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A reduction procedure for the construction of matrix equations applicable to direct nuclear reactions is
described, where the direct channel Green's functions are used to simplify the many-particle problem. The
Faddeev-type matrix equations are reduced to simpler forms so that the partial connectivity of the iteration
kernels is maintained for those direct channels which are explicitly coupled. Auxiliary channels are then
introduced to improve the connectivity property, while direct channel distortion potentials and simple channel
projection operators are incorporated to facilitate the solution of the coupled equations. Using the reduction
procedure, the multiple scattering equations of %'atson are extended to include explicitly the rearrangement
channels which are strongly coupled.

NUCLEAR REACTIONS Reduction of the I'addeev equations; coup1ed equations
for direct interactions; auxiliary c»»els.

I. INTRODUCTION

Since the pioneering work of Watson" on the
multiple scattering theory for many-particle sys-
tems and the mathematically rigorous study of
Faddeev' on three-particle scattering, there have
appeared many alternative formulations~' and
various extensions' "of these theoxies. While
the Watson formulation is essentially equivalent
to the Faddeev theory for the three-particle sys-
tem, it is quite distinct for scattering systems
with more than three particles. Due to the im-
portant role played by the channel Green's func-
tions, to be discussed in detail, the multiple scat-
tering theory is much simpler in structure and
more readily applicable to complex physical sys-
tems. In the present paper, we will stress this
feature of the theory in simplifying the formulation
to suit the direct nuclear processes.

The formal theoretical difficulties of the many-
particle scattering systems a,re associated'~'"
mainly with the particle rearrangements among
different clusters. For systems with more than
two particles, channels with different particle
rearrangements are possible, each with a differ-
ent channel Hamiltonian. The channel wave func-
tions generated by these Hamiltonians are gener-
ally not orthogonal to each other. Thus the cus-
tomary procedure of expanding the total wave
function in terms of more than one set of channel
states should be carried out with special attention
paid to the question of overeompleteness. Fur-
thermore, the usual (ie) prescription for the
boundary conditions on the Green's function in the
Lippmann-Schwinger scattering equation may not
be sufficient to uniquely specify a solution. '4'"

This difficulty is resolved by imposing all the
open channel boundary conditions simultaneously.
A multicomponent wave function may be used for
this purpose, where each component assumes a
specific boundary condition asymptotically.

When one tries to solve by iteration a set of
coupled equations derived using the multicompo-
nent wave function, the iteration kernels may con-
tain terms which describe processes in which
some of the particles are left as spectators and
thus not intera, cting. These terms are associated
with the additional energy-conserving 5 functions'
which, unlike the 5 function corresponding to the
overall energy conservation, cannot be factored
out. This gives rise to an ill-defined iteration
kernel. Thus, the problem is identified with all
the partially connected processes in which one or
more spectator particles are involved. Much of
the complicated formal manipulations required in
the many-particle theories' "are to systematically
isolate these troublesome terms from the com-
pletely connected part. The full eonnectivity is
obtained by including the interactions of all the
particles in the system at least once.

Although the partially connected parts of the
iteration kernels lead naturally to the multicom-
ponent form of the wave function, the multicom-
ponent extension alone would not remove the dif-
ficulties completely. As will be shown below,
there are many different ways of deriving the
fully connected kernels and of introducing the
multicomponent wave functions, all of which de-
pend crucially on the role of the particular chan-
nel Green's functions used. Both the full connec-
tivity and the multicomponent feature are essen-
tial in correctly formulating the many-particle
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scattering theory.
As is well known, the conventional distorted

wave Born approximation" (DWBA) for the direct
reactions bypasses the nonorthogonality problem
altogether, while the coupled- channel method'""
(CCM) employs only the fully connected kernels
constructed with a small set of bound state wave
functions for each channel cluster. Thus, the non-
orthogonality problem among the rearrangement
channels is treated only approximately in these
approaches, while an attempt to improve them re-
quires again a careful treatment of the nonortho-
gonality and related problems.

