘H FB> = Z Ugr, lv’U;f, Ru*
aT
(12)

The energy of the ground state |¢»HFB> is given
by
Eqrs = Eirs + EBS (13)

where
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Eﬁ;s = E (E + é]'-‘)ku,, wplv,ku

k1
uy
and

Enair = 1

A =yl
HFB ~ g ki, WwXTv, by *
&l

(13a)

(13b)

In the present work the calculations are per-
formed with the harmonic-oscillator expansion
basis limited to the 2p-1f shell assuming *°Ca as

an inert core. Parity is therefore a good quantum

number for the quasiparticles. As is clear from
the above formalism, time reversal symmetry
has been imposed on the quasiparticles. Axial
symmetric solutions are obtained by carrying the
summation in (1) over the states [ku) with the

same value of m,. For triaxial solutions the sum-

mation over |ku) is restricted to odd value of

my, — 3. This restriction is dictated by the time
reversal symmetry. It is obvious from Eq. (1)
that if one wants to include np pairing correla-

tions, x,, should be complex. In the present work
the calculations are performed with the completely

general form (4) of the quasiparticle transforma-
tion with complex « and v coefficients. |T,|=1
and T=0 calculations are performed with x,,=0,
and X,,,=X,,= Rex,,=0, respectively.

III. CALCULATIONS AND RESULTS

The results of the self-consistent HF and HFB
calculations for axial (prolate and oblate) and
triaxial shapes of N# Z isotopes of Ti, Cr, Fe,
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Ni, and Zn are presented in Tables I-IV. For
the two-body interaction for the nucleons outside
the *°Ca inert core the Kuo-Brown'® renormalized
matrix elements of the Hamada-Johnston poten-
tial are employed. The single-particle energies
for the extra core nucleons are the same as used
earlier by the authors.'” All the minimum energy
solutions for the prolate, oblate, and triaxial
shapes are listed for the HF case. The HFB cal-
culations have been performed by including IT,[
=1, T=0, and T=1 (un,pp,np) plus T=0 pairing
correlations for each of the three different shapes
mentioned above. However, the results are pre-
sented only for those HFB cases for which the
pairing correlations are nonzero, as otherwise
the solutions are identical to the HF solutions.

In Table I the HF energy minima along with the

gap between the last occupied and the first unoc-
cupied neutron and proton states are listed for
prolate, oblate, and triaxial shapes. In Table II
the HFB energy minima along with the pairing
energies for different shapes and pairing modes
are reported. It is found that *Ti, “®Ti, and *Ti
favor prolate, triaxial, and prolate shapes, re-
spectively. The neutron gaps are much smaller
than the proton gaps. A mixed mode solution for
4®Tj in the oblate shape indicates the presence of
a small contribution from the T=0 np pairing
correlations. Inclusion of the T=0 np correla-
tions alone, however, gives a higher-energy so-
lution. Inclusion of T'=1 plus T =0 correlations
simultaneously should be preferred over either
of the pairing modes alone for the purpose of cal-

TABLE 1. Comparison of the HF energy (Eyp) for oblate, prolate, and triaxial shapes. The
corresponding neutron (G,) and proton (G,) HF gaps are listed. All the energies are in MeV.

