Dependence of the width of a doorway state on the ratio of the numbers of the correlating and open channels*

C. C. Hsu

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, China |Received 18 November 1975)

The width $\langle \Gamma_d \rangle$ of a doorway state, the escape width $\langle \Gamma_d \rangle$, the damping width $\langle \Gamma_d \rangle$, and the interaction $\langle V_d \rangle$ which causes transitions from the doorway state to the more complicated states are discussed as a function of the ratio (n_d/n) between the numbers of the correlating and open channels. The results show that the widths $\langle \Gamma_d \rangle$, $\langle \Gamma_d \rangle$, $\langle \Gamma_d \rangle$, and the interaction $\langle V_d \rangle$ depend strongly on the square of this ratio.

[NUCLEAR REACTIONS Discussed $\langle \Gamma_d \rangle$, $\langle \Gamma_d + \rangle$, $\langle \Gamma_d + \rangle$, $\langle V_d \rangle$.]

The relation between the escape width $\langle \Gamma_{d} \cdot \rangle$ from a doorway state and the ratio n_d/n of the numbers of correlating and open channels has been discussed by Hsu,¹ and the relationship has been also confirmed experimentally by Hsu et $al.^{2,3}$ Due to the agreement between theoretical and experimental results, the ratio $(n_d/n)_{\text{expt}}$ which is determined experimentally by a limited number of the open channels can exactly take the place of the theoretical ratio $(n_d/n)_{\text{theor}}$ in the formulation of the relation between the escape width and the ratio. In the present paper, I derive the relationships between $(n_d/n)_{\text{expt}}$ and the width of a doorway state $\langle \Gamma_d \rangle$, the damping width $\langle \Gamma_d \cdot \rangle$, and the interaction V_d which causes transitions from the doorway state to the more complicated states. Finally, I also discuss those quantities as functions of various variables.

By assuming (i) the compound nuclear reaction proceeds in a high-excitation region where many levels are overlapping, (ii) the channel correlation is in fact a result of a doorway state, that is, the ratio $(n_d/n)_{\text{ext}} \neq 0$, I derived¹ the following:

$$
|A_{\mu d}|^2 = \frac{2D/\pi \langle \Gamma_{\mu} \rangle}{(n_d/n)_{\text{expt}}^2 C_{\text{cc'}}^2},
$$
 (1)

where (i) $|A_{\mu d}|^2$ is the probability that the doorway state is present in a compound state at excitation energy E_{μ} , (ii) D is the average level spacing, (iii) $\langle \Gamma_\mu \rangle$ is the average total level width, (iv) $C_{\rm ee}^2$ is the channel correlation coefficient, and (v) (n_a/n) is the ratio of the numbers of the correlating and open channels. Suppose the wave function for the doorway state Ψ_d is present with some amplitude $A_{\mu d}$ in the compound state ψ_{μ} , then

$$
\psi_{\mu} = A_{\mu d} \Psi_d + \sum_{q} B_{\mu q} \psi_q , \qquad (2)
$$

where ψ_q is the wave function describing all more

complicated excited states. Assuming that the interactions V_{da} which cause transitions from Ψ_d to the ψ_a are independent of q, Lemmer⁴ finds that the widths of the compound states are given by

$$
\Gamma_{\mu} = |A_{\mu d}|^2 \Gamma_d \mathbf{1} \tag{3}
$$

where the Γ_d [†] is the escape width of the doorway state Ψ_d , and

$$
|A_{\mu d}|^2 = \frac{|V_d|^2}{(E_{\mu} - E_d)^2 + |V_d|^2 + (\pi |V_d|^2 / D)^2}.
$$
 (4)

