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The energy-independent effective Hamiltonian X(z) is considered as an analytic func-
tion of the coupling parameter z. It is shown that a point z~ is not a singularity of &(z)
unless the energy of some state that is selected for representation in the model. space
(L,&) coincides, at z = zq, with the energy of a state that is excluded from representa-
tion ink&. This result establishes the correctness of previous conjectures by Schucan
and Weidenmuller, and implies that perturbation theory for X(z) will generally have a
larger radius of convergence than perturbation theory for the individual energies. For
the case of a cut ("intruder-state cut") joining an isolated pair of branch points close to
the real axis, the singular behavior of 3C(z) is examined in detail. . The residue of the
cut is expressed in terms of quantities that can be calculated by diagonalization of a
real, symmetric modification ("minimal. smoothing") of the Hamiltonian matrix. A for-
mula is given for the contribution of an intruder-state cut to the error incurred by nth
order perturbation theory for the physical quantity X(1). Consideration of a numerical
example shows that if the values of sufficiently high orders of perturbation theory are
known, the residues of intruder-state cuts may be evaluated. This allows estimation
of the errors that intruder-state cuts produce in perturbation theory summed to finite
order, and yields a criterion for the optimal truncation of divergent perturbation series.

NUCI, EAR STRUCTURE Effective Hamiltonian for 80J"= 0+; estimated errors
of perturbation theory produced by intruder state.

I. INTRODUCTION

Rayleigh-Schrlinger perturbation theory (PT)
is a powerful and systematic method for solving
the time-independent Schrodinger equation for a
many-body system. However, if PT is applied
directly to the energies of a system with several
valence particles, the set of energies correspond-
ing to the simplest configurations (which span the
"model space") is degenerate —or nearly degen-
erate —in zero order. Consequently, small energy
denominators occur, and result in poor conver-
gence. A possible cure for this difficulty is to use
PT only to construct an effective Hamiltonian X,
which then gives the desired energies when it is
diagonalized in the model space. This approach
turns out to eliminate all small energy denomina-
tors. Unlike traditional degenerate PT, PT for
X also lends itself to a systematic description in
terms of many-body diagrams. '

The promise of diagrammatic PT has not yet
found realization in satisfactorily accurate numeri-
cal calculations of K for nuclear problems. The
amount of arithmetic involved is not the only dif-
ficulty, though the capacity of available computers
is a severe limitation. It is found necessary to
include very large numbers of intermediate states
in each diagram' and third-order terms are often
larger than second-order terms. ' These obser-

vations, especially the second, have motivated
discussion4 of the theoretical basis of PT for K.
A preliminary question is whether PT for K does
indeed converge better than the PT expansions of
individual energies. This point is crucial, be-
cause on it depends the superiority of the effective-
Hamiltonian strategy in practical computation of
the energies. Although Schucan and %eidenmuller'
(SW) have previously addressed this point, their
conclusions are tentative, and it seems worthwhile
to decide the question with greater certainty,
before proceeding with the present discussion of
PT for K.

The effective Hamiltonian K can also be used to
derive an effective interaction, which can be used
to relate problems with different numbers of
valence particles, provided that the effective in-
teraction is dominated by its two-body part. "
However, the present work is concerned with the
problem of computing K, rather than with the
question of the dominance of the two-body part of
the effective interaction. Therefore, it will not
be necessary to bring the many-body nature of the
system into the discussion.

More definite notations are now needed to discuss
an uncertainty remaining in the S% analysis, and
to introduce the main subjects of the present
paper. Let H, (assumed Hermitian) be the unper-
turbed Hamiltonian, whose eigenvalues E,. and
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eigenvectors P,. are assumed to be known:

Ho

In most cases H, will be chosen as a sum of one-
body Hamiltonians, although this is not a formal
necessity. The full Hamiltonian H (assumed Her
mitian) for the problem can be separated into a
zero-order Hamiltonian and a perturbation, as
follows:

H=HO+ zV. (1.2)

(1.3)HP,. = E,.g,

A subset (E„}of energies and a corresponding
subset Qr„}of eigenvectors are selected for repre
sentation in a model space L~. They will be re-
ferred to as the "represented" energies and eigen-
vectors. All other E,. and g,. will be called "ex-
cluded" energies and eigenvectors. The model
space is spanned by a chosen set of unperturbed
eigenvectors (p„}that correspond to simple con-
figurations. The criterion for selecting the sets
(E }and (g }is that each represented P should
have a large component in L~. By convention, we
label the eigenvalues and eigenvectors so that the
represented eigenvalues and eigenvectors are the
first M:

E, g (m= 1, . . . , M). (1.4)

Here the parameter z is the strength of the pertur-
bation. By convention, we take z = 1 as corre-
sponding to the physical value of the perturbation
strength. Perturbation theory consists in expand-
ing various quantities in powers of z; for this rea-
son we regard these quantities as functions of z.

Let E,. be the eigenvalues of H, and P~ the corre-
sponding eigenvectors, so that

constructed from zero-order quantities. The for-
malquantities, e.g. , E» tI)» and 6', are always
functions of z, while &,, Q&, and P are independent
of z.

A particular energy-dependent effective Hamil-
tonian' K(z) is defined as an operator on f,~, whose
eigenvalues are the represented eigenvalues E of
H [Eq. (1.4)], and whose eigenvectors X are the
projections of the corresponding eigenvectors of
H onto L~, defined by

=PP (an=1, . . . , M).

Thus the defining property of K(z) is

Ky =E y (m=1, . . . , M).

(1 6)

It is shown in Sec. II that the only operator with
this property is

K=PH(PP(&J, J,) ', (1.10)

K can be shown to be an analytic function of z, in
some domain including the origin. According to
the theory of operator-valued functions of a ccm-
plex variable, ' the radius of convergence of PT is
the distance R from the origin to the nearest sing-
ularity of K, i.e. ,

R= min(~z, ~},

where (z,}is the set of points at which K(z) is
singular. For the physical problem (z =1), PT
converges if

(1.12)

where tP» is the restriction of 4' to the model
space, and its inverse (pr~) ' is assumed to exist.

PT for K(z) is formally an expansion of Eq.
(1.10) in powers of z. If z is regarded as a com-
plex variable,

z= x+2/ ~

The unperturbed states selected to span L~ are R&1 (1.13)
(m= 1, . . . ,M).

There is no implication that the full set of eigen-
va.lues (E, (j=1,2, . . .)}is. arranged in order of
ascending values.

Two orthogonal projection operators can be de-
fined as follows:

(1.6)

and

m=1

By convention, script capitals will always denote
formal quantities (i.e. , those whose evaluation is
tantamount to solution of the complete problem),
while italic capitals denote quantities that can be

[i.e. , if X has no singularity inside the unit circle],
and diverges if R & 1.

