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Alyha-transfer reactions in light nuclei. I. An exact-fmite-range couyled-channels analysis'
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Thc importance of including multistcp inelastic proccsscs ln 6-particle-transfer rcactioiis In light nuclei is
discussed, and the necessity of using an exact-finite-range analysis of such reactions is emphasized. A
formalism for the treatment of such reactions in an exact-finite-range Born approximation which includes
inelastic effects to all orders is presented. An example from the "Mg('He, 'Be)' Ne reaction in which it is
necessary to use this analysis in order to understand the experimental data is discussed.

NUCLEAB BEACYIONS &-transfer reactions, importance of multistep inelastic
processes. Formalism for exact-finite-range coupled-c»»els analysis.

I. INTRODUCTION

Nearly all analyses of transfer reactions have
involved the use of the first-order distorted-wave
Born approximation. Such an approximation en-
tails the evaluation of the transition amplitude
matrIx element

Xf 9'y ~ Pg Xgd rgd &y~

uslJlg fox' g] Rnd X~ optical model solutions 'to the
scattering problem. An exact calculation of T&&

necessitates the evaluation of a six-dimensional
integral. Therefore, in order to reduce the six-
dimensional integral to a relatively tractable three-
dimensional one, the motion of the transferred
nucleons and the core of the pxojeetile is usually
tx'8Rted Rs R Q function» This zex'0-I'Rnge Rppx'oxl-
mation is generally valid mhen the transferred
cluster' is in an 9 state in the pxojectile and the
size of the projectile is small compared to the
target and residual nuclei. Sever al authors'2 have
pointed out the need for using approximations other
than zex'0 x"RDge mhen the Rbove criteria Rx'6 not
satisf ied.

A natural extension of the zero-range appx oxi-
mation is the fixed-range approximation in mhieh
the transferred cluster and the core of the pro-
jectile are considered to be at some fixed separa-
tion and in mhich the tyro cores and the transferred
cluster are assumed to be collinear (see Fig. l).
This approximation suffers from tmo shox'teom-
ings: (a) the structure of the projectile is not
taken into account in the reaction and (b), more
significantly, the angular momentum selection
rules are still the same as for the "no-recoil" re-
sult. As mill be shomn later, these approxima-
tions lead to angular distributions significantly dif-
fer'ent then the exact calculation.

Another technique that has beeD Rpp116d exten-

sively for an approximate evaluation of the full
six-dimensional finite-range integral for single-
nucleon transfer is the expRnsion of the distorted
waves 1n a Taylor serres about r~ = &r„where r,
and r~ are the radii indicated in Fig. 1. Such an
expansion has beeI1 shown to convex"ge for slDgle-
nucleon transfer in certain cases. It does not ap-
peRx', homevex', to be VRlid for 0'-particle tx'Rnsfer
on light nuclei.

Several methods have been devised to tackle the
problem of an exact-finite-range treatment. Per-
haps one of the ea,rliest mas the use of plane
waves" instead of the usual distorted waves to
describe the scattering of the nuclei in the initial
Rnd final systems. ID such R method the tx'RDsltlon

amplitude is fRctox'Rble 1nto the px'Oduct of two
three-dimensional integrals and, hence, is easily
evaluated. Because of the neglect of nuclear dis-
tortions, however, the plane-wave method has
limited applicability. Another technique has been
the expansion of the distox'ted waves into a com-
plete plane-mave basis' where the six-dimensional
integral ean be factored as discussed above. This
technique has the advantage that the series expan-
sion is rRpidly convergent, . One of tI16 Dlox'6 widely
used techniques fox evaluating the six-dimensional
integral is the bipolar expansion of Austern etaE. '
Several codes nom make use of this procedure in-
eludU1g that of LOLA, ' SATUB, N-MABS, ' and the one
to be discussed below, FBIMP .