In several previous studies, ""me have ex-
amined the possibility of simplifying the rigorous
many-particle theory by relaxing the requirement
of the full connectivity for some of the rearrange-
ment channels. For a direct reaction of the type

where v, z are the two-particle pair interactions
and the channel Hamiltonians H are given by

H =H+V

In (2.2), H, is the three-particle kinetic energy
operator and V is the internal interaction for the
channel a, with V'=ez~ for a =i (i,j,k=1, 2, and
3, cyclic). The total wave function is given by the
sum" '~

(2.3)

It is of course well known that the iteration ker-
nels of (2.1) are completely connected. [As N in-
creases, the structure of the equations analogous
to (2.1) becomes very complicated. For %=4,
there are seven two-cluster channels" which are
explicitly coupled. )

For the direct reaction of the type
Chanepg gg ghanne$ g

1+ (2+ 3)- 2+ (1+3), (2.4)
we may require that the appropriate iteration ker-
nels be connected only in the channels 0. and P,
while all the other rearrangement channels are to
be treated noniteratively in some approximations.
In fact, the original formulation of Watson' treats
explicitly only those "external" interactions
among the pairs which belong to different clusters
while the "internal" interactions among the parti-
cles within the same clusters are included in the
channel Green's functions. This makes the for-
malism simpler and more readily applicable to
physical problems. Throughout this paper, me
emPhasize the simplifying role of the channel
Green's functions and maintain the minimal con-
nectivity property for the direct channels. The
sets of coupled equations me derive should reflect
these features.

or

Hj. —E+ v» v23 4', 0

H, —E+v» 4,' 0
(2.5)

with

H, E V, 4, 0

V~ H2 —E 4'2 0
(2 6)

for example, we may simPlify (2.1) by keeping
only the channels 1 and 2 explicitly. This can be
accomplished by noting that the elements in each
column in (2.1) add up to H- E, where the external
interactions V =H-H are given by V, =v,~+v„,
for each e =i and ijk cyclic. Thus, by first adding
the contents of the third row to any of the other
tmo rows a d t en dropping t at t ird rom and
column, me obtain

II. REDUCED MATRIX EQUATIONS yl + yt y/i' + +It (2.7)

H, —E v23 @23 4'~ 0

v~3 H2- E v~3 4'~ = 0

v» H, -E 4, 0

(2.1)

The reduction procedure we have developed
previously"" is designed specifically to reduce
the number of rearrangement channels which can
appear in an N-particle scattering problem and to
provide a partial connectivity property for the
direct channel iteration kernels. As will become
clear, the method is especially suited in treating
the direct reactions where only a few rearrange-
ment channels a,re strongly coupled. To illustrate
the method, we consider the three-particle (iV=3)
Faddeev equations' for the two-cluster channels

(An analysis of 4', is given in the Appendix. ) Equa-
tions (2.5) and (2.6) are still exact, as the channel
3 is now implicitly contained in 4' or 4 . Note
that the full connectivity is retained in (2.5) but
lost in (2.6). On the other hand, (2.6) retains the
channel Hamiltonians H in the diagonal positions
and the off-diagonal parts contain the external in-
teractions V, . The contents of (2.5) and (2.6) have
been analyzed in detail previously2' using the
Green's function decomposition, and (2.6) was ap-
plied to simple three-particle problems. "'"

Nom consider the general case when the number
of particles N is large. Equations analogous to
(2.5) and (2.6) can be obtained directly from the
following reduction procedure, "'"rather than
starting with a complicated set of equations with
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full conneetivity.
(i) Choose a small number I of direct reaction
channels whose asymptotic Hamiltonians H are
mutually distinct. This will result in an I x I ma-
trix equation, with

(2.8)

where V = V~+ V". According to (iii), (2.1) is of
course not the only possible form; we may have
instead the operators"

0

0 H2 —E V3

H, —E+ F~

2
V&3

3v» 1

j.v —F~

H, —E+ F2

v»- Y3 4',

(2.9)