In practice, the question of mathematical conver-
gence may not be decisive, because a convergent
series may be numerically useless and a divergent
series may be useful if truncated appropriately.
(Asymptotic series" are only one possible type of
useful divergent series. We shall encounter
another type. ) Nevertheless, for the moment we
accept convergence as a criterion of utility and
ask whether the PT series for K has a larger
radius of convergence than the series for an indi-
vidual represented energy.

As will be shown, a singularity of X can occur
only at a point where one (or more) individual
represented energy E is singular. The singulari-
ties of E are discussed by Kato, ' and compactly
reviewed by SW. Here we assume that H and H,
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act on a space of finite dimensionality, thereby
excluding several pathologies that can occur only
in spaces of infinite dimensionality (for example,
the entire spectrum of H may become continuous
fol' soI116 VR11168 of 8). T1118 11InitRtloll to fllllte
(though large) spaces agrees well with the spirit
of the double-partitioning approach of Barrett. "
He assuxnes that a suitable Brueckner reaction
IQRtx'lx 18 axl adequate RpploxlIQRtlon to the effec-
tive interaction in a large finite space. If so, the
only problem remaining is to construct an effec-
tive interaction for a second model space that is
small enough to allow shell-model diagonaliza-
tions. Qur discussion then applies directly to the
cRlculRtlon of the effective Hamiltonian fol the
second IQodel 8pRce.

Following S%, we agree to disregard some
types of singulaxity because they are statistically
unlikely. Qnly one type of singularity occurs sys-
tematically: a first-order branch point at a value
8 = e, such that two eigenvalues of H coincide (i.e.,
a "biexceptional point"). We disregard the possi-
bility of permanent degeneracy, and ignore branch
points of second Rnd higher orders, because these
would require accidental coincidence of two or
more biexceptional points. Thus, by the term
"singularity" we shall always mean "first-order
bx'Rnch point. "

%6 now outline some conclusions of NV rega, rd-
ing the effect of singularities in the energies E
on 3C. From Eq. (1.10) it is clear that 3C is analytic
for all e such that (1) 8' is analytic and (2) (Pl,r) '
exists. By contour integration methods, S% show
that g is analytic even at points where two repre-
sented energies coincide, Rnd they remark that
(If~r) ' exists provided that the set of projections
{}t (m = I, . . . , M)j is linearly independent. They
then state that linear dependence of {y (m
= 1, . . . ,M)) for reasonably complicated physical
systems is unlikely (assumption 2.22, p. 490 of
Ref. 5). It is indeed unlikely that the set {X (m
= 1, . . . ,M)) would be dependent if the set {g (m
= 1, . . . ,M)J is linearly independent; it would re-
qllll'6 R speciR1 1'elatlollship be'tweell P (ol' Ho) ~

and 8 (or H). And for real e, the Hermiticity of
H guarantees that the tt} can be chosen to be lin-
early independent (in fact, mutually orthogonal).
However, in discussing convergence, eompzeg z
must be allowed; this introduces the new possibil-
ity that two of the represented energies may coin-
cide at a complex point z~. The eigenvectoxs cox-
respondlng to two 6nex'gles thRt become degenex'Rte
at a complex point z~ always become parallel.
Mathematically, IIo+ g&V is then not diagonalizable,
because its eigenvectors no longex form a com-
plete set. This point is illustxated by the analysis
of the 2 x 2 matrix defined by Eq. (4.16) of Sec. IV.

Fortunately, as will be shown in Sec. III, the
linear dependence of two represented eigenvectors
(at 8, point z~ where two represented energies co-
incide) does not produce any singulanty in K.
Since such points z will usually be the neax'est
singularities of the represented energies, this re-
sult implies that the radius of convergence of X
will usually be larger than that of the individual
represented energies. In agreement with S%, we
shall conclude that only a coincidence of a repre-
sented and Rn excluded energy px'oduces R singu
larity in K. It follows that PT for K will generally
have a larger radius of convergence than PT for
the individual E .

The rules governing the location of the singulari-
ties of X ax'e proved in Secs. II and ID. They are
a necessary preparation for the newer Rnd perhaps
more practically significant Secs. IV and V, which
deal with methods of estimating the contributions of
individual singulax'ities. In Sec. IV the form of an
intruder singularity in X is expressed in terms of
quantities that can be calculated by diagonalizing
real symmetric matrices. This result, Eq. (4.49),
enables one to estimate the influence of an intrud-
er-state singularity on perturbation theory for X,
at least in studies of solvable IQodels. In Sec. V,
some results of Sec. IV are applied to interpret the
168lllts Of R prevlgus cRlclllRtloll Of lllgll ol'del'8
of perturbation theory. This example shows that
the contrlbutlon of a singularity ca sometimes be
a.ccurately estimated solely from perturbation
theory, without any matrix diagonalizations being
needed. Section VI summarizes the conclusions.

II. FORMAL EXPRESSIONS

Many formal expressions for X can be derived.
Those selected hex e axe not claimed to havespecial
merit fox' computational purposes. Rather, they
are presented for use in Sec. III, in which rele-
vant analytic properties are deduced. Questions
regarding the existence of certain operator in-
verses are also deferred to Sec. III.

A fundamental formal quantity is the operator Q
that diagonalizes H:

(2.1)

In this equati. on, the sum is over all eigenstates
ljI (and QI) of H (and H, ). From the orthonor-
mality of the bases Q&) and {lp&f it follows that tt
is unitary, so that

(2.2a)

(2.2b)

In terms of 'h, a valid expression for the effective
HRIQlltonlRD 18
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X=PMP(~pp) '. (2.3) X=+ E„a (2.12}
Here, and everywhere, symbols such as » and
'h~+ will have the meanings

because
~J, =~P „%t~q=PllQ, etc. (2.4)

Also, the exPression ('ILpp) ', for examPle, refers
to the inverse of &» regarded as an operator on
the model space L~, i.e., the space onto which P
projects. It is easy to verify that (2.8) has the
property [Eq. (1.9)] that defines K. First, from
Eq. (2.i), X= PHa P(a „)-'. (2.14)

The effective Hamiltonian can be expressed in
terms of 6', in a form not containing the energies
explicitly, as follows:

sJ4 =PC =X

so that

0 =(&pp) 'x.
if the required inverse exists. Then

PH ILP('ILpp) 'y = PH'IIPQ = PHP = E y

(2.5)

(2.6)

This result, which is Eq. (1.10) of the Introduction,
is seen to be equivalent to Eq. (2.3) by applying
Eqs. (2.7) and (2.8).