In ox'der to bettex' understand tI18 motivation for
PRIMP lt is 11elpful to examine soD16 bRslc assunlp-
tions in the distorted-wave Born-approximation
(DWBA) theory. ' First, the transfer is assumed
to occur directly from the elastic channel to the
final state. Gnly the transferred particles partici-
pate in the I'eaction while all other nucleons, des-
ignated the core, remain inert. Second, the DWBA
assumes the optical model provides good wave
functions in the region where the transfer takes



ALPHA-TRANSFER REACTIONS IN LIGHT NUCLEI. I. . . 469

(a)
FIXED —RANGE COOIRDINATE SYSTEM

Ra

Rb

R)

(&)
F I Nl TE —RANG E CGQR Dl NATE SYSTE M

FIG. 1. The coordinate systems used to describe the
reaction A (a,b)&, where c =b +x' and8 =4+x. The vec-
tors K& and g describe the internal motion of a and 8
respective1y. (a) Fixed-range coordinate system. Here
the sca1ar p denotes-the fixed separation of 5 and x with-
in a. @) Finite-range coordinate system.

place —usually at the nuclear surface. Third, it
assumes the reaction process is sufficiently weak
so that it ean be treated in first order.

Ascuitto and Qlendenning' have given examples
where the first two assumptions cannot be made.
In particular, it may be that certain states of the
final nucleus do not have any parentage with the
ground state of the target but do with an excited
state of the target. Then the reaction ean only
proceed through two- step processes including core
excitation and direct transfer. The DWBA cannot
hope to treat transfers to such states. The second
assumption is violated if there are strongly en-
hanced inelastic transitions in either the target or
final nucleus. The optical model potential, chosen

to fit the elastic scattering, gives the correct rel-
ative motion wave function for the external region,
but the interior wave function (or at least the wave
function at the nuclear surface) is needed to calcu-
late the transfer amplitude. If the coupling of in-
elastic transitions to the elastic charnel is suffi-
ciently lax ge, then the elastic optical model will
break down.

Thus, it was felt that because of the strong in-
elastic scattering of the projectiles typically used
in n-particle-transfer reactions in light nuclei, it
would be desirable to include inelastic effects in
the analysis of these reactions. A reaction code
has, therefore, been written which treats inelastic
effects to all orders in the included channels and
treats the transfer in an exact finite-range evalu-
ation of the DWBA transition amplitude.

The code uses as its basis the zero-range cou-
pled-channels Born-approximation (CCBA) code
LISA' which employs the source term method of
Ascuitto and Glendenning' to solve the problem of
coupling the channels in the entrance and exit sys-
tems. (It should be pointed out that this is not the
only way the coupled-channels problem can be
solved. There is at least one other code' which
uses the transition amplitude technique" to arrive
at a solution. ) The code LISA was modified to in-
clude a new source term program which treats
the transfer in exact finite range. The formalism
for the source term closely followed that outlined
by Austern gt aE.' Extensive checks of the accu-
racy of the code were made against the zero-range
coupled-channels code LL~A'0 and the finite-range
DWBA code LOLA. ' It was found to give goodagree-
ment with both these codes. Section II of this paper
will provide a brief derivation of the coupled equa-
tions and source term, and Sec. III will discuss
the results of these calculations.

II. THEORY

Only an outline of the technique needed in calcu-
lating the coupled equations and source term will
be presented here. For a complete derivation see
Refs. 9, 12, and 13. We use the usual notation for
a stripping reaction:

A(a, b)B, a = 5+x, B =2+x.
The coordinates used in this presentation are
shown in Fig. 1. The result for pickup reactions
is of essentially the same form as for stripping,
apart from the usual statistical factors.

We begin by solving the entrance channel equa-
tions

(a-z))t& &=o

subject to the boundary condition that there be in-
coming waves only in those channels where the
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nuclei are in the ground state. Here

H=H(internal)+T(relative)+ V(relative), (2)

whel6 V ls the optical model 1nteI'RctloD between
the nuclei in the entrance system. The exit sys-
tem is similar to the entrance system except that
lt ls coupled in fix'st ox'dex' to 'the entlRnce systenl
V1R the usual stl1pp1ng lntex'action V:

(P R)g(+& —V ~(+& (2)

where we have the additional boundary condition
that 4,"contains only outgoing waves. For a dis™
cussion of V, and its relationship to the complete
Hamiltonian, see Ref. 14.

We now expand the solution of Eg. (1) on a limited
number of basis states:

Z&;&"=„—g u,"(R,)C.".„(R„a,A),
a

where the notation is similar to Ref. 9, and in
particular, a and A represent the internal coordi-
nates in par ticles a and A. Where both a and a'
occur in an equation, a refexs to the channel con-
taining the ground state. Substituting (4) into (1)
yields a set of coupled equations:

[T„+V:.', (R.) -Z.,]u„"(R.) =- P V „.(R.)u.",,'(R.),

V;~ (R,) = (C."„(R., a, X)
~

V(a, , A)
~
C "„„{R„a., X}).