Eyrp Oblate Prolate Triaxial
Nucleus Oblate Prolate  Triaxial G, G, G, G, G, G,
487y —50.94 —53.85 —53.84 0.90 2.04 2.29  3.02 2.29  3.02
487y —67.36 —68.95 —69.12 0.61 2.38 043 2.38 0.85 2.30
50 —83.72 —82.27 —83.72 1.92  2.40 0.06 1.96 1.92  2.40
50cr —-91.07 —96.50 -96.31 0.79  0.62 1.14  2.99 1.25  2.82
S2¢r ~112.04 -114.96 -112.28 3.76  0.83 243 2.86 191  1.34
HMer ~127.27 -128.60 —129.79 0.44 0.69 0.04 2.80 1.11  2.83
e ~141.00 -141.66 —141.65 441  0.89 241 1.10 2.40 1.10
56pe ~157.24 -159.74 —=159.95 0.39  0.04 1.69  1.20 1.36  2.00
8Fe -175.74 -176.05 —177.71 139  0.77 1.05 1.29 1.96 2.79
8N ~188.85 —188.73  —188.73 0.16  4.69 1.70  2.56 1.22  2.56
60N} ~208.78  —207.73  —209.24 0.37 3.62 1.15 3.28 1.05 2.75
62N1 -229.14 -222.91 —229.13 3.03 3.83 2.32  0.26 3.03 3.83
B4Ni ~245.10 -242.85 —245.10 2.53  3.00 1.20  3.37 2.52  3.00
627n ~235.69  -234.97 —238.45 0.76 0.18 1.21  1.67 1.91  2.00
847n —-255.94  -255.96 —259.55 0.10 0.10 2.20 0.61 2.26  1.00
667n -278.57 -276.04 —279.08 194 043 0.81 1.23 2.38  1.64
87Zn -296.11 —294.60 —296.29 232  1.17 2.10  0.08 2.46  0.98




678

T.S. SANDHU AND M. L. RUSTGI 14

TABLE II. Comparison of the HFB solutions obtained by performing the calculation in different pairing modes.
Solutions for which pairing is absent are not listed. All the energies are given in MeV.

Pairing Eyrp E pair
Nucleus mode Oblate Prolate Triaxial Oblate Prolate Triaxial
48§ T=1+T=0 -51.61 —53.85 —-53.79 -3.43 —0.29 ~0.53
T=1 -51.61 —53.85 —-53.79 -3.30 —-0.28 —-0.53
T=0 —51.10 -0.31
48§ T=1+T=0 —68.36 —69.93 —-70.03 -3.78 —2.58 —2.69
T=1 —68.36 —69.93 —170.03 -3.92 -2.59 -2.70
50mi T=1+T=0 —84.04 —84.98 —84.95 -3.62 -3.20 -3.49
T=1 —84.04 —84.98 —84.96 -3.79 -3.19 —3.49
s0cr T=1+ T=0 —92.82 —-96.66 -96.67 —4.98 -1.26 —1.44
T=1 —92.80 —96.66 -96.67 -5.01 -1.28 -1.44
T=0 -91.28 —-0.57
S2cr T=1+ T=0 —112.80 -115.07 -114.87 -2.08 —0.41 —0.64
T=1 -112.79 -115.06 —114.87 -2.10 —0.41 —-0.65
Scr T=1+ T=0 —129.05 ~130.53 —130.46 —4.76 -2.92 -2.96
T=1 —129.04 —~130.53 —~130.47 —4.80 -2.94 —2.96
SiFe T=1+T=0 a -141.79 a —-1.06
T=1 —141.59 -141.79 -141.71 -1.81 -1.12 —-1.23
56Fe T=1+T=0 —159.63 —159.97 -160.34 -4.21 -2.69 -2.11
T=1 —159.62 —-159.97 —160.34 —4.28 —2.69 -2.11
8Fe T=1+ T=0 —-177.05 —176.96 -1717.56 —4.66 —4.23 —-1.69
T=1 —-177.01 —176.94 -177.57 —4.69 —4.33 —-1.69
8Ni T=1+T=0 —190.06 a —-188.64 -2.08 ~1.00
T=1 —190.06 —~188.73 —~188.64 -2.08 —0.60 -1.01
80N T=1+ T=0 —209.84 —208.13 —208.06 -2.21 -2,12 -2.21
T=1 —202.69° —208.13 —208.06 -11.21 -2.14 -2.22
82N T=1+T=0 -229.13 —226.45 —0.00 -2.14
T=1 —-225.19° —226.44 —-6.94 -2.18
#INi T=1+T=0 —245.09 -243.29 a -0.01 -1.714
T=1 —246.00 —243.28 —245.00 -0.43 —-1.87 -1.15
827n T=1+T=0 —237.37 -235.21 —238.30 -4.03 -2.17 -0.87
T=1 -237.31 —235.17 —-238.30 -3.98 -2.68 —-0.87
T=0 —236.25 -1.52
847n T=1+ T=0 —260.08 b b -1.91 —6.18
T=1 —257.66" b b ~5.82 —6.05
66Zn T=1+ T=0 —279.36 -271.39 —278.91 -2.30 —5.40 -2.69
T=1 —2179.36 —2717.38 —278.92 -2.30 —5.52 —2.69
687n T=1+ T=0 ~296.50 a -296.50 -2.27 -2.27
T=1 —296.50 -296.22 -296.51 -2.27 -3.05 ~2.30