Further relations can be obtained by introducing
Q, the projection complementary to P, which sat-
zsfzes

which is Eq. (1.9).
Another useful operator is 6', the projection on

the space spanned by the set of represented states
(m =1, . . . , M)] [see Eq. (1.7)]. This operator

is related to by

Q=1 —P, Q'= Q, PQ= QP=0. (2.15)

By inserting Eq. (2.2a) between P and Q, and using
the relations (2.15), we obtain

0 = QP = Q%, %.P =%,@&%tzz+ 8,+ 'lL J, ,

6' =%LP'K~,

so that

(2.7)
so that

+ap(+pp) (+aa) +ap ' (2.16)

6's p='4ss ~. (2.8)

The operator 0'» is central to the discussion. A
certain set of vectors {y (m = 1, . . . ,M)j, said to
be "dual" to the set {y (m=1, . . . , M)j, canbe
defined by

=(6' ) X (m=1, . . . , M). (2.9)

The dual set is biorthonormal with respect to the
original set, because [by Eqs. (2.6), (2.8}, and
(2.9)]

(X
~
X ) = &P0

~

(app) '(&pp)
'

~

P4 )

=&~.
( e. ),

so that, by the orthonorma, lity of the set {Pj,
(X.i X ) = 6.. (2.10)

With the aid of the {}(gwe can define an individual
oblique projection operator for each represented
state:

Note that, for example,

W~~ = QX'P. (2.17)

Equation (2.16) can be used to transform expres-
sions into "complementary" forms, since it allows
inverses in L p (the space onto which P projects)
to be replaced by inverses in La (the space onto
which Q projects). The most interesting applica-
tion is an expression for (happ)

' in terms of in-
verses in L. By developing the right-hand side
of Eq. (2.16), using Eqs. (2.16), (2.2a), and (2.15),
we find

&ap«pp) '= —(&aa) '&ap

= —+aa(+aa+aa) +op
'll aa('II'ae-aa+&ap&pa}(&'aa~aa) '~',

aa op[ +'Iipa(&aa'uaa) '&a ].
(2.18)

Alternatively, from Eq. (2.2b),

(2.11)

(2.12}

In terms of these projections, it is easy to see
that

IP =IX )&X
I

These operators are idempotent (but not Hermi-
tian) and annihilate one another, so that

+'h'P= QP =0,
so that by applying Eq. (2.8} we find

&q.~+pp~ '=~ qp P. X pp&'p~ '

= -~~a~ p(+pp) '.

Multiplying Eqs. (2.18) and (2.20) by

(2.19)

(2.20)
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('itpq'itqp) ''ttpq('Uqq)

finally yields the identity

PQ(+Q Q qq) QP

(2.21)

(2.22)

The operations involved in Eq. (2.22) require the
existence of the inverses of the operators %~&,

and

g „='U, q'it@ =P(1 —(P)P. (2.23)

The expression (2.22) for (HAPP)
' ean be inserted

in Eq. (2. 14) to give a new expression for 3C:

these algebraic relations are analytically continued
to complex z, the analytic continuations of the op-
erators will still satisfy the relation. It is only the
singularities of the analytic continuations of the
operators that determine the radius of conver-
gence; it does not matter if the original definitions
of the operators fail at some value of z. Much use
will be made of the fact that all singularities of op-
erators can be referr ed to singularities in the en-
ergies, f E& j. In fact, Kato" shows that the pro-
jection operator on an eigenstate,

X =PH(P[P +u qp(%qq%lqq) '%tqp]. (2.24)
(3.1)

As formal expressions for 3C we now have sever-
al equations: (2.3), (2.13), (2.14), and (2.24). The
result (2.22) will also be of particular interest be-
cause of its implications for analytic properties.
Finally, we shall find it convenient to introduce the
model operator" (or wave operator} F, defined by

is analytic everwhere except possibly at points z
where at least one other energy coincides with Fj.
%'e can see that gj has similar properties, if its
overall phase is appropriately chosen. Let f be
some arbitrary vector, independent of z. Then one
can choose the overall phase of g, so that, for
real z,

V =~P(e„)-'. (2.25)
0, = [ &f I

5' If)] "'ly' f (3 2)
From Eqs. (2.25), (2.7), and (2.10) the following
characteristic property of $ can be derived:

rX.=P. (m=1, . . . , ~).
In terms of 3:, Eq. (2.3) becomes

(2.26)

(2.27)

while Eqs. (2.14) and (2.24) are respectively equi-
valent to

0 = lfP(tf„) (2.28)

(2.29)+ =4'[P+ ttpq&'uqq'uqq } '"Qp].

Other effective operators, besides the effective
Hamiltonian, can be expressed in terms of F.

III. POSITIONS OF THE SINGULARITIES OF X(z)

The method of this section depends on analytic
continuation of oper ator -valued functions to com-
plex values of z. In considering such analytic con-
tinuations, it is convenient to assume that Ho and
H are time-reversal invariant, "and that the basis
( P,. ) is such that their matrices are real (for real
z). Then the Hermitian conjugation I;denoted with
a dagger} (which appears in some of the expres-
sions of Sec. II) can always be interpreted as a
transpose. Thus, discussion of analytic properties
is not obscured by the appearance of the nonanalytic
function z*, the complex conjugate of z.

The derivations of Sec. II can fail at most for a
discrete set of z values. In particular, they are
certainly valid at least for some finite continuous
segment of the real axis, including the origin.
Therefore, if all the operators appearing in one of

4'=I —g IP;)&0;I. (3.3)

Now the right-hand side of Eq. (3.3) is manifestly
analytic at a P-P singularity, because none of the
excluded eigenvectors (P,. (i &M)) has a P Psingu--

where the square root is interpreted as positive.
Note that Eq. (3.2) determines the phase of P„be-
cause the definitionof gj in terms of pj does not
depend on the phase of Pj. Because 6'j is analytic
(away from exceptional points), [(f ~ (P& ~f)] ' ' is
also analytic, provided that 6', fc0, which. can be
ensuredby a suitable choice of f. Therefore l}l& is
analytic everywhere —except possibly at those val-
ues of z where another energy coincides with Ej.
Since M depends on z only through the eigenvectors
P& [see Eq. (2.1}], all singularities of 'll must also
be at the branch points of the energies.

Every branch point is either (1) a "P-P singular-
ity, " defined as a point where two represented en-
ergies are the only energies that coincide; (2) a
"Q-Q singularity, " defined as a point where only
two excluded energies coincide; or (3) a "P-Q sin-
gularity, " defined as a point where one represented
energy and one excluded energy coincide.

Theorems regarding the location of singularities
can now be stated and proved.

Theorem l. 6'(z) is analytic except possibly at
P @singularities. -(Kato" gives a proof of this
theorem, using contour-integral methods. )

Proof From Eq. (1.7), .6' depends on z only
through the represented eigenvectors (t) . Hence
only P-I' and P-Q singularities can appear in @.
To see that a P-P singularity, say z~, cannot ap-
pear in 6', write 6' in the form
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larity. Therefore 6' is analytic except at P-Q sin-
gula itic s.

