Dependence of the width of a doorway state on the ratio of the numbers of the correlating and open channels*

C. C. Hsu

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, China (Received 18 November 1975)

The width $\langle \Gamma_d \rangle$ of a doorway state, the escape width $\langle \Gamma_d \dagger \rangle$, the damping width $\langle \Gamma_d \dagger \rangle$, and the interaction $\langle V_d \rangle$ which causes transitions from the doorway state to the more complicated states are discussed as a function of the ratio (n_d/n) between the numbers of the correlating and open channels. The results show that the widths $\langle \Gamma_d \rangle$, $\langle \Gamma_d \dagger \rangle$, $\langle \Gamma_d \dagger \rangle$, and the interaction $\langle V_d \rangle$ depend strongly on the square of this ratio.

[NUCLEAR REACTIONS Discussed $\langle \Gamma_d \rangle$, $\langle \Gamma_d \dagger \rangle$, $\langle \Gamma_d \dagger \rangle$, $\langle V_d \rangle$.]

The relation between the escape width $\langle \Gamma_d \mathbf{i} \rangle$ from a doorway state and the ratio n_d/n of the numbers of correlating and open channels has been discussed by Hsu,¹ and the relationship has been also confirmed experimentally by Hsu et al.2,3 Due to the agreement between theoretical and experimental results, the ratio $(n_d/n)_{expt}$ which is determined experimentally by a limited number of the open channels can exactly take the place of the theoretical ratio $(n_d/n)_{\text{theor}}$ in the formulation of the relation between the escape width and the ratio. In the present paper, I derive the relationships between $(n_d/n)_{expt}$ and the width of a doorway state $\langle \Gamma_d \rangle$, the damping width $\langle \Gamma_d \mathbf{i} \rangle$, and the interaction V_d which causes transitions from the doorway state to the more complicated states. Finally, I also discuss those quantities as functions of various variables.

By assuming (i) the compound nuclear reaction proceeds in a high-excitation region where many levels are overlapping, (ii) the channel correlation is in fact a result of a doorway state, that is, the ratio $(n_d/n)_{expt} \neq 0$, I derived¹ the following:

$$|A_{\mu d}|^2 = \frac{2D/\pi \langle \Gamma_{\mu} \rangle}{(n_d/n)_{\text{expt}}^2 C_{\text{cc'}}^2} , \qquad (1)$$

where (i) $|A_{\mu d}|^2$ is the probability that the doorway state is present in a compound state at excitation energy E_{μ} , (ii) *D* is the average level spacing, (iii) $\langle \Gamma_{\mu} \rangle$ is the average total level width, (iv) C_{cc}^2 is the channel correlation coefficient, and (v) (n_d/n) is the ratio of the numbers of the correlating and open channels. Suppose the wave function for the doorway state Ψ_d is present with some amplitude $A_{\mu d}$ in the compound state ψ_{μ} , then

$$\psi_{\mu} = A_{\mu d} \Psi_d + \sum_{q} B_{\mu q} \psi_q , \qquad (2)$$

where ψ_q is the wave function describing all more

complicated excited states. Assuming that the interactions V_{dq} which cause transitions from Ψ_d to the ψ_q are independent of q, Lemmer⁴ finds that the widths of the compound states are given by

$$\Gamma_{\mu} = |A_{\mu d}|^2 \Gamma_d \mathbf{1} , \qquad (3)$$

where the Γ_d is the escape width of the doorway state Ψ_d , and

$$|A_{\mu d}|^{2} = \frac{|V_{d}|^{2}}{(E_{\mu} - E_{d})^{2} + |V_{d}|^{2} + (\pi |V_{d}|^{2}/D)^{2}}.$$
 (4)

The distribution of $|A_{\mu d}|^2$ in the above equation is a Lorentzian distribution. It tells us that the width of the distribution, i.e. damping width $\Gamma_d \mathbf{i}$, is given by the dominant term in the denominator of Eq. (4), either $|V_d|^2$ or $(\pi |V_d|^2/D)^2$. In the present case, $\langle \Gamma_{\mu} \rangle \gg D$, we expect the $(\pi |V_d|^2/D)^2$ term to dominate, the $\Gamma_d \mathbf{i}$ is therefore

$$\Gamma_d = 2\pi \frac{|V_d|^2}{D} .$$
 (5)