(8)

Similarly for the exit system, we have

(T&&t + Vbtgt(RQ) E&&J)lUQ (R Q)

=- Q Vy',.(R,)su/'(R, ) —pP'(R, ), (8)

p„'=R, g(C",.„(R„b,5)
J V, f C,"„,(R., a, A}~: /R. ).

g

Note that the solutions to (8) are labeled with the
entrance channel quantum numbers a, since the
source term depends on these as well as on those
of the exit system.

Before mox'e explicit evaluation of either V'~~

or the source term ~'a', I can be made, a model must
be chosen for the inelastic scattering, the nuclear
structure, and the stripping mechanism. It was
felt that for the nuclei considered in this analysis
the rotational model of Bohr and Mottelson would
be Rppx'opr1Rte. Pox' even-eveD nuclei the s1mple
adiabatic wave function

izMz=o&=( )"*io&n„',

was chosen. It is straightforward to substitute
this form of the wave function into (8) and evaluate
the resulting matrix element using an expansion
of V about R spherical distribution. The procedure
is shown in detail in Hefs. 12 and 15 and the re-
sults will not be presented here.

We can proceed with the evaluation of the source
term if we assume that we are treating either
single-nucleon transfer or the transfer of a single
cluster. %6 then have:

p,'"=R, p &1[1',,(R }4'.,(& )]j c',(&,)),"
~
V,

~
([V, (R,}c,(t'„,)]j., @,„(5 )j," "'{R.)&'R.).

%6 now make a parentage expansion of the two bound state wave functions:

where s is the spin of the transferred cluster and y, is a relative motion wave function. These wave func-
tions a.re put into (11), and several recoupling transformations are used to reduce the matrix element. The
final expression for the source terID is

p&", =R„Q Q y, y, (2g, +1)(2g2+1)[(2Ja+1)(28,+l)(2j,+l)(2j~+1)(2j,+1)(2j2+1)]'~'

x ( )I+1~+s(s~ sy g &++y q +y2&&2 g+++
Sg 8 g»

g2 2 f1

fe sa fx s, sy gal]
l~l, g,

j2 jtf
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where the subscripts 1 and 2 refer to the quantum
numbers in the incident projectile and final nu-
cleus respectively, the g's are the intermediate
angular momenta from the recoupling transfor-
mations, and I„,(R,) is the following integral:l L~ty

ferential cross sections, which in the case of no
coupled channels, i.e., DWBA, can then be com-
pared to the experimental cross sections to deter-
mine the n-particle spectroscopic factors or re-
duced widths

III I,(RC) d R,'dR, HII, (Rc, R,)u,", (R,)/R, )

(13)

= S (B)S„(a)= (B
~

A 8n ) (a
~

b 8n)
(do/dn),

CCI C

where J is the Jacobian of the r„r, to R„R, co-
ordinate transformation and H», is the bipolar
expansion coefficient of Austern et al. ' This co-
efficient in itself is a summation, weighted by
l-coupling coefficients, of integrals of the form:

+1

gr(RC, R,) = dtI[gI(rI)lrIII][g, (r2)/r2I2]
«i

&& VI(rI)I', (u),

(14)

p, =—R, R~,

where the u, are the radial parts of the bound state
wave functions and V, = V, or V, depending on
whether the post or prior approximation is used.
All nuclear structure information is contained in
the H», coefficients. Since no approximationsl lt), l a
are made vis a vis the coordinate system in the
evaluation of the integral If f i recoil is taken intol1yla&
account exactly.

The formalism used in this reaction analysis
leads to a computer code which naturally divides
into four sections. The coupled equations for the
initial system are set up and solved in a manner
identical to that of Ref. 9. The solutions to these
equations are temporarily stored for use in con-
structing the source term, p~ Calculation of the
source term is straightforward once the bipolar
coefficients are evaluated. By far the largest
amount of computer time is spent in evaluating
these expansion coefficients, since one is required
at each mesh point for every l transfer for every
combination of entrance and exit channel. For a
typical ('Li, t) reaction calculation at tandem ener-
gies there may be 5000 mesh points, 25 partial
waves, three l transfers, and a total of 21 channel
combinations, thus requiring 7-8 million evalua-
tions of H» (R IR, )c. Still such a calculation can

&a
be done in less than 25 minutes of central-pro-
cessor time on the CDC 7600. These coefficients
are generally kept on a permanent storage device,
since they are independent of the optical models
used for a given reaction. The source term is
then used to construct the coupled equations for
the final system, whose solution yields the S-ma-
trix elements for the reaction process. These
S-matrix elements are used to calculate the dif-

III. DISCUSSION

A. Is finite range necessary?
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FIG. 2. A comparison of finite-range DWBA and fixed-
range DWBA calculations for the Mg /He, 86(p)) Ne

(0.0 MeV) reaction. See text for a discussion of the dif-
ferences in these calculations.