The use of the manifest" analyticity of d' as ex-
pressed by Eq. (3.3) is typical of the methods of
this section. Several of the formulas in Sec. II
display manifest analyticity of this kind, in that
either represented or excluded states are absent
from the right-hand side.

Theorem 2. (6'pp) is analytic excePt Possibly
at P-Q singularities.

Proof. From Eq. (2.22), (6'pp) ' is manifestly
analytic at P-P singularities because the operators
%.„&, %Lp, %,zz, and RL~z do not contain represented
eigenvectors. From Eq. (1.7), (6'») ' is manifest-
ly analytic at Q-Q singularities. Hence (6'pp) is
analytic except possibly at P-Q singularities.

Theorem 3. The model oPerator $(z) and the
effective Hamiltonian R(e) are analytic, excePt
possibly at P-Q singularities.

Proof These .results follow at once from Eqs.
(2.25) and (2.2'1), because the product of analytic
operators is analytic.

Theorems 2 and 3 do not seem to have been
proved before. That (6'») ' should have the same
domain of Bnalyticity as @ seems quite unexpected,
for the following reason. The inverse of 6'pp can-
not be constructed from normalized eigenvectors
at a point z~ where two represented eigenvalues
coincide, because the corresponding eigenvectors,
g, and g„say, become parallel at z~. Consequent-
ly their projections gy: PPy and y, = PP, become
parallel, so that the determinant of the matrix
whose (i, j)th element is

vanishes at z, . In fact, this is the Gram matrix"
of the set of vectors (y (m =1, . . . , M)j) and its
vanishing is a standard test for linear dependence.
The failure of (6'») ' to have P-P singularities
becomes easier to understand when it is appre-
ciated that the analytic continuation of t always
has an infinity" at a branch point of E„. This in-
finity essentially cancels the zero of the determi-
nant that would occur in constructing (6'») ' from
normalized eigenvectors. Equation (3.2) shows that
the eigenvector P will also be infinite at a branch
point of F.

Because its eigenvalues are all real, 3C can be
converted into a Hermitian operator by a similarity
transformation. In particular, we easily see that
the operator defined by

and is Hermitian because [by Eqs. (2.9), (2.11),
and (2.13)] it can be written in the form

(3 7)

The practical advantage of this symmetrized effec-
tive Hamiltonian is that it can be diagonalized
using standard methods. However, its analytic
properties are not so transparent as those of X,
because of the possibility that (6'~p)'" may intro-
duce singularities that are not present in 3C.

The main result of Sec. III is that only P-Q sin-
gularities appear in X (Theorem 3). This means
that the radius of convergence of PT for X is not
limited by the P-P singularities. Since these are
usually the nearest singularities, we conclude that
PT for 3C will usually converge better than PT for
the individual represented energies. Section IV'

discusses the effect of P-Q singularities on PT
for 3C.

IV. STRUCTURE OF AN ISOLATED SINGULARITY OF BC(x)

A. Minimal smoothing adjustment of an isolated singularity

According to Theorem 3, every singularity of
X(z) is located at a P-Q branch point. Therefore
consider a complex-conjugate pair of P-Q branch
points z, = x, +iy, and z,* =x, —iy, (where by con-
vention y, &0). Two such branch points will be de-
scribed as isolated if their separation X, =2y, is
much smaller than the distance from z, to any
other branch point. Then it can be assumed that in
the neighborhood of an isolated pair of branch
points, the influence of all other singularities can
be neglected. The notion of an isolated pair of
branch points is an idealization. Though it can only
be realized approximately in practice, it is very
useful in theory. In this respect it is analogous to
the idea of an isolated resonance pole in scattering
theory.

Now consider the z dependence of the energies
and eigenvectors near an isolated pair of branch
points. Suppose E (represented) and E, (excluded)
are the energies that coincide at z„and let P and

P, be the corresponding eigenvectors. Regarded as
a function of real z, the difference E,. —F will be
a minimum at some value z =x~, near x~=—Rez»
so that

has the same eigenvalues as X, because

(3.5) The eigenvectors evaluated at z =x» can be used to
define a basis (called "the x, basis") for the per-
turbation problem:
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g, (x») (y = 1 2 . . . ) . (4.2)

where the adjustment V,dj is defined by

V,„=-lm, l Ie(~&(4;b I- lk., )&o.~ II*

with

(4.5)

(4.6)

Note that V, is Hermitian and independent of g.
Theorem 4. The energies of the adjusted pertur-

bation problem

are analytic functions of z, at and near z, and z, .
Proof Consider. the adjusted problem in the x~

basis. We have

Similarly, we denote the expectations of H(x») in
the x, basis by

E,, =-E,(x ) (j=1,2, . . . ).
We now construct an adjusted Perturbation problem
with the same Ho, but w ith V replaced by

(4.4)

within the unit circle. Replacing V by Vpp + Vqq
involves large changes in the energies, and conse-
quently the crossing points of represented and ex-
cluded eigenvalues may be shifted from the values
of xb that hold for the original H, by distances
much greater than the values of y, . An example of
this effect is shown in Fig. 1, where replacement
of V by V»+ Vqq shifts a biexceptional point much

closer to the origin because the important effect of
the excluded space in depressing the represented
eigenvalue E is removed, while the effect of the
model space on the intruder eigenvalue F, remains
very small. In contrast to Vpq+ Vqp, V,dj defined

by (4.5) has the valuable advantage of being a mini
mal smoothing adjustment of V. This is because
the eigenvalues of x„Vzdj are

mdx» 2 (Hi& ~mh) &

which is clearly the smallest shift that will produce
degeneracy, and by Eq. (4.1) this difference is it-
self minimized at z =x,. Thus, of all possible
smoothing adjustments, V,dj has the smallest norm.
By a well-known theorem quoted by Wilkinson, "

H'=H +z V

—(Ho+x»Vb)+(z x») Va ~ (4.7)

where H, +x„V, is diagonal, so that H' can be re-
garded as a zero-order Hamiltonian H'(x»), per-
turbed by (z —x») V,. It can be shown directly from
Eqs. (4.4)-(4.6) that p, , and p„, are eigenvectors of
H'(x»), belonging to a common eigenvalue F., de-
fined by —5Q r

Represented State
——— Excluded State

H b
= ~2 (&w + E ~) ~ (4.6)

The perturbation (z —x») V, splits these degenerate
eigenvalues in first order, and —as usual —the ex-
pansion of the energies in powers of (z —x») has a
nonzero radius of convergence. This radius of
convergence is of the same order as the distance
from z, to the nearest singularity (other than z,),
so that the energies are analytic at and near z, and

z,*. (For a more rigorous treatment of analyticity
near a degeneracy at real z, see Theorem 6.1 of
Ref 9.).

