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Results of calculations based on a first order functional variation method for the binding
energy D of a A particle in infinite nuclear matter are reported. Some additional details of
the formal part of the problem which had been previously discussed are also given. In parti-
cular, the “stability condition” is studied and the analytic solution in the case of the expo-
nential with hard core potentials is also derived. Various nucleon-nucleon correlation func-
tions and central A-nucleon potentials are used in order to investigate the dependence of D
on them. The results, which are obtained by including in the computations the second order
terms (in the density p of nuclear matter) show, for some potentials, large overbinding of
the A particle, while for other potentials the overbinding is considerably reduced. A discus-

sion of the results is finally made.

{:NU CLEAR STRUCTURE Binding energy of A particle, A-nucleon interaction. :]

I. INTRODUCTION

A number of authors have performed calcula-
tions in order to obtain theoretically the binding
(or separation) energy of a A particle in (infinite)
nuclear matter: D, which is known empirically
to be D<27-35 MeV.! The complexity of the
problem makes it necessary to use in the various
approaches approximations, which together with
the uncertainties pertaining the A-nucleon inter-
action, lead to ambiguities regarding to the re-
liability of the results. A review of calculations
based on reaction matrix techniques has been
given in Ref. 2. Variational techniques have also
been employed.*? Both methods lead to over-
binding of the A particle, if s-wave central A-
nucleon potentials are used.

Various efforts have been made in order to re-
duce the theoretical value of D.® These consist
mainly in suppressing the A-nucleon interaction
in p waves, including the coupling to the ZN chan-
nel, a tensor component, three-body forces, etc.
Although it is possible with the inclusion of these
effects in the A-nucleon interaction to obtain val-
ues of D in the range which is compatible with the
empirical estimates, it should be clear, as it was
already pointed out, that a part of the discrepancy
should be due to the approximations made in the
calculation. The overbinding appears both in
the reaction matrix and in the variational ap-
proach, even if correlation functions containing
parameters are used in the latter. It appears
therefore desirable to further investigate these
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methods with the aim of detecting possible causes
of inaccuracies.

In the present paper we give results for D,
based on the variational approach but using a cor-
relation function which is determined by functional
variation of the first order term E{"’ in the cluster
expansion, as it has been previously described.®
In the second section we give a summary of the
formalism and we also provide details of the deri-
vation of the “stability condition.” It is shown that
the A-nucleon correlation function f,;, determined
by functional variation minimizes indeed E{’. In
the third section, we give the analytic solution of
the Euler equation for f,, in the case of the expo-
nential potential with hard core, since all the po-
tentials which are used are taken from Refs. 9-11
and are of this shape. It is shown that, in this
case, the correlation function can be expressed in
terms of new transcendental functions which are
given as series expansions of well known functions.
After giving some details about the nucleon-nucle-
on correlation functions and the A-nucleon poten-
tials in the fourth section, we present our results.
In the final section, we discuss and compare
these results with those obtained with other meth-
ods.

II. SUMMARY OF THE FORMALISM AND THE
STABILITY CONDITION

The Hamiltonian of the system (A particle+nu-
clear matter) is

H=H,+Hy, (1)
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where H, is the Hamiltonian of the (infinite and
uniform) nuclear matter and H, the Hamiltonian of
the A particle. This is taken to be of the form?

r

- 2
Hy=- ZMAV“‘ + g: Vryy) - @)

The trial wave function of the system is taken to be
N
¥ =8, I F0rad) ®
i=1

where ®, is the ground state wave function of nu-
clear matter, corresponding to energy E, and f
the A-nucleon correlation function.

The energy of the A particle E, =— D is then

El(\”=pf[f(TA1)HA1f(rA1)]d?A1!

given by the expression

(¥ |H|¥)
E, <E} = -E,. 4
A A <\I’l ‘I/) N ( )
Following the procedure described in Ref. 3, the
expression for the trial energy may be written

E,=EP+EP +0(p%. (5)

The upperscript tr has been omitted for simplicity.
The trial energy should be close to the actual one,
provided that the trial function is good enough and
the approximations made, reasonable.

The E{ and E{?’ in expression (5) are given as
follows:

(6)

1 > e g 7?1 = = e
Exz) =0°\5 f[f(”/\ DHy fry 1)]F(7'A2)K(7’12)d T\dT\dT) — 57— 55 f F(7A2)[V1F(7A )" ViK(r,p)[dT,dT,dT,
o) M, 29

7?1 f - -
co— o= [ [VoF(ry )V Flr ) IK(r,)dF,d F,dT, 7
ZMA 49 A Al A A2 12 A 1 2 ( )

where H,, is the Hamiltonian of the relative motion of a A-nucleon pair

h—z

YV 2+ Viry,).