As is readily evident an exact-finite-range DWBA
is considerably more complex than the zero-range
or fixed-range approximation, so that there may
be some question of the need for using the exact
result. This question was aptly answered by
DeVries' for single-nucleon transfer in heavy-ion



reactions, where recoil is manifested by the ad-
ditional allowed l transfer. Such a question has
not been answered fox' n-transfer reactions in
which one of the projectiles is a light ion, e.g. ,

( Ll, f), ( Ll, d), {He, Be), and {d, Ll). A COITl-

parison of two calculations can be seen in Pig. 2
for the "Mg('He, 'Be«&)20Ne(0. 0 MeV) reaction at
a laboratory bombarding energy of 25.5 MeV. In
this case the differences between the two calcula-
tions are not confused by additional t' transfers
allowed by recoil; since E2 =0, the exact calcula-
tion has the same $-transfer selection rule as the
fixed-range one, i.e. , /=I, . Note the large dif-
ferences in slope and peak-to-valley ratios of the
two calculations. The reasons for the differences
in the calculations can be seen in Fig. 3 where the
kernel g, (R„R,) is plotted for this reaction. It is
this kernel, which when combined with the distorted
waves, determines the regions of R„R~ space that
contribute to the reaction cross section. Note that
there are significant contributions to the cross
section away from the fixed-range line. It is for
this reason that the full finite-range calculation
gives R dlffel ent result than fixed-range Rppl'oxl-
mation.

8. Vfhy end when of coupled channels

After examining the much more complex formulas
that must be dealt with when including coupled

4P 6
I

C4

~ 4-
K

FIG. 3. The finite-range kernel go(R&, R ) I Eq. (14)I
for the ~4Mg(3He, Be( ~)20Ne (0.0 MeV) reaction. Bound
state wave functions are determined in Ref. 18. The
contour' lines reflect only the absolute value of the go
function.

channels in the D%BA analysis, it is fair to ask
how necessax'y this is and how significant it is in
the final result. Could the same effect be achieved
with a careful selection of optical potentials 'P In
general the answer is no. As was pointed out
earlier, the one-channel optical model used in con-
structing the scattering state wave functions for the
D%BA calculation breaks down when thex e is
stx'ong coupling to anothel chaIUlel. This ls dis-
cussed by Glendenning" and by Percy and Satchler"
for inelastic scattering, and their results can be
readily carried over to transfex calculations. The
coupled-channels analysis tries to explicitly take
into account those excitation processes which are
strongly coupled to the elastic channel. By includ-
ing all strong channels, it is hoped that the effect
of all neglected weak channels can be treated
phenomenologically and that the resulting optical
potential, and hence the scattering wave functions,
will be as accurate as possible. The necessity for
accurate scattering wave functions cannot be overly
emphasized for the calculation of transfer cross
sections, particularly where heavy ions are in-
volved. In order to calculate tx'ansfer cross sec-
tions accurately and in a consistent fashion, it is
necessary to include the effects of stx'ong channels
explicitly by analyzing elastic and inelastic scat-
tering in a coupled-channel formalism.

The DWBA also fails when the final state has a
small parentage with the target ground state and
when thex'e are indirect routes to the final state
which are of comparable magnitude to the direct
one. If one such indirect route dominates, then it
seems plausible that an optical model might be
constructed which reproduces the observed angular
distribution. On the other hand, if there are
multiple routes of comparable magnitude, then
the resulting interference among these routes
cannot be sixnulated by any changes in the optical
model. Considex the example shown in Fig. 4
where calculations for the "Mg('He, 'Be&»)-' Ne(1.63 MeV) reaction are displayed. Because
of the deformed nature of '~Mg and "Ne this reac-
tion is believed to have significant excitations in
the entrance and exit systems. The curve labeled
D%BA is the result of a non-coupled-channels
transfer calculation using the optical potentials
which fit the elastic scattering data, while the
curve labeled CCBA is from a coupled-channels
transfer calculation using optical potentials ob-
tained by refitting the elastic and inelastic scatter-
ing data in a coupled-channels formalism. The
'4Mg target is viewed as a ' Ne core coupled to an
n particle. The D%BA cross section is propor-
tional to the square of the overlap of the '~Mg

ground state with an n particle coupled to the
"Ne(2') state, i.e. , ("Mg(0')