The size I should be large enough to include some
of the strongly coupled channels, but small so that
the coupled equations can readily be solvable. The
limitation here to a few explicit channels is not an
approximation, however.
(ii) For each channel of, H —E is put in the diago-
nal positions of the I X I matrix. The channel in-
teractions V =H- H are then distributed among
the rows of the n column such that as much of the
internal interactions V should appear in the P row
of the e column. The solution of the resulting ma-
trix equation is then guaranteed to be the same as
the original solution of the problem so long as the
sums of each column equal H- E.
(iii) Since the number of explicit channels I chosen
in (i) is rather arbitrary, the I x I matrix equation
can be reduced to an I' ~I' form, where I'&I. To
eliminate the y component, for example, we add
the contents of the y row to any of the other (I 1)-
rows and then simply drop the y row and the y
column.
(iv) Within each column, we can add or subtract
some arbitrary interactions Y's w'ithout affecting
the overall solution 4, but with often drastic modi-
fications of the individual 4 . This provides a
nontrivial way of introducing direct distortion po-
tentials, which are absent in the original Faddeev
formulation. A judicious choice for F will facili-
tate the convergence of the iteration series.
(v) The multicomponent form of the matrix equa-
tions allows one to introduce simple channel pro-
jection operators" for different rearrangement
channels, without the complication of the non-
orthogonality problem. The intermediate state
contributions for each channel n ean then be iso-
lated and treated separately in terms of the opti-
cal potentials.

We illustrate the above reduction procedure by
examining the cases with N=3 and 4. For N=3
and I= 3, (2. 1) provides a framework for the three
two-cluster channels. Using (iv), we can intro-
duce the distortion potentials Y in (2.1) as

H, -E 0

(2.10)

H~ —E+ F~ V, —F2 4'~ 0
0

V, —F~ H2 —E+ F2 42 l 0
(2.11)

Comparison of the iteration kernels for (2.6) and
(2.11),

K„=G,V,G, V, , G =(E+ie —H ) ' (2.12)

H,",=G,'(V, V,)G,'(V, V,),
G =(E+ie —H —Y ) ',

indicates that we may have ((K»(( &((K~2(( with some
judicious choices for F, thus improving the con-
vergence of the iteration solution.

In addition to the F's, we can also introduce a
simple set of projection operators for the reduced
matrix equations (RME) we have derived above.
Thus, for (2.6) for example, we have

0
and Q= ' =I P, (2.13)-

0 q,

The first of these operators was considered re-
cently by Kouri and Levin" and later by
Tobocman" using the channel coupling array
TV. The role of W in their formalism is equiva-
lent to the procedure (ii) of the reduction method,
if we restrict the V to appear in single rows as
a whole, rather than being distributed among the
rows. They showed that" when all the two-cluster
channels are included in the form (2.10), the re-
sulting kernels are completely connected, and
emphasized the use of the channel interactions
V in eonstrueting the coupled equations. By con-
trast, the reduction procedure emphasizes the
role of the channel Green's function (E+ie —H„) ',
and the channel interactions V are treated either
as a whole [as in (2.10)]or in parts [as in (2.1)].

Now consider the reduction I= 3-I' = 2. We
have already seen tha. t (2.1) reduces to (2.5),
(2.6), or some other analogous forms. (2.9) also
reduces for example to
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1+ (2+ 3+4) —2+ (1+3+ 4), (2.15)

for example, we have simply (2.6) again, with

H, = H, + V', V = v»+ v,~+ v3~,
1

V~ = H —H~ = V~2+ v13+ V~4, etc.
(2.16)

The iteration kernels K„=G, V,G, V, and K„
= G, V,G, V, show only the partial connectivities
(12), (123), (124), (13)-(24), (14)- (23), where (13)-
(24) implies the connectivity between the pairs
(13) and (24) separately. The particles 1 and 2

are completely connected, while those particles
inside the clusters are not fully connected. %ays
to improve the latter mill be discussed in Sec. IV.

Recently, there have been some attempts" to
derive a set of coupled equations for the multi-
component scattering wave functions, starting
from the rigorous amplitude equations' "with the
full connectivity. For an N-particle system, there
are altogether I, two-cluster channels, so that a
set of I, coupled equations is obtained in the form

(E —H, —~ )4' (2.17)

mhex'e '0 G:~ ls the sum of all the iterated in-
teractions with the connectivity a. It mas then
shown that 4 contains the outgoing waves only in
the n (two-cluster) channel. This is precisely the
same essential property that the RME are designed
to contain however, as will be shown in the next
section, the wave functions in the RME can also
have the components of the other two-cluster
channels which are included in the theory only
implicitly.

where

&.=0:)&P. , Q. =l. -&. Q P =O

The bound states of the pair in the channel n
are denoted by g„. Note that P Q =0, while

4 0 and P,Q, 4 0. A convenient choice for
for example is l' =P V P .