Because of Theorem 4, V, can appropriately be
called a smoothed Perturbation, to indicate that the
singularities of the original problem at z, and z,
are absent from the adjusted problem. Qther
smoothed per turbations can be constructed. An

example is V~p+ Vqq, for which the P-Q biexcep-
tional points are always on the real axis (because
there is no coupling between I p and Io), so that
crossing between represented and excluded eigen-
values of H, +z(Vpp+ Voo) is always smooth. How-

ever, the replacement V- V»+ Vqq is much more
drastic than is necessary to remove singularities

OP
I

-60—
OP
C

4J

{0 ) Spectrum a&

Ho+ zV

—$0 — ~ «~~
r p

~r rr
r r

pr
50—

( b) Spectrum af

Ho+ z (Vpp+ Voc )

-Q5—I.O
I

0 0.5
I

I.O I.5

Coopling Poio~eter Z

FIG. 1. Spectra of (a) 0 and (b) H~J, + Hqq for the cal-
culation described in Ref. 12. The represented states
are l.abeled by their main configurations: 1 =—cfsy22,

2 = sty&2, and 3= d~y22. Note that the I'-Q singularity
labeled p is only slightly shifted by the smoothing re-
placement H-H&p+ Hqq, however, the singularity q is
considerably shifted, and HI I. +Hqq has five intruder
states at z = 1, while H has only one. This illustrates the
rather drastic effect of this type of smoothing.
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every eigenvalue of the physical smoothed Hamil-
tonian H'(1) lies within a distance m, of the corre-
sponding eigenvalue of H(1). This already provides
an absolute bound on the effect of the singularity on

eigenvalues of X; however, closer estimates are
often possible.

E = E~+D(z —x~) —z,

E, =K, +D(z —x„)+z,

z = [(m, x )' + -,' d '(z -' x„)']'".

(4.15a)

(4.15b)

(4.16)

8. Eigenvalue problem in the xb basis

If the pair of branch points z„z~ is isola, ted,
then, near g =x~0, F., and F. are the only eigen-
values of H(z) that are closely spaced, and the
doubly-degenerate eigenvalue E, of H. ,(z) is also
isolated from other eigenvalues. Therefore, the
eigenvectors and eigenvalues of the original Ham-
iltonian H(z) can consistently be approximated by
working within a truncated x~ basis consisting of
the two vectors P~ and P, ~. In this basis,

The term c contains branch points at

zg = xgp+ 2s'»np/dp zy = xylo
—21»np/d ~

Thus, for an isolated pair of branch points,

(4.17)

(4.18)

z =id [(z z~)(z ——z~)l"'. (4.19)

that is, the real part of z, is equal to the value of
z that corresponds to closest approach of the ei-
genvalues. In terms of the branch points, Eq.
(4.1|), z can be written in the form

e(.)=(' '.(--* '
)

+(z -x„) Vm

1'»» =-(k»s I 1'I)» s) (i~i'=~ o»).

(4.9)

(4.10)

4= (1+c') '"(8.,+ ctt&,)

0&=(1+c') '"( cP &+0-;&)

(4.20}

The eigenvectors, corresponding to E and E,
given by Eq. (4.15) and normalized to unity, are

Because g ~ and F.,~ are not degenerate, perturba-
tion theory to first order in (z —xM) gives

Pl+ 6
—,'d(z —x,)

' (4.21)

mm& ~ ii (4.11)

when applied to Eq. (4.9). Equations (4.1) and

(4.11) together now require that

V = V); .
For convenience, and to conform with the notation
of Ref. 12, we can therefore describe the matrix
defined by Eq. (4.10) in terms of only two indepen-
dent parameter s

c(z,) = —i, c(z f) =+ i, (4.22)

respectively. From Eq. (4.22) it follows that P
and g, [given by Eq. (4.20)] both become infinite at

z, and zf. Also, g, and g„become parallel, so
that the eigenvectors of H(z, ) no longer form a
complete set, and H(z, ) cannot be diagonalized.
In considering behavior near these singularities,
it is therefore convenient to make use of unnor-
malized eigenvectors, e.g. ,

B-=V = V;;, d =2V,. =2V;

so that Eq. (4.9) becomes

(4.13)

which for a= @,takes on the value

(4.23)

( )
(E,+D(z —x~)Hz

0

0

.)
C(zs) = 4s- f&~.

Near z = z» we can simplify g" (z) by expanding c
in powers of (z —z,}'»' as

-m, x„-,' d(z —x„))
-', d{z —x„) m, x„)

The work of diagonalizing H(z} can be streamlined
by realizing that the first term is a scalar and does
not influence the eigenvectors. The eigenvalues of
Eq. (4.14) are found to be

X,= 21m(z, )

= 4m, /d (4.26)

c(z) = c(z„}—2(iX,) '»'(z —z,)'»'+ ~ ~ ~,

and neglecting higher powers. Here we have intro-
duced a coQvenlent QotatloQ:
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for the distance between the conjugate singulari-
ties. We find

0" (z) = 0"(zp) —2(i&g) '(z —zg)'~'g(, + ' ' '
~

(4.27)

The squa. re root in Eq. (4.2'I} causes g and P,". to
undergo very rapid rotations near the singular
points.

The results of this eigenvalue problem [especial-
ly Eqs. (4.15), (4.16), (4.19), (4.20), (4.21), (4.25),
and (4.27)] will be used in Sec. IVD to construct
the form of X(z) near zb and z~.

C. Step and gap singularities; branch cuts

We now discuss the branch cuts of K. The branch
points are determined solely by H, and V, but the
way in which the branch cuts connect them is en-
tirely a matter of choice, which determines what
is being conventionally taken as the first sheet of
X(z). Consider an isolated pair of branch points
with ~x, ~»y, . Then, as discussed by SW, the
model-space probability, defined by

(4.28)

changes abruptly near x,. It is appropriate to se-
lect g for representation in the model space only
if p(x) is fairly close to unity. If g (x) is analyti-
cally continued from z = 0 [where p(x) = 1] to x& x,
along the real axis, then near x~, p(x) will abruptly
fall to a small value characteristic of the excluded
eigenvector g, . If, instead, g (z) is analytically
continued around the branch point z~, p(x) will re-
main large for real x&x,. Therefore, if the first
sheet of X is to correspond to eigenvectors with

large model-space probabilities, a cut should be
drawn from z, to z,*. The exact shape of the cut is
unimportant; for simplicity, a straight line can be
used. The presence of the cut implies that E (x)
will not be continuous at x„. it will have a finite
discontinuity, that is a "step, " of height 2m~~.
Accordingly, we say thai a pair of branch points
with y, «~x,

~

leads to a step singularity This is.
the type of singularity associated with a so-called
intruder state, "defined as any state belonging
mainly to I.+ that is depressed below the upper-
most represented state by the action of the pertur-
bation.