~

"Ne(2')S&)', and
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FIG. 4. A comparison of an exact-finite-range DWBA
calculation with an exact-finite-range CCBA calculation
for the 24Mg(~He, 7Be(&))20Ne (1.63 MeV) reaction at 25.5
MeV. The optical model parameters for the DWBA are
those that fit the elastic scattering while those for the
CCBA curve fit the elastic and inelastic scattering in a
coupled-channels formulation. The optical model param-
eters and the bound state parameters are given in Hef.
18. The curve labeled HF is the result of a Hauser-
Feshbach calculation and gives an estimate of the com-
pound-nuclear contributions to the cross section. See
Hef. 18 for details of this calculation.

the square of the 'Be overlap ('Be ~'Hes&)'. lf
nom, however, this first overlap is small, and
the 24Mg(0') state has a significant parentage based
on the "Ne(0') state or the "Mg(2'} state ha, s
parentage based on the "Ne(2') state (all of which
are true according to the SU, model of these nu-
clei'7), then one cannot hope to correctly calculate
angular distributions to this state without also con-
sidering two-step transfers. This is illustrated
in Fig. 5 where the different routes that contribute
to the 2' cross section are plotted, weighted by the
squares of their parentage coefficients as calcu-
lated within the SU, model. Note that the route
connecting the ground states dominates this calcu-
lation of the 2' cross section. The ground-state
to ground-state contribution to this transition is at
least a factor of 5 greater than the direct route
which would be calculated within the DNBA model.
Note also that the magnitudes of the other contri-
buting, two-step routes are comparable to the
direct route. This can be understood in terms of
(1) the fact that the square of the parentage factor
for the ground- to-ground route is approximately

O. I

IRO

FIG. 5. Each of five separate routes which contribute
to the full. CCBA calculation for the 20Ne (1.63 MeV) state
in Fig. 4. The parentage factors for each route are
determined by the SU3 model (Hef. 17). The l = 2 route
between the 2+ states is not shown as its magnitude is
below the range of the figure.

eight times larger than that for the direct 2' route"
and (2) the fact that the strength of the inelastic
transition between the 0' and 2' states in the
"Ne+'Be system is considerably stronger than
the strength of the corresponding transition in the
'~Mg+'He system. In this case it is clearly nec-
essary to include the two-step 0' to 0' to 2' route
in any meaningful analysis of these data, and it is
also clear that there will be other cases in which
the inelastic transitions in the target system will
be comparable to those in the residual system so
that aL/ of the routes leading to the 2' state will
have comparable strength. Such a situation clearly
requires the use of a, complete coupled-channels
treatment. A more complete discussion of the
example presented above (including the extraction
of spectroscopic factors) is given in Paper Q" eg
this series.

While a single-channel optical model can be
made to give adequate wave functions in the simple
situation when the coupling to excited states is
weak, and while such a simplified calculation ean
be made to simulate the effect of a single, iso-
lated two-step transition, on the other hand it is
clear that a full coupled-channels treatment is
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necessary whenever the coupling is strong and
whenever there are several competing routes
leading to the final state.

IV. CONCLUSION

Utilizing existing techniques, we have developed
a formalism for treating single-nucleon and cluster
transfer reactions in an exact-finite-range DWBA
including inelastic multistep processes in the ini-
tial and final systems to all orders in the included
channels. We have demonstrated the importance
of using an exact-finite-range evaluation of the
DWBA transition amplitude for +-transfer reac-
tions such as ('He, 'Be) and ('Li, t) and the impor-
tance of using the coupled-channels formalism to
determine accurate scattering state wave functions
when there is strong inelastic coupling involving
either the initial or final states. We have also

shown the necessity of calculating angular dis-
tx ibutions using coupled channels vrhen there are
several competing and interfering routes to a
single final state. The application of this forma-
lism to the analysis of the ('He, 'Be) and ('Li, f)
reactions on light nuclei is presented in Paper II"
and Paper III'9 of this series.
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