The simplifications we gain by reducing the
number I of direct reaction channels become im-
portant in applying the formalism to cases with

¹ 4. For N=4, for example, Sloan" constructed
a set of seven coupled equations for all the two-
cluster channels. The coupling interactions in
these equations are obtained in turn by the itera-
tions of two or more different pairwise potentials.
Construction of such coupling terms is in itself a
major computational undertaking and often re-
quires drastic approximations. In the present
approach, however, we simplify the problem by
limiting the number of explicit channels and by
requiring a partial connectivity. Thus, for the
process with I= 2 and N = 4,

When N is la.rge, z, in (2.17) are difficult to
construct in practice. Approximations are invari-
ably intxoduced to simplify them, but it is not
clear then whether the essential features of the
original set are x'etained. By contrast, the RME
discussed here are trivial to construct and yet
exact; certain desirable features are included
from the beginning for the particular direct reac-
tion of interest. The price one pays for this sim-
plicity is the requirement that the channel Green's
functions G should be evaluated mith care before
the coupling with the other channels is included.

III. ASYMPTOTIC BOVNDARY CONDITIONS

One of the principal advantages of introducing
a multicomponent wave function in the RME is
that the asymptotic boundary conditions can read-
ily be imposed on the rearrangement channel
wave functions. In adopting the reduction pro-
cedure, the contributions from different channels
axe shifted around among the 4, so that it is a
priori not obvious that 4 should carry the physi-
cal amplitude fox the channel n. %e examine in
this section the relationship between the asymp-
totic behavior of 4 and the physical amplitudes
for the differential cross sections.

For definiteness we discuss the problem using
(2.6) for N= 3, but most of the result we obtain
here should be applicable to other RME. By con-
struction, H, lacks the internal interaction V = v/3

for the channel 2 so that 4, cannot provide the
asymptotic states of channel 2, where the pair I
and 3 is interacting (or bound). The coupling in-
teractions are arranged so that V, G, V, in K» van-
ishes in channel 2. Thus, the Green's function

cannot generate a branch cut corresponding to the
cluster structure of channel 2. The asymptotic
contribution to channel 1 is therefore carried en-
tirely by 4, , and +, cannot contribute to channel 1
asymptotically, and vice versa.

Apparently, this is not the case with channel 3;
recall that this channel in the original Faddeev
equations (2.1) is eliminated by the reduction pro-
cedure and its effect is incorporated into the newly
defined wave functions 4, and +,. In fact the itera-
tion kernels K» and K„contain the terms v»G, v»
and v»Gyv» x espectively, which vanish in chan-
nels 1 and 2 but not in channel 3.

Thus 9j and 92 contain cuts corr e sponding to
channel 3, with the outgoing waves in channel 3 if
the energy F is sufficiently high. The asymptotic
forms for 4 can therefore be mritten as
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i& Rl(a-
C 1+ 12 is/2 '4 (r23) R JlR 1~ a) (2'F) 1

I ik)RSX31 (3) ~ e
(2 )3/2 4 ( 12} ft ~3

other outgoing waves

(+
in channels 1 and 3

t koR2~21 (2)
q'aR, -„(2 )a~2 4o (res) Z ~a

$&2R
~31 (3)

+(2,)s~a4. (r~) „
other outgoing waves
in channels 2 and 3

In (3.2), we have

(3.2)

11 11' (3.13)

That is, the source term V2q', in (2.6) is such
that 4, carries asymptotically the correct elastic
amplitude.

For the rearrangement collision 1-2, we have"

drr„~f ~, (y,,a,
) (3.14)

(c, lH, zf~,)=(c,l(If, +v, v,}+(v, v,} zl~, )

=(c, lv, —v, lq, ). (3.11)

Thus, the right hand side of (3.8) can be written as

(C. I v. lq'. ) =(4.
I v. lq'. }+(4

I V. I+.} = &-

(3.12}

and finally

(e„-z)c.= 0,
y(n)(r )ei ko '~~/(2v}

and other notations are obvious, while

hz = e"+ (o")'
tf 2~ 7f

(3 4)

(3.5)

where

2m '
f» = — 027 2j.8

with

7„=(c,lv, lq).