The distribution of $|A_{\mu d}|^2$ in the above equation is a Lorentzian distribution. It tells us that the width of the distribution, i.e. damping width Γ_d ^{*}, is given by the dominant term in the denominator of Eq. (4) , either $|V_d|^2$ or $({\pi}|V_d|^2/D)^2$. In the present case, $\langle \Gamma_{\mu} \rangle \gg D$, we expect the $(\pi |V_{d}|^{2}/D)^{2}$ term to dominate, the Γ_d is therefore

$$
\Gamma_d \dagger = 2\pi \frac{|V_d|^2}{D} \ . \tag{5}
$$

Putting $E_{\mu} = E_d$ in Eq. (4) and $C_{\text{cc}}^2 = 1$ in Eq. (1), and combining Eqs. (1) , (3) , (4) , and (5) , we obtain the following relations:

$$
\langle V_d \rangle = \left[\left(\frac{n_d}{n} \right)_{\text{expt}}^2 \frac{\pi \langle \Gamma_{\mu} \rangle}{2D} - 1 \right]^{1/2} \frac{D}{\pi} , \qquad (6)
$$

$$
\langle \Gamma_a \phi \rangle = \left(\frac{n_a}{n}\right)^2_{\text{expt}} \langle \Gamma_\mu \rangle - \frac{2D}{\pi} \,, \tag{7}
$$

$$
\langle \Gamma_a \mathbf{t} \rangle = \left(\frac{n_a}{n} \right)^2 \frac{\pi \langle \Gamma_{\mu} \rangle}{2D} \langle \Gamma_{\mu} \rangle. \tag{8}
$$

From the above equations, it is clear that the widths $\langle \Gamma_d \rangle = \langle \Gamma_d \rangle + \langle \Gamma_d \rangle$, $\langle \Gamma_d \rangle$, $\langle \Gamma_d \rangle$ and the interaction $\langle V_d \rangle$ depend strongly upon the ratio $(n_d/n)^2_{\text{expt}}$. Hence, an accurate value of the ratio (n_d/n) is needed to determine those quantities. However, it is experimentally not possible to measure the exact ratio (n_d/n) , and normally the data

402

 $\frac{14}{1}$

FIG. 1. The quantities $\langle \Gamma_d \rangle$, $\langle \Gamma_d + \rangle$, $\langle \Gamma_d + \rangle$, and $\langle V_d \rangle$ as a function of (n_d/n) . The dashed and crossed curves are the cases of $\langle \Gamma_{\mu} \rangle = 20$ keV, $D = 6$ keV and $\langle \Gamma_{\mu} \rangle$ =20 keV, $D = 4$ keV, respectively.

are obtained only for a limited number of low-lying levels. Anexperimentwith a large number of open channels should be performed in order to obtainan experimental ratio $(n_d/n)_{\text{expt}}$ as close to $(n_d/n)_{\text{theor}}$
as possible. Since Eq. (8) has been already confirmed experimentally by Hsu *et al.*^{2,3} the ratio as possible. Since Eq. (8) has been already confirmed experimentally by Hsu et $al.$ ^{2,3} the ratio $(n_d/n)_{\text{expt}}$ can exactly take the place of the theoretical ratio $(n_d/n)_{\text{theor}}$; Eqs. (7) and (6) can be used to calculate $\langle \Gamma_d \rangle$, $\langle \Gamma_d^{\dagger} \rangle$, and $\langle V_d \rangle$ if the $(n_d/n)_{\text{ext}},$
 $\langle \Gamma_{\mu} \rangle$, and D are determined.⁵⁻⁷ Since $|A_{\mu d}|^2 \le 1$,⁴ $n_d \leq n$, and $C_{cc'}^2 \approx 1^1$ in Eq. (1), we obtain

$$
(2D/\pi \langle \Gamma_{\mu} \rangle)^{1/2} \leq (n_d/n)_{\text{expt}} \leq 1. \tag{9}
$$

In order to satisfy $C_{\text{ce}}^2 \approx 1$, Eq. (9) has to be satisfied by the condition of $\langle \Gamma_{\mu} \rangle \ge D$ according to Feshbach, Kerman, and Lemmer.⁸ From Eq. (9), it can be understood that $\langle \Gamma_{\mu} \rangle /D$ cannot be smaller than $2/\pi$.¹ If $\langle \Gamma_{\mu} \rangle/D$ is equal to $2/\pi$, then (n_d/n) must be 1 and the $\langle V_{d} \rangle$ and $\langle \Gamma_{d} \rangle$ must vanish. The escape width $\langle \Gamma_a \cdot \rangle$ would be equal to the total average level width $\langle \Gamma_{\mu} \rangle$, and $\langle \Gamma_{d} \rangle = \langle \Gamma_{d} \rangle = \langle \Gamma_{\mu} \rangle$ if the doorway state exists in the excited energy region of the experiment. Combining Eqs. $(6)-(8)$, we obtain