2 No convergence.

b The solution converged to a spherical shape when the iterations were started with a deformed guessed wave function.

culating the intrinsic properties of this nucleus
for the oblate shape. The lowest-energy solution
for this nucleus is, however, prolate axial which
has a large proton HF gap, thus prohibiting pp and
np pairing. Results for *®Ti and °Ti are quite
similar with almost degenerate prolate axial and
triaxial solutions without any np pairing correla-

tions.

Another mixed mode solution is obtained for
Cr for the oblate shape for which both the neu-
tron and the proton HF gaps are small and almost
the same. The mixed mode solution is degenerate
with the |T,| =1 mode solution. Like in the case

of *°Ti, the T=0 solution is a little higher in en-
ergy. All the Cr isotopes have prolate axial low-
est-energy solutions, with almost degenerate tri-
axial solutions. Although the pairing energies for
the T=1 plus T =0 mode differ from those of the
|T,| =1 mode, pairing potential A in the former
case has no significant 4,, components in the
final solution. Very similar results are obtained
for the Fe isotopes with %*Fe favoring a prolate
shape whereas **Fe and *®Fe have triaxial solu-
tions slightly lower than the prolate and oblate
solutions, respectively.

All the Ni isotopes favor an oblate shape with
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TABLE II. Multipole mass moments (Q,,) and the pickup strengths for the minimum
energy solution. For axial shapes Qpy= (&Qy,?4o) and for triaxial shapes Qrm= (@, X2, Q4o
are given columnwise. For each nucleus the neutron pickup strengths are given in the first
row and the proton pickup strengths in the second row. Experimental values for the pickup
strengths are given in parentheses below the corresponding theoretical values.

Pairing Quum Pickup strengths
Nucleus Solution mode (fm) j=1 ji=3 j= % j= %
46i HFB (prolate) T=1 100.24 0.121  0.572 0.195 3.111
898.08 0.52) 2 @.7?2
0.103  0.477 0.090 1.330
0.35° (0.48)> (43"
484 HFB (triaxial) T=1 102.80 0.302 1.052 0.303 4.340
1.24 (0.50) 2 (5.1)2
662.88 0.103 0.526 0.075 1.306
0.24)° (1.95) P
S0 HFB (prolate) T=1 102.40 0.485 1.607 0.362 5.546
443.20 0.48) 2 (5.1), 2(5.2) ©
0.106 0.571 0.062  1.261
1.8)°
S0Cr HFB (prolate) T=1 142.48 0.523 1.091 0.585 3.801
539.36 3.4) ¢
0.118 0.827 0.179  2.876
@.3)¢
S2cr HFB (prolate) T=1 147.80 0.666 1.229 0.723  5.382
226.08 0.88)f (5.76) f
0.105 0.890 0.148  2.857
3.78
Ser HFB (prolate) T=1 135.96 0.803 2.070 1,138  5.989
0.133 (6.1
169.60 0.090  0.893 2.884
@.50h
Sipe HFB (prolate) T=1 164.56 0.729 1.349 0.616 5.306
(0.16) (5.88) i
-91.84 0.614 1.282 0.484  3.620
0.t 04! @G.e!
re HFB (triaxial) T=1 140.84 0.912 2.237 1.206 5.655
77.92 (1.43)7 0.93)
-217.44 0.368 1.491 0.298  3.852
e HFB (triaxial) T=1 129.72 1.003 2.712  1.809  6.476
110.68 (1.61)7 (2.05) J
—236.32 0.283  1.528 0.295 3.894
8N HFB (oblate) T=1 —167.84 1.023 2.553 1.261 5.163
819.04 0.724 2425 0.700 4.152
60Ni HFB (oblate) T=1 —-159.55 1.028 3.560 0.188  7.223
502.15 0.508 2.480 0.252  4.760
2N HFB (oblate) T=1 —157.97 2.000 4.000 0.003  7.997
202.88 0.648 3.112  0.206 4.034
BN HFB (oblate) T=1 —-115.92 1.801  3.903 2.392  7.903
262.40 0.408 2.620 0.251 4.721
827n HFB (triaxial) T=1 —146.08 1.435 2.937 1.290 6.338
89.52 1.074 2.824 0.667 5.435
—46.88
647n HFB (oblate) T=1 —27.48 1.979  3.995 0.044  7.983
—49.44 0.9% @ok @2k
1.006 3.467 0.227  5.300
0.5m! 194! @.36)! .01
667n HFB (oblate) T=1 -102.40 1.83¢ 3.900 2.394  7.872
—-138.08 ©0.9% @Ik @3k
0.854 2.972 0.318  5.856
0.45"! @.00! (109! @B.0!
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TABLE III (Continued)