Putting $E_{\mu} = E_d$ in Eq. (4) and $C_{cc'}^2 = 1$ in Eq. (1), and combining Eqs. (1), (3), (4), and (5), we obtain the following relations:

$$\langle V_d \rangle = \left[\left(\frac{n_d}{n} \right)^2_{\text{expt}} \frac{\pi \langle \Gamma_{\mu} \rangle}{2D} - 1 \right]^{1/2} \frac{D}{\pi} , \qquad (6)$$

$$\langle \Gamma_d \mathbf{\psi} \rangle = \left(\frac{n_d}{n}\right)_{\text{expt}}^2 \langle \Gamma_{\mu} \rangle - \frac{2D}{\pi} , \qquad (7)$$

$$\langle \Gamma_{d} \mathbf{\uparrow} \rangle = \left(\frac{n_{d}}{n} \right)_{\text{expt}}^{2} \frac{\pi \langle \Gamma_{\mu} \rangle}{2D} \langle \Gamma_{\mu} \rangle . \tag{8}$$

From the above equations, it is clear that the widths $\langle \Gamma_d \rangle \equiv \langle \Gamma_d \rangle + \langle \Gamma_d \rangle$, $\langle \Gamma_d \rangle$, $\langle \Gamma_d \rangle$ and the interaction $\langle V_d \rangle$ depend strongly upon the ratio $(n_d/n)_{expt}^2$. Hence, an accurate value of the ratio (n_d/n) is needed to determine those quantities. However, it is experimentally not possible to measure the exact ratio (n_d/n) , and normally the data

402

14

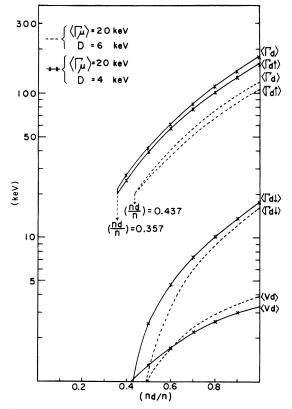


FIG. 1. The quantities $\langle \Gamma_d \rangle$, $\langle \Gamma_d + \rangle$, $\langle \Gamma_d + \rangle$, and $\langle V_d \rangle$ as a function of (n_d/n) . The dashed and crossed curves are the cases of $\langle \Gamma_{\mu} \rangle = 20$ keV, D = 6 keV and $\langle \Gamma_{\mu} \rangle$ =20 keV, D = 4 keV, respectively.

are obtained only for a limited number of low-lying levels. An experiment with a large number of open channels should be performed in order to obtain an experimental ratio $(n_d/n)_{expt}$ as close to $(n_d/n)_{theor}$ as possible. Since Eq. (8) has been already confirmed experimentally by Hsu *et al.*,^{2,3} the ratio $(n_d/n)_{expt}$ can exactly take the place of the theoretical ratio $(n_d/n)_{theor}$; Eqs. (7) and (6) can be used to calculate $\langle \Gamma_d \rangle$, $\langle \Gamma_d \downarrow \rangle$, and $\langle V_d \rangle$ if the $(n_d/n)_{expt}$, $\langle \Gamma_{\mu} \rangle$, and *D* are determined.⁵⁻⁷ Since $|A_{\mu d}|^2 \leq 1$,⁴ $n_d \leq n$, and $C_{cc'}^2 \approx 1^1$ in Eq. (1), we obtain

$$(2D/\pi \langle \Gamma_{\mu} \rangle)^{1/2} \leq (n_d/n)_{\text{expt}} \leq 1.$$
(9)

In order to satisfy $C_{cc'}^2 \simeq 1$, Eq. (9) has to be satisfied by the condition of $\langle \Gamma_{\mu} \rangle \ge D$ according to Feshbach, Kerman, and Lemmer.⁸ From Eq. (9), it can be understood that $\langle \Gamma_{\mu} \rangle / D$ cannot be smaller than $2/\pi$.¹ If $\langle \Gamma_{\mu} \rangle / D$ is equal to $2/\pi$, then (n_d/n) must be 1 and the $\langle V_d \rangle$ and $\langle \Gamma_d \downarrow \rangle$ must vanish. The escape width $\langle \Gamma_d \downarrow \rangle$, and $\langle \Gamma_d \rangle = \langle \Gamma_d \uparrow \rangle = \langle \Gamma_{\mu} \rangle$ if the doorway state exists in the excited energy region of the experiment. Combining Eqs. (6)-(8), we obtain

$$\frac{\langle \Gamma_{d}^{\dagger} \rangle}{\langle |V_{d}|^{2} \rangle} \approx \frac{\pi \langle \Gamma_{\mu} \rangle}{D^{2}} , \qquad (10)$$

$$\frac{\langle \Gamma_d \dagger \rangle}{\langle \Gamma_d \dagger \rangle} \approx \frac{\pi \langle \Gamma_\mu \rangle}{2D} . \tag{11}$$