(3.15)

(3.16)

where e„" is the (py) pair energy.
For the elastic scattering in channel 1, we have

To relate the X» in (3.3) to T», we take the second
of (2.6) and obtain

with

(4, IH, zfq, )= (c, fv, fe, ) (3.17a)

(3.17b)

2 Tll5

v'„-=(4,
f v, fq)=(4, f v, fq, +q, ).

(3.6)

(3 7)

after the partial integrations and using (3.3). The
right hand side of (3.17a) can be rewritten in
terms of the first equation in (2.6), as

(4, frf, zlzz, )= (c, lv, lq, )

= (4', lff, .v, v, z.«, v, )

= (c, l v, —v, l@,),

In order to relate the X's in (3.2) and (3.3) to T„,
we use the first of the two equations in (2.6) to
obtain

which gives for (3.17)

(3.18)

(4, fH, -z fq, )=-(4, fv, fq, ). (3.8)
x„=-(4, I v, lq) = 7„.

4m' P.2
(3.19}

(3 9)

The right hand side of (3.8) can be converted using
the second of the two equations in (2.6), which
gives

(e, fe, —z fq, )=-(c,
f v, fe,). (3.10)

However, the left hand side of (3.10) can be modi-
fied using (3.2) and (3.3) to a form

Perfox ming the partial integrations twice and using
(3.2), the left hand side of (3.8) becomes

21 f21

Now, consider the contribution of channel 3:

drr„~ ~,(
p, ,k,')

where

2m 2

f —~ ~ p

T„=(e,
l v, le).

(3.20)

(3.21)

(3.22)

(3.23)
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From (3.2) and (3.3), and using (2.6), we have

e1)=- (43lv3fe3)

=(c, fH, -E+(v, v, ) fe, )

A.
'

+ (413
l V, —V, f

1',) (3.24)
47T H, —E Vxa 0

here is not unique and depends very much on the
physical considerations.

As an example, we start with (2.6) for N = 3,
1=2 and introduce one auxiliary channel a, (con-
sistent with the reduction procedure) as

and

(&.fH, -Ef4,) =- (C, f V, f4,)

=(e, fH, -E+(v, —v, ) fe, )

V,

where

H2 —E V2,

V2 H, -E
0

0a-

(4.1)

~n
=4," +(c'31 v, v3le3). (3.25) H =Ha+ Va, Va = Vza+ V2a

Therefore, adding (3.24) and (3.25), we obtain 4 =4', +4, +4, . (4.2)

(131+X3',) = —T„
477 P3

and thus

(3.26) We can formally solve (4.1) for 4', as

4, = G, V,C, + G, V,4, (4.3)

f31 31 31' (3.27)

(3.27) shows that the physical contents of (2.6)
and (2.1) are exactly the same. From a practical
point, however, (2.6) should be more convenient
if channel 3 is not strongly coupled to channels 1
and 2, in which case A.3', and A.3", are small. Qn the
other hand, if X» is large, then it may be more
appropriate to include channel 3 explicitly in the
form (2.1) or (2.10). The mathematical contents
of the wave functions 0," and 4," are analyzed ex-
plicitly in the Appendix, further clarifying their
behavior in the asymptotic region for the third
channel.

IV. AUXILIARY CHANNELS AND IMPROVED
CONNECTIVITY

As is well known, the simple structure of (2.1)
for N= 3 cannot be extended readily to cases with
N &3 because of new cluster structures which
arise for larger systems. They in turn introduce
many more partially connected parts into the
iteration kernels, and, for a mathematically con-
sistent treatment, elaborate methods" "have
been devised to isolate these partially connected
parts and to treat them noniteratively. As a re-
sult, the formalism for N & 3 becomes very com-
plicated and impractical for most physical appli-
cations. We have seen in Sec. II that the RME are
simpler to construct, but their iteration kernels
are only partially connected. It is therefore of
some interest to consider how the connectivity
could be improved step by step within the context
of the reduction procedure outlined in Sec. II. For
this purpose, we introduce one or more auxiliary
channels and go from the I && I equations to I' x I',
where I'&I. As in the case I'&I, the procedure

and obtain a set of coupled equations

(E- H, )C, = V„G.V,4, + V,.G.V34, ,

(E —H, )1P, = V„G,V,4', + V„G,V, 4', .
(4.4)