Pairing QLM Pickup strengths
Nucleus Solution mode (fm) i=3% j=$% j= % ji= %
687Zn HFB (oblate) T=1 -78.12 1.854 3.934 4.252 7.957
—470.72 (1L.2)F B4k (.0k
0.432 2.852 0.166 6.550
2J. L’Ecuyer and C. St. Pierre, Nucl. Phys. A100, 401 (1967).

. Ohnuma, Phys. Rev. C 3, 1192 (1971).

iR.
Vol. VIIlc.

. Plauger and E. Kashy, Nucl. Phys. A152, 609 (1970).
. Whitten and L. McIntyre, Phys. Rev. 160, 997 (1967).
. Rapaport et al., Nucl. Phys. A100, 280 (1967).

. Bock et al., Nucl. Phys. A72, 273 (1965).
. Newman and J. Hiebert, Nucl. Phys. A110, 366 (1968).

. Rapaport et al., Nucl. Phys. A123, 627 (1969).

. Roussel et al., Nucl. Phys. A155, 306 (1970).

Sherr, Lectures in Theoretical Physics (Univ. of Colorado Press, Boulder, 1966),

kD, Von Ehrenstein and J. Schiffer, Phys. Rev. 164, 1374 (1967).
1D, Bachner et al., Nucl. Phys. A99, 487 (1967).

no np pairing correlations. The *Ni oblate T=1
plus T=0 mode solution is a little different from
the IT,I =1 mode solution because it was obtained
with a lower accuracy due to a very slow conver-
gence, rather than because of the presence of np
pairing correlations. This was checked by ex-
amining the 4,, components in the final solution
obtained.

The ®2Zn nucleus again possesses a mixed mode
T =1 plus T=0 solution in the oblate shape. The
T'=0 mode solution is a little higher but the pair-
ing energy is -1.52 MeV, the maximum pairing
energy for this mode among all the nuclei con-
sidered here. The lowest-energy solution is tri-
axial however, with no np pairing correlations,

The intrinsic mass multipole moments

A
Qryu={Pyrs ‘ Z"’f Y,,(R) I‘I’HFB>

i=1

and the spectroscopic pickup strengths
SJ = Z Vamz(c?m)z

are presented in Table III for the lowest-energy
solution for each nucleus. The coeifficients Cj,

in the above expression are the components of

the orthogonal matrix which diagonalizes the
density matrix p and V,,? are the occupation prob-
abilities of the deformed orbits, obtained by such
a diagonalization. The spectroscopic factors con-
tain the information about the wave function which
can be related to the experimental data obtained
from the one-nucleon transfer reaction. However,
many of the experimental results do not satisfy

the condition
Z S;=n,
]

where 7 is the number of neutrons (or protons)
outside the *°Ca core. Also the experimental val-
ues are not very precise because of the parame-
ter-dependent distorted-wave Born-approximation
analysis. Sometimes, some strengths are missiny
due to insufficient excitation energy. In some
cases this results in very unreasonable strengths.