$$
\frac{\langle \Gamma_a \rangle}{\langle |V_a|^2 \rangle} \approx \frac{\pi \langle \Gamma_\mu \rangle}{D^2} , \qquad (10)
$$

$$
\frac{\langle \Gamma_d \mathbf{t} \rangle}{\langle \Gamma_d \mathbf{t} \rangle} \approx \frac{\pi \langle \Gamma_\mu \rangle}{2D} \ . \tag{11}
$$

The above equations show that the escape width $\langle \Gamma_d \cdot \rangle$ is much larger than the quantities of $\langle \Gamma_d \cdot \rangle$ and $\langle V_{d} \rangle$, since $\Gamma_{\mu} > D$. These results are reasonable and consistent with those of Feshbach, Kerman, and Lemmer.⁸ Otherwise the escape width could not be found in the experiments. In Fig. 1, we have plotted $\langle \Gamma_d \rangle$, $\langle \Gamma_d \rangle$, $\langle \Gamma_d \rangle$, and $\langle V_d \rangle$ as a function of (n_a/n) . The dashed and crossed curves correspond to the cases of $\langle \Gamma_u \rangle$ = 20 keV, D = 6 keV and $\langle \Gamma_{\mu} \rangle$ = 20 keV, D = 4 keV, respectively. Since we require $(n_a/n) \geq (2D/\pi \langle \Gamma_\mu \rangle)^{1/2}$, dashed and crossed curves are cut off at $(n_a/n) = (0.437)$ and (0.357), respectively. In order to satisfy this condition, the decay width $\langle \Gamma_a \cdot \rangle$ has to be greater than or equal to the total average width $\langle \Gamma_{\mu} \rangle$, i.e., $\langle \Gamma_{d} \psi \rangle$ and $\langle V_d \rangle$ have to be small, otherwise we could not distinguish the decay width from the result of the random fluctuation. Finally, I would conclude that (1) the widths $\langle \Gamma_a \rangle$, $\langle \Gamma_a \cdot \rangle$, $\langle \Gamma_a \cdot \rangle$, and $\langle V_a \rangle$ depend strongly on the (n_d/n) , (2) the width $\langle \Gamma_d \rangle$ approaches $\langle \Gamma_a \cdot \rangle$, i.e., $\langle \Gamma_a \cdot \rangle$ and $\langle V_a \rangle$ become small, when the ratio $\langle \Gamma_{\mu} \rangle / D$ becomes large, and (3) the above results are valid only if $(2D/\pi \langle \Gamma_u \rangle)^{1/2} \leq (n_d/n)_{\text{exnt}}$ ≤ 1 and $\langle \Gamma_u \rangle \geq D$.

The author would like to express his sincere thanks to Professor E. Yen for his discussions.

- *%'ork supported by National Science Council of Republic of China.
- ¹C. C. Hsu, Phys. Rev. Lett. 28, 45 (1972) .
- 2C. C. Hsu, T. P. Pai, T. Tohei, and S. Morita, Phys. Rev. C 10, 422 (1974).
- ³C. C. Hsu, Y. C. Liu, S. L. Huang, and S. C. Yeh, J. Nucl. Phys. G (to be published).
- 4 R. H. Lemmer, in Intermediate Structure in Nuclear Reactions, edited by H. P. Kennedy and R. Schrils (U.
- of Kentucky Press, Lexington, Kentucky, 1968), p. 27. ${}^{5}T.$ Ericson, Phys. Rev. Lett. 5, 430 (1960); Ann. Phys. (N.Y.) 23, 390 (1963). Phys. Lett. \triangle 258 (1963). |
- ⁶C. C. Hsu, T. P. Pai, T. Tohei, and S. Morita, Phys. Rev. C 7, 1425 (1973).
- 7 H. Feshbach, in Nuclear Spectroscopy (Academic, New York, 1960), Part B, p. 665.
- 8 H. Feshbach, A. K. Kerman, and R. H. Lemmer, Ann. Phys. (N.Y.) 41, 257 (1967).