G, =(E+ie —H, ) '=G3+L, +C, , (4.5)

where L, is the sum of all the partially connected
parts and C, is the maximally connected part of
G, within the available V':H Hp Thus, if we

G, =C, , (4.6)

all four terms on the right hand side of (4.4) be-
come fully connected. For the example (2.15)
with N=4, I=2, we may choose for the auxiliary
channel a the cluster structure

(1+2)+ (3+4)

with

(4 7)

j2 34

Then, C, of (4.6) is simply given by the convolu-
tion

C, = C(12) & C(34),

where C(12) is the part of the four-particle

(4.8)

Equations (4.4) have roughly the same structure
as the Faddeev equations (2.1), and some choices
for V„such as V„=~» and V„:~y„provide the
same full connectivity when N = 3. (For N & 3, how-

ever, the freedom in the choice for V„and V„ is
not sufficient to obtain a full connectivity. )

The form (4.1) is also convenient in introducing
certain types of approximations which can make
the kernels connected. Thus, using the cluster
decomposition procedure of Weinberg, ' we can
write
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Green's function with the pair (12) fully connected.
It is a trivial matter to check that, with

all four terms in (4.4) are fully connected. Other
coxnblnatlons of H and V al e also possible.

It is simple to show that (4.8) is related to the
use of the channel projection opex'ators P, and Q,
for the channel a and retaining a finite set for P,.

%e can proceed further by introducing xnoxe
than one auxiliary channel, thus relying on the
channel interactions to produce improved eonnec-
tivity rather than approximating G,. Thus, with
two auxiliary channels a and b: we have

H, —E 0 V, 0 4, 0

0 0 Hq-E 4q 0

(4.9)

(H -E)C =0,
G = (E+i & H, )-,

(5.2)

(5.3)

whexe v,- is the interaction between the projectile
and the jth target nucleon. Obviously, the inter-
nal interactions V for the z channel ax'e contained
in G, where V —= H -Ho. Following Watson, we
set

4=4 +G QP)y;, {5.4)

terms of the two-particle amplitudes, insofar as
the external interactions are concerned.

For the elastic scattering of single particles by
a target nucleus with N nucleons, we have

(5.1)

with

0 =4,+4,+4,+4, . (4.10)

Formal elimination of 4, and 4', from {4.9) gives

(E-H,)4,= V,G,V,C, ,

(E —H2)4'2 = V1,G~V, @1.
The structure of (4.11) is quite different from
(4.4) and (2.1) in that the diagonal distortion terms
are now. absent. The iteration kernels a.re of the
form G, V,G,V,G,V~G, V„etc., and v, and v~ can be
chosen to improve the connectivity. This is, in
certain respects, similar to the procedure of
Kouri and Levin. " However, the equation such as
(4.9) does not require the presence of all the two-
cluster channels, and H, and H, are chosen rather
arbitrarily, based mainly on the physical consid-
eration. In pax'tieular, we may choose H, =H~, in
which case the distinction between (4.4) and (4.9)
becomes obvious. (4.10) then involves 2@„while
(4.2) contains single 4,. (Of course, these two
4', 's are different. )

In this section, we apply the reduction procedure
of Sec. II to the multiple scattering theory of %'at-
son' such that some of the strongly coupled x'e-
arrangement channels can be included explicitly.
A brief review of the multiple scattering formalism
for the elastic scattering should also clarify the
essential role played by the channel Green's func-
tion in that theory. The equations we derive fox
the scattering wave functions will be expressed in

t; =v;+v;G t,

The wave functions p, then satisfy the coupled
equations '

p,. =4 +G gt, y,' (5.6)

or, in the differential form,

(E H)cp, =P t,-y, .