TABLE IV. Comparison of HF and HFB gaps for the
ground-state shapes.

HF gaps HFB gaps
Nucleus Gy G, G, G,
R 3.02 2.29 3.02 2.44
8y 2.30 0.85 2.61 3.10
50§ 1.96 0.06 2.77 2.88
S0cy 2.99 1.14 2.99 1.88
S2cr 2.86 2.43 2.86 2.58
Mer 2.80 0.04 2.83 2.48
Mre 1.10 2.41 1.89 2.58
6Fe 2.00 1.36 2.39 2.37
BN 4.69 0.16 4.99 2.21
N1 3.62 0.37 3.65 3.52
82N 3.03 3.83 3.48 4.62
BN 2.53 3.00 2.68 3.15
©27n 2.00 1.91 2.13 2.13
87Zn 0.10 0.10 3.26 3.87
%7Zn 0.43 1.94 2.19 2.41
687n 1.17 2.32 2.49 2.12
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Keeping these limitations of the values deduced
from the experimental data from one-nucleon
transfer reactions in mind, the agreement be-
tween the calculated values from the present work
and the experimental values is fairly good. One
important conclusion that can be drawn from these
values for the Zn isotopes is that %Ni is not a
closed shell as is assumed in some shell model
calculations since the 1f;,, orbit is not completely
filled for the protons.

In Table IV a comparison of the HF and HFB gaps
is made for the purpose of studying the stability of
the various HF and HFB solutions. Since all the
HFB solutions in this table correspond to the
|T,| =1 pairing mode, the gaps have been labeled
as neutron and proton gaps. It is clear that if the
HF gap is more than 2 MeV there are hardly any
pairing correlations and the gap stays the same
when the HFB calculation is performed. For
smaller HF gaps, the increase in the gaps ranges
up to 3 MeV, when pairing correlations are in-
cluded, making the solutions stable against any
excitations. With a few exceptions the HFB gaps
are always more than 2.5 MeV.

IV. SUMMARY AND CONCLUSIONS

The importance of neutron-proton pairing cor-
relations in N#Z isotopes of Ti, Cr, Fe, Ni, and
Zn is systematically studied within the framework
of the Hartree- Fock-Bogoliubov theory. Complete
HFB calculations are carried out by including
|T,|=1, T=0, and T=1 (un,pp,np) plus T=0
pairing correlations. It is found that for nuclei

with N~ Z =2 (except for *Fe and °®Ni) there is
a small contribution of the T=0 np pairing cor-
relations. However, even in these cases the
|T,| =1 mode dominates over the T'=0 mode and
the T=1 np correlations are completely absent.
It is therefore suggested that if the small contri-
bution of T =0 correlations is to be included in
the intrinsic ground states for these nuclei, both
the T=1 and T =0 pairing correlations should be
included simultaneously. For nuclei with N- Z
>2 the np pairing correlations are completely
absent. Unlike the case of N=Z nuclei where
T'=0 pairing was found' to be more important
than |T,| =1 pairing in the excited states, the

T =0 pairing correlations are not significant for
the N+Z nuclei in the 2p-1f shell. This is par-
ticularly so for N - Z> 2 nuclei.

The gound-state shapes for the first half of the
2p-1f shell nuclei are found to be prolate (except
for *8Ti and 5®Fe which favor asymmetric tri-
axial shape), whereas the nuclei in the second
half (Ni and Zn isotopes) favor an axial oblate
shape. Further, on including the pairing corre-
lations (mostly |7,|=1) an increase in the gaps
of up to 3 MeV from ground state to the first ex-
cited state over the corresponding gap in the HF
solution of the same shape is observed. Keeping
in mind the limitations of the values of the ex-
perimental spectroscopic strengths the agreement
between the calculated and the experimental values
ranges from good to fair.
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