On the other hand„ if ~x~~«y„ then p(x) varies
slowly even near x» and it is appropriate to ana-
lytically continue E and g by passing through the
gap between z~ and z~. This corresponds to draw-
ing two cuts from z~ and z~ to infinity, away from
the real axis. Such a gap would not usually be re-
garded as an intruder-state singularity, but rather
as an effect of strong interaction between model

and excluded spaces. If ~v ~&I, then p(x)& —' at
x= j., so that the model space can at best represent
only a small part of P . Existence of such a gap
singularity with ~y, ~&1 would suggest that the mod-
el space has been chosen inappropriately, rather
than simply indicating that PT diverges. Accord-
ingly, we do not treat gap singularities. However,
their possible importance in realistic problems
remains an open question.

Figure 2 illustrates the difference between step
and gap singularities, and shows examples of iso-
lated step singularities.

D. Residue of a step singularity

If an isolated step singularity of X(z) is, in addi-
tion, distant from the origin z =0 and the physical
point z = 1, it can be well approximated by a pole'o
placed at the center of the step. As will be seen
in Sec. V, this provides a useful way of estimating
the effect of the step singularity on PT approxima-
tions. For quantitative estimates it is necessary
to know the residue p, , of the step; this is an op-
erator equal to (2vi) ' times the integral of X(z)
around a closed counterclockwise contour contain-
ing the step (but no other singularities).

We aim to express the residue in terms of quan-

0

Q

FIG. 2. Argand diagram showing gap and step singu-
larities ~ For this hypothetical distribution of singulari-
ties, I'T diverges at z =1 because of the presence of the
pairs of branch points 5, c„d, e, and f inside the unit
circle. Even in the absence of the step singularities
(0, d, e, and f ) the gap singularity c would still, cause
divergence. Of the step singularities, only a, b, and d
are isolated, while e and f are not. The pole approxi-
mation of Sec. V would be appropriate for a and d, but
notforb, c, e, orf.



INFLUENCE OF SINGULARITIES ON PERTURBATION. . .

tities that can be obtained by diagonalizing only
real matrices. The major difficulty is the correct
inclusion of background effects of terms that be-
have smoothly in the vicinity of the step. These
influence the value of the residue, but not the form
of the singularity. Analogously, background ef-
fects modify the energy and width of a scattering
resonance, even in an approximation which retains
the Breit-signer form.

Background effects correspond to a problem
which has all singularities except the one under
consideration. Therefore they are correctly de-
scribed by the minimally adjusted Hamiltonian de-
fined by Eqs. (4.4) and (4.5}. All quantities de
rived from the minimally adjusted problem will be
marked by a superscript a. From Eq. (2.3) it is
clear that the operator ('tt„~) ' is central to the dis-
cussion. Let the background be described by the
operator

(4.29)

This operator is analytic near z, and z,*, so it can
be taken as constant and evaluated at z =x,. Be-
cause the step singularity of the original problem
involves only the eigenvectors g and P, , it is con-
sistent to assume that

+ ~ /4&&x'
i
g&&x'. /,

n = &x'/@ &. (4.38)

Equations (2.25) and (4.34) have been used to in-
troduce the operator F~, which is analytic near
g» so that the first term of Eq. (4.38) can be dis-
regarded. Ne also note that

&x'
l
0'& = «'

~

x'& = 1 (4.39)

from the biorthonormal property of x' [Eq. (2.10}].
The singular part of Eq. (4.38) now becomes

Let us consider the step singularity in the model
operator F. Because of the identity PF =P, only
Q8: can contain a. singularity. Equations (4.31)
and (4.37), applied to Eq. (2.25), give

@6' ='aors('ad '

=(~'op+ q/e &8l~&'('- ~ )

(m' 4 m},
&i&,'=qf. , (iei), (4.30) q(1- 6'o„) l g &&x' l

stng ( a
~&i& )

(4.40)

so that Here f =|t) —p' may be replaced by p, because

(4.31) Q(1 —&'oQ4' = Q(P' 0') = o,— (4.41)

with

(4.32)

from the characteristic property of 6" [Eq. (2.26)].
Finally we obtain the quasiseparable form

The separable form of the second term of Eq.
(4.31) enables ('u~~) ' to be expressed in terms of

Q(1 —&') l 4.&&x' l

(x'~P &

(4.42)

(~ ), (~, ), 1
I'If &&& l(m~~)

'
PP PP 1+&y l(~a )& lg )

By introducing the convenient notation

(4.33)

&-=(~;,) ' (4.34)

for the background matrix, and noticing that

whose significance is not yet clear, because P
is subject to violent changes of direction near z,.

Equation (4.42) is independent of the normaliza-
tion of g, so the unnormalized form, Eq. (4.23),
may be used. The easiest method of obtaining the
residue of Eq. (4.42) is to expand c, given by Eqs.
(4.21}and (4.19), in a Laurent series in powers of
(z —x,) ', and hence generate the Laurent series
of Eq. (4.42). We find

&e.~(~' ) '=&x'. I,
so that

1+&a.~(~;.) '~ ~.&=&x'.
~
t.&,

Eq. (4.33) can be rewritten as

(4.35)

(4.36)
so that, from Eq. (4.23),

tt}Q 2~ j2$6 + 0 "52&i ~Y
m &&& d(x x ) fb

(4.43)

(4.44)

(~ )-i ~ 1 &p &&x' l

PP ( alp
(4.37} In writing this equation we have used the first of

the following equations:
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4=2 "'(4n+ |tan» &'(=2 "'«n -An) (4 45}

Equation (4.44) now gives

&x' le & &x'. lP".&

(4.46)

We have defined the quantity

9, -=&x' lP;.& (4.47}

and made use of Eq. (4.39}. Because of Eq. (4.41),
the terms in P' do not contribute to Eq. (4.42).
Hence, by substituting Eq. (4.46) into Eq. (4.42),
we find

(4.48)

for the leading term in the Laurent series of

From Eq. (4.48), the residue of the step singu-
larity can be derived for any desired effective op-
erator. In particular, we find

(4.49)

so that the residue is

Eq. (4.52). Equations (4.53) and (4.54) have pre-
viously been suggested by Pittel, "with P' and g',

replaced by eigenfunctions of II»+H+, and Eq.
(4.53b) has been tested in Ref. 12, where it is
found to be quite successful —in a case with rather
weak mixing. However, the result (4.50), which
correctly takes background effects into account,
is expected to be necessary for cases where the
mixing is stronger.