Throughout the analysis, H appears only in G and
4 such that the complexity of H does not affect
the formal manipulations involved in getting (5.6).
Altllougll tile lte1'a't1011 kerllels 111 (5.6) will llot be
fully connected for N&3, the formalism is sim-
pler when G is used.

We liow consider RI1 extellsioll of (5.4) to real-
rangement processes, in which the strongly cou-
pled channels are explicitly included. Using the
result of Sec. II, we have, for example, for the
a and P channels

(5 6)

which satisfies equation (2.6). That is,

(5 9)

where a and a~ are the initial boundary conditions,
e.g. a = 1, a~= 0. %e can introduce the two-par-
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ticle amplitudes for the channels n and P, as

tg = 8)+ 'V)Get) y

f,, =v, +v,a, t, ,8 8 (5.10)
or, equivalently,

[E H,-—(N, —I)t ] 0 = 0.

(5.1V)

(5.18)

where i and j run over all the external interactions
contained in the respective channels, i.e. ieE(o.)
and je E(P). Then, (5.9) may be written in the
form

The form (5.17), which is specially suitable for
the elastic scattering, may be generalized to di-
rect reactions involving rearrangements. Thus,
for channels 1 and 2, we have from (2.6),

4=%,+4,
with

(5.19)

4~=q4~+G8 Q Py';,
Q Z(e)

(5.11}

where y,. and y&~ satisfy the coupled equations

p+g+G~f~pg =0~4~+G~ Q fy pg ~

jIEQ)

e.=s.e.+G".N, ~,e, (a, P=1, 2; n~ P) (.5.20)

The potentials ne and vt) may be eliminated in
terms of the pair amplitudes (5.10}; (5.20) be-
comesy for Q 4 Pq

[E H+g-+ t~G~ (G~) ']4'o =Ngtq@'~ . (5.21)

+G8f& (p =us 4g+ Gg Q

Pygmy

$6 E(e)

or the differential form

(5.12)

f' = v + v, G& f,' (a 0 P)

gives

(5.22)

On the other hand, a slightly different definition
for t in the form

(E H+ t, )y&-——P .t&~y&~,

J6 E(B)

[E H~+ fq]4'~-~Ãqt~%'~ .
Still another choice for t would be

(5.23)

(E —Hg+fg)(OJ = Q t p(
fs ${e)

(5.13)

where

G =A(E ie+H) ', - (5.15)

with the antisymmetrization operator A among the
target nucleons. In (5.14), we kept the channel
label on e for convenience. By introducing the
projectile-target nucleon amplitude

(5.14) can be written in the form

As in (5.6) and (5.7), (5.12) and (5.13) contain the
channel Green's functions 6 and Cz in such a way
that only the external interactions appear explicitly
through the t's. Of course the total wave function
obtained from (5.4) and (5.6) should be sufficient
to determine all other reaction cross sections by
the projections (4„l V„. However, when approxi-
mations are introduced in (5.6), the P channel may
not have been treated accurately, and (5.12) can
be more efficient.

We can also extend the related formalism of
Kerman, McManus, and Thaler" to rearrange-
ment processes. For the elastic scattering, we
have

(5.14)

+ eeCS"ta" (5.24)

which couples the t's in the e and the P channels.
Substitution of (5.24) into (5.20) gives

[E H~+ f~ ]4'~-=Nqtq"4~ . (5.25)

Equation (5.25) is more closely related in form to
(5.11), and (5.24) related to (5.12).

VI. SUMMARY

When some of the two-particle (internal) inter-
actions of an N-particle system are included in the
channel Gxeen's functions Ge, the resulting set of
coupled equations simplifies gxeatly. By requir-
ing the partial connectivity only among the direct
reaction channels which appear explicitly in the
coupled equations, much of the formal and com-
plicated manipulations involved in the usual many-
particle scattering theory can be avoided. If de-
sired, the connectivity property of the iteration
kernels of the RME can be improved by introduc-
ing one or more auxiliary channels. Thus, rather
than constructing first the fully connected set of
equations and then approximating them, "we have
shown in this papex how the simple sets of HME
can be derived, in which the channel Green's func-
tions play an essential role. The introduction of
the distortion potentials 1' and the channel projec-
tion operators P and Q should further facilitate
the solution of these equations, while the use of
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the auxiliary channels and the approximations such
as (4.6) should help improve the connectivity prop-
erty.