The above equations show that the escape width $\langle \Gamma_d \mathbf{i} \rangle$ is much larger than the quantities of $\langle \Gamma_d \mathbf{i} \rangle$ and $\langle V_d \rangle$, since $\Gamma_{\mu} > D$. These results are reasonable and consistent with those of Feshbach, Kerman, and Lemmer.⁸ Otherwise the escape width could not be found in the experiments. In Fig. 1, we have plotted $\langle \Gamma_d \rangle$, $\langle \Gamma_d \mathbf{i} \rangle$, $\langle \Gamma_d \mathbf{i} \rangle$, and $\langle V_d \rangle$ as a function of (n_d/n) . The dashed and crossed curves correspond to the cases of $\langle \Gamma_{\mu} \rangle = 20$ keV, D = 6 keV and $\langle \Gamma_{\mu} \rangle = 20$ keV, D = 4 keV, respectively. Since we require $(n_d/n) \ge (2D/\pi \langle \Gamma_{\mu} \rangle)^{1/2}$, dashed and crossed curves are cut off at $(n_d/n) = (0.437)$ and (0.357), respectively. In order to satisfy this condition, the decay width $\langle \Gamma_d \mathbf{i} \rangle$ has to be greater than or equal to the total average width $\langle \Gamma_{\mu} \rangle$, i.e., $\langle \Gamma_{d} \mathbf{i} \rangle$ and $\langle V_d \rangle$ have to be small, otherwise we could not distinguish the decay width from the result of the random fluctuation. Finally, I would conclude that (1) the widths $\langle \Gamma_d \rangle$, $\langle \Gamma_d \dagger \rangle$, $\langle \Gamma_d \dagger \rangle$, and $\langle V_d \rangle$ depend strongly on the (n_d/n) , (2) the width $\langle \Gamma_d \rangle$ approaches $\langle \Gamma_d \mathbf{i} \rangle$, i.e., $\langle \Gamma_d \mathbf{i} \rangle$ and $\langle V_d \rangle$ become small, when the ratio $\langle \Gamma_{\mu} \rangle / D$ becomes large, and (3) the above results are valid only if $(2D/\pi \langle \Gamma_{\mu} \rangle)^{1/2} \leq (n_d/n)_{errt}$ ≤ 1 and $\langle \Gamma_{\mu} \rangle \gtrsim D$.

The author would like to express his sincere thanks to Professor E. Yen for his discussions.

- *Work supported by National Science Council of Republic of China.
- ¹C. C. Hsu, Phys. Rev. Lett. 28, 45 (1972).
- ²C. C. Hsu, T. P. Pai, T. Tohei, and S. Morita, Phys. Rev. C <u>10</u>, 422 (1974).
- ³C. C. Hsu, Y. C. Liu, S. L. Huang, and S. C. Yeh, J. Nucl. Phys. G (to be published).
- ⁴R. H. Lemmer, in *Intermediate Structure in Nuclear Reactions*, edited by H. P. Kennedy and R. Schrils (U.
- of Kentucky Press, Lexington, Kentucky, 1968), p. 27. ⁵T. Ericson, Phys. Rev. Lett. <u>5</u>, 430 (1960); Ann. Phys.
- (N.Y.) 23, 390 (1963); Phys. Lett. 4, 258 (1963). ⁶C. C. Hsu, T. P. Pai, T. Tohei, and S. Morita, Phys. Rev. C 7, 1425 (1973).
- ⁷H. Feshbach, in *Nuclear Spectroscopy* (Academic, New York, 1960), Part B, p. 665.
- ⁸H. Feshbach, A. K. Kerman, and R. H. Lemmer, Ann. Phys. (N.Y.) 41, 257 (1967).