Sometimes it may be interesting to know the
form of the singularity of P near a branch point,
say z» although it cannot have direct physical
significance, because z, is not real. The result
is quoted without derivation:

2i(z — z,)"'
0 &'+(;~

& (1,';6 &

@(1-6')l0'&&~'-l

(4.55)

(z-z,).
It is interesting to make more explicit the con-

nection between Eq. (4.49) and earlier work by
Vincent and Pittel" and Pittel. " They conjectured
that the location and residue of a step singularity
can be estimated from an equivalent two-state
problem in which mb is the interaction matrix ele-
ment between the states, and d is the difference
between the slopes of the levels that coincide. Now
in the basis P', g', defined by the minimally
smoothed Hamiltonian, we have

~, =
d

'If&o(1-~'&l4&&&x.'l. (4.50)

A simple measure of the strength of p. b is pro-
vided by its trace

tr p, = „'"'&x.'Irido( —6')
I ti& (4.51)

d+ If oil &(x'
I

tr p, ,= (m,x,)'/d .

(4.53a)

(4.53b)

The second of these equations uses the relation

(x' lffaoltg&=&gllfltg&™Pp~ (4.54)

which applies if the mixing is weak, because of

which is equal to the only nonzero eigenvalue of
Unfortunately, because p, b is not Hermitian,

some of its matrix elements may be larger than its
trace, and so try. b is only a very crude measure.
Under the assumption of weak mixing, Eqs. (4.50}
and (4.51) can be simplified, because then

F'=P, X' = y' = P', Qg;= P; (weak mixing),

(4.52)

so that

a —,d 0
+ (z —x,)

0 a+-,'d
(4.56)

The role of mbxb as an interaction matrix element
between P'„and tt}',. is now clear, and also the mean-
ing of d as the difference of slopes for lz —x,

l

»X~ (but small compared with the distance to the
nearest other singularity). Thus the present dis-
cussion mathematically defines the parameters
mb and d, which previously' were only imprecise-
ly identified. That only real z values enter these
definitions is an important computational conven-
ience.

Although d and mb are no easier to calculate
than the desired eigenvectors and eigenvalues of
H(1), the result (4.50) has possible applications
in studies"'" in which H is diagonalized exactly,
so that approximations to 3C can be compared with
the exact result. It can be used to identify the
contributions of particular singularities, - allowing
the reasons for success or failure of an approxi-
mation to be more sharply identified. Experience
in such controlled numerical experiments may
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Perturbation theory for the effective Hamiltonian
is an expansion of K(z) in powers of z:

3C(z) = h + h (z)+h z'+ ~ ~ ~ (5 1)

As remarked earlier, the series converges for the
physical value z = 1 if all singularities of X(z)
are outside the unit circle. If there is an intruder
state, there will be at least one step singularity
inside the unit circle.

Often the step singularity produced by an in-
truder state satisfies the conditions assumed in
Sec. IVD,

(5.2)

so that the singularity is distant from both z =0
and z = 1, as well as isolated from other singulari-
ties. In this case, the cut can be replaced by a
pole at +b&

Pb
8 tep pole (5.3)

Z Xb

where p, b is the residue of the cut, given by Eq.
(4.50). At the physical value z = 1, we have

X„„(1)=
Xb

However, the contribution of the pole to PT
through nth oxder is

(5.4)

g h„(pole)
v=0

with

h„(pole) = —p, g /xg

(5.5a)

(5.5b)

The difference between Eq. (5.4) and Eq. (5.5) is
e„(pole), the contribution of the pole to the error
e„ incurred by nth-order PT at z = 1:

e„(trunc) =—K —P h„. (5 6)

In the pole approximation, the contribution to the
error of nth-order PT is

then suggest improved approximation schemes.
Even in cases where H cannot be diagonalized
exactly, mb and d can often be estimated from ap-
proximations to g',-b and g'b. Pittel" has used this
method to estimate the effect of a step singularity
due to a deformed 4-particle, 2-hole intruder
state on low orders of PT for the 0' states of "O.

V. INFLUENCE QF AN ISOLATED STEP SINGULARITY

ON PT

exactly. For
~
x~~&1, the norm lie„(pole)ll is an

incxeasing function of n, so that the series di-
verges.

Truncation of the PT series at a finite order n

always involves some error, e„(trunc). It may
happen that for this value of n, the contribution of
the pole to the error is small compared with the
intrinsic error of truncation. As long as

II e„(pole) II «II e„(trunc) II, (5.6)

the series through order n is practically indistin-
guishable by its behavior from the series for
X-X,t, , which is convergent if the step at xb is
the only singularity inside the unit circle. In fact,
if p, ~ is known or can be estimated, Eq. (5.8) can
be used as a rule for deciding the optimal trunca-
tion point n.

Thus, although the PT series is divergent, it
can nevertheless give good approximations —if
appropriately truncated. In this respect, PT re-
sembles an asymptotic series. However, the PT
series is actually not asymptotic, except in the
trivial sense that every power series with nonzero
radius of convergence is asymptotic. An asymp-
totic series" would have the defining property

lie„(trunc)ll/Izl"-0 as z-0, (5.9)

with z confined to some sector of the plane, and
n fixed; this limiting property states that the ap-
proximation becomes arbitrarily close for small
enougk z. In contrast, we are interested in the
magnitude of e„only for z = 1. It is often tacitly
assumed that Il8„(trunc)ll is always smaller than
the norm of the (n+ 1}th term; this is not generally
true, eithex' for asymptotic or for convergent
series. For computational purposes, it is, in any
case, perhaps best to disregard questions of the
convergence or asymptoticity of series, and sim-
ply concentx"ate on estimation of the errors of ap-
proximations of finite order.

According to Eq. (5.5b), the contribution of the
pole always dominates PT for sufficiently large n.
This is illustrated by Table I, which shows various
orders of PT for an effective Hamiltonian K
suitable for describing the T=1, J'=0' states of
"0 in an s-d shell model space. A preliminary
report of this calculation appears in Ref. 24, and
details are given in Ref. 12. The ratio h, /h» of
coxxesponding matrix elements of the ninth and
tenth orders is almost constant and equal to
-0.252 on the average. This indicates that, for
n~ 9, h„(pole) already dominates PT. By Eq.
(5.5b), the pole is at approximately

e„(pole) = —(p, /x, ) (1 —x, ') —Q x, "
xb = —0.252. (5.10}

~ f1+i

Xb- 1
The residual variations in h, /h», especially for
some smaller matrix elements such as (I,m')
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TABLE I. Matrix elelnents (iIh„Ij) for PT of orders n=2 —10. Notation: 1 =—dq/2, 2 =s&/2, 3 =d3/2 . All energies
are in MeV.