By construction, the RME do not contain the
nonorthogonality difficulty insofar as the direct
reaction channels are concerned. The coupling
potentials in the RME set do not have the usual
nonorthogonality terms. Since all the other weakly
coupled channels are treated in the RME only im-
plicitly through the channel Hamiltonians H and
the channel Green's functions G, one should be
careful in obtaining the solution of the RME so as
not to further decompose the cluster structures
represented by H . In this connection, the use of
the projection operators and the approximations
such as (4.6) should be helpful. Some preliminary
studies of the applicability of the RME have al-
ready been reported. ""Further theoretical
analysis of the RME formulation of this paper and
the approach of Ref. 27 may provide an improved
approximation procedure useful in treating the di-
rect nuclear reaction problems.

APPENDIX

More directly, however, we can write

43=4„+0»
where 43 satisfies

(H, E)—4, = —v„(4,+4,).
Since H3 may be rearranged as

H3 —Hi+(Vis V23) —Hs+(Vis V13)1

(A4) can be rewritten in the form

1
— )@31+(v12 —vss)+31+ (H2-E)@32

(A3)

(A4)

+(v„—v„)@„=—v„(4,+@,). (A5)

The two functions 4» and 432 in (A3) are still un-
defined separately, so that we may set freely

( 1 )@31 V12@2 12@32+ 23@311 (A6a)

(Hs-E)@32 ——vis%1 —vis@31 13 32 (A6b)

which is certainly consistent with (A4). The step
involved in getting (A6) from (A5) is equivalent to
the reduction procedure of Sec. II; we recall" that
(2.6) for example can be obtained simply by start
ing with the definition (2.7), which gives

The reduction of the Faddeev equations (2.1) to
the forms such as (2.5) and (2.6) involves certain
rearrangements of the contribution of the elimi-
nated channels among the different components 4
of the total wave function 4. To examine explicit-
ly how this is brought about in the course of the
reduction, we can of course go back to the total
Green's function G =(E+ic -H) ' and decompose it
for the various rearrangement channels, as we
have done in Ref. 20. Thus, after some algebra,
we obtain

(H, E)4,"+V,-4,"+(H, -E)42" + V242" =0,
and requiring 0," and 42" to satisfy separately

(H~ E)4"= —V—a@a1~, o, P=1, 2and n'P.
On the other hand, the 4', equation of (2.1) is,
with (A3),

(H, E)4, = —v„(-g,+4„+~'„).
Adding (A6a) and (A7), we then have

(H, E)(4,+@„)=-—V,(42+4„)

(AS)

(A8)

G =G +G~ &+G' &

3

with

(Al) and similarly for 42 with (A6b). Therefore, com-
paring this with (2.6), we identify

G G1V2G3+ G1V2G

G '=G, V1G3+G2V, G ",
where

Gs= (E+26 —H11+ Vis)

Note that G, differs from G, =(E+ic H, —v») '. -

0] 4] + 431

42" =—42+032

where, from (A6),

+31 0 12 2 0 12 32&

32 0 12 1 0 12 31 ~

(A9)

(A10)

The decomposition (Al) gives

4=4, +GV,C, =4,"+42"

where

(A2)

This result is exact, but the role of the third
channel wave function is not obvious; its effect
is carried implicitly by G3 and G' '.

Evidently, 4, and 42 contain the outgoing waves in
channel 3 through the components 0» and 4», and
we have shown above precisely how they are dis-
tributed. (A9) is consistent with the asymptotic
behavior (3.2) and (3.3), while (A10) shows that
the outgoing waves in channel 3 can arise from
the iteration kernel Gpv12Gpv12 in agreement with
what one expects from (A4).

Similar analysis can be carried out for other sets
of reduced equations, but the decompositions such
as (Al) for the Green's function and (A6) for the
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wave functions are not easy to obtain in general.
The reduction procedure of Sec. H eliminates much
of the formal manipulations involved, and allows
one to construct a set of equations directly from

the physical consideration. To understand the
contents of the theory, however, one has to go
through the decomposition such as that presented
here.
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