3,2 1,2

A2

h3

h4

h5

h6

hv

hs

hs

h,gh«
hgo (sep)
pg &10

e3 (trunc)
e4 (trunc)

-5.091
-0.332
+ 0.921
-0.115
-0.069
-0.959
+ 2.487
-9.318
36.376

-0.256
36.513
9.504

0.002
-0.007

0.761
-0.160

-0.033
-0.016
—0.042
-0.014
+ 0.041
-0.020
+ 0.056
-0.195

0.726

—0.269
0.698
0.182

0.000
—0.000

-0.036
0.006

-0.119
+ 0 ~ 382
+ 0.153
-0.168
-0.032
+ 0.007
+ 0.341
—0.798

2.868

—0.278
2.864
O.746

0.000
—0.001

—0.017
—0.170

-0.051
-0.092
-0.371
-O.413
+ 0.327
—0.159
-0.248
—2.430

5.042

—0.482
5.015
1.305

0.000
—0.001

0.020
0.391

—4.385
+ 0.184
-0.593
-0.079
-0.180
+ 0.026
+ 0.102
-0.025

0.116

-0.216
0.096
0.025

0.000
-0.000

0.386
0.979

-0.199
-0.033
+ 0.053
+ 0.109
+ 0.086
-0.128
+ 0.067
+ 0.097

0.709

+ 0.137
0.393
0.102

0.000
-0.000

0.030
-0.023

-0.205
+ 0.844
-0.998
+ 1.708
-4.121

+ 11.891
-46.219

+ 180.352
-716.770

-0.252
—716.549
-186.518

-0.037
0.147

-O.107
0.891

—0.220
-0.016
—0.071
+ 0.065
—0.130
+ 0.346
—0.979
—3.553

—13.795

—0.258
-13.703
—3.567

-0.001
0.003

—0.060
0.011

—5.106
+ 0.714
+ 0.531
—0.158
—0.694
+ 1.578
—3.731

+ 14.223
-56.335

-0.252
—56.204
—14.630

-0.003
0.011

0.152
—0.379

f = (36.67, -0.257, -1.869),

= (0.078, 0.019,0.997) .

(5.12a}

(5.12b)

The normalization of f has been chosen so that

= (2, 1) and (2, 3) shows the extent to which other
singularities also have some influence. As re-
quired by Eq. (4.22), h„ is very nearly a separable
matrix. This is verified by comparing with

h„(sep), a separable approximation to h„. Equa-
tion (5.5b) permits identification of h»(sep) with
-y, ~/x~", so that }I,~ can be calculated, and values
of e,(pole) and e,(pole) are then obtained from Eq.
(5.7). Comp»mg e,(pole} and e,(pole) with h, and

h4, we see that the singularity at x~= —0.252 has
little effect on the behavior of PT through fourth
order. Since the exact value of X is also known
for this case, the values of e, (trunc) and e,(trunc)
can be calculated. (This would not be true for
realistic cases, where PT is being used for the
very reason that an exact solution is not available. )
Again we see that ie„(trunc)i»ie„(pole)i for n=3
and 4. The largest matrix element of e,(pole) is
(1

i
e,(p»e)

i
3)= 0.147; in fifth order the v«e

would be = 0.6, so that it is not appropriate to add
terms beyond the fourth order. " Notice that this
conclusion is reached without any phenomenologi-
cal assumptions. Only information obtained from
PT is used.

Further details regarding the singularity can be
obtained by factorizing the matrix h„(sep) as fol-
lows:

h„(sep) = —19.60 if&(X' i,
where the factors (evaluated at x„) are

(X' if&=1 (5.i3)

However, no information on the individual normal-
izations of f and j is contained in PT for X.
Equation (5.13}implies that the separable operator

if&(1~i has 1 and 0 as its only eigenvalues. How-

i
f&(g' [and h»(sep)] have both positive and

negative diagonal elements, because they are far
from being Hermitian. Thus the positive (or neg
ative) semidefinite property of p, does not extend
to individual matrix elements, even on the diago-
nal.

Lastly, the constant 19.60 in Eq. (5.11) can be
identified with try, /x, ", by Eqs. (5.5b) and (5.13).
The value of d, obtained by comparing spectra
for at x=0 and z= —0.252, is

From these estimates applied to Eq. (4.53b), we

get

gyes~'= 51.4 & 10 6,

so that

ppg~ =+ 0.007l .

(5.15)

(5.16)

The pole approximation, Eq. (5.3), depends on

the initial assumption that A.~ is small. From Eq.
(4.26), with Eqs. (5.14) and (5.16),

which indeed satisfies Eq. (5.2). (Should this check
fail because X~ ~s not negbgxble, the analys~s could
be improved by taking the finite value of ~~ into
account. )

The choice of Iro and V that led to the quoted PT
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results is seen from Fig. 1 to produce several
other step singularities inside the unit circle, in
addition to that at z= —0.252. Among them is one
near z =+ 0.7. High-order PT is always dominated
by the singularity nearest the origin, which can
therefore be studied accurately. However, other
singularities may be more important in determin-
ing K at z =1, so it is not unexpected that removal
of the singularity nearest the origin (in this case,
at z = —0.252) does not succeed in substantially
improving third- and fourth-order approximations.
The more difficult task of allowing for several
singularities simultaneously will not be attempted
here.

VI. CONCLUSIONS

The model operator F(z) and the effective Ham-
iltonian X(z) have been shown to have singularities
only at values of the coupling constant z where
represented and excluded eigenvalues coincide
("P Qsingula-rities"), in agreement with the con-
clusions of SW. A P-Q singularity is a pair of
complex conjugate branch points which may be
either close to the real axis (corresponding to a
"step singularity" ) or close to the imaginary axis
(corresponding to a "gap singula. rity"). The gen-
eral form of an isolated step singularity has been
derived, and a method of evaluating its residue by
diagonalizing only real matrices has been given;
the residue is a separable operator. This develop-
ment converts the heuristic two-state model of
Vincent and Pittel' into a precise instrument. For
any solvable model it becomes possible to calculate
the residues of all step singularities that lie in or
near the unit circle, and hence remove them from
K(z). Study of the behavior of the PT series for
the remaining step free part of 3C(z) [compared
with PT for the full X(z)] could then decide the rel-
ative importance of step and gap singularities in

spoiling perturbative approximations. This know-

ledge would be useful in guiding the search for
improved methods.

To the extent that isolated step singularities are
responsible for the errors of low-order PT, esti-
mates of their contributions can help in assessing
its reliability. The location and residue of the
step singularity that is nearest to the origin can
actually be calculated quite accurately by using
only information derived from the PT series. For
other step singularities (at greater distances from
the origin), the locations and residues may in turn
be estimated by first calculating and removing the
nearer singularities. However, it is not clear that
this process would be stable enough for practical
use. Moreover, high orders of PT would be
needed to ensure sufficient dominance of the near-
est singularity. The number of diagrams required
rises so quickly with order that diagrammatic
methods would become impossible.

In computer experiments with large many-body
Hamiltonian matrices, it is often found that the
step singularities are isolated and have small
residues, so that the analysis described above is
applicable. However, better understanding of the
reasons for these tendencies is needed before they
can be generally relied on in practice. The same
is true of the question of the relative importance
of gap singularities. In view of these reservations,
it is clearly desirable for any proposed calculation
scheme to supply internal rules for estimating the
errors.
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