Also F=f2-1 and K(r,,) is given by
K(le)=(g(r12)2_ 1)—g(rlz)2l(a’prlz)2/4y (9)

where g is the nucleon-nucleon correlation func-
tion and I(x) =3j,(x)/x, K being the Fermi mo-
mentum, which is related to the density p.

In order to obtain a value for E,, given the A-
nucleon interaction and the properties of the “host
medium” (nuclear matter), it is necessary to know
the A-nucleon correlation function. As it was
stated in the Introduction this function is deter-
mined here as in Ref. 5 by varying functionally the
first order contribution E{". The omission of the
higher terms is compensated by imposing the fol-
lowing integral constraint

o f (f- 1)%d¥,, =1,(=finite constant).  (10)

This is referred to as the “healing condition”
and has the effect of introducing a Lagrange multi-
plier A? into the variational problem.

The Euler equation for the correlation function
fo which makes E{V stationary is

d&*f, 2d 2
2{;+;§£——#%EVAn(7)fo—ﬁzf0=’ﬁz’ (1)

CSy<®

)

where »=7,, and B%=(2u, ,/7ZA%.
The boundary conditions are

()

fo(c)=0a‘ fo(°°)=1- (12)
The corresponding expression of E{" takes the
form

h—z
2ppy

The choice of the Lagrange multiplier is dis-
cussed in Secs. IV and V. Here we would like to
investigate the “stability condition.” It is a rather
interesting feature of the present approach that a
condition may be derived for E,‘\”( f,) to be a min-
imum. It is instructive to consider this in some
detail. The procedure, which will be described
is similar to that developed in an analogous case
for finite nuclei.'? In that case, the variation is
with respect to two-body correlated relative wave
functions ¥, in the oscillator shell model, which
appear in the two-body matrix elements of the en-
ergy expression. There is also an additional
Lagrange multiplier, due to the “normalization
condition.”

We first remark that expression (6) may also be
written in the form

EO() = 47p f ”[( ziiﬂ) (%>2+ V(r)fz(r)Jerr
(14)

E{ =4mp

B2 f CrOL=f ) Rar.  (13)

(provided of course, that df/dr tends to zero, as
r -, sufficiently rapidly). Expression (14) can
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be easily shown by partial integration.
We may now proceed to calculate AE ("
=E{(f) - E(f,), where

fr=Fo+n. (15)

Since f, too must satisfy the required boundary
conditions, it follows that

J

two things may be taken into account. The first is
that f, satisfies the Euler equation (11) and the
second that the variation is performed within the
class of functions which comply with constraint
(10). The healing integral I, for f, and f, is there-
fore the same:

f i (fy = 1)%7%dr = f ) (fo- V)% %dr. (18)

Taking into account that f; is given by (15), this
expression is equivalent to

2 [0l -

In view of the above remarks, the first integral
in expression (17), with the factor 2 included, may
be written successively as

1p2dr = f TRy, (19)

oz "0y = Py =22 f CReywrdr.  (20)

The expression for AE{" takes therefore the
final form

b e d%n 2d
) _ o n,2an
AL = 41rpfc 17(7)[( - 2“‘AN><7 r d7’>

+ V(@)nr) + xzn(r)} vidr.
(21)

It is seen from this expression that AE{" is pos-
itive and therefore E, (f,) is a minimum unless the
eigenvalue problem

n? ><d2n 2d> 2
—_—— 4— — [V +X =k s
< 2ty 7z an(” In=kn

(22)

n(c)=0, n(x)=0, 1*#0

has a nonpositive eigenvalue. It is indeed the case
that the eigenvalue % is positive. Even for A*=0,
there is no negative eigenvalue, because this
would mean that the A-nucleon system could be in
a bound state and it is well known that such a sys-

E1‘>(f1)=E;1>(fo)+4np{2f:n(r)[( Zu,m>(_rf’ % 4

(A

In order to eliminate f, from the above integrals,

n(c)=0 and 7n(»)=0. (16)

By substituting (15) into E{"(f,) [expression
(14)] and taking into account the boundary condi-
tions on 7, we arrive after some algebra at the
following expression

) + V(r)fo} vidr

f Z”) + V(r)n]rzdr} 17)

tem has not been found and it is not expected to be
found.

III. ANALYTIC SOLUTION OF THE EULER EQUATION FOR
THE EXPONENTIAL WITH HARD CORE POTENTIAL

One feature of the simple functional variation
approach we are discussing is the possibility of
obtaining analytic solutions for some potentials.
The analytic solutions for the square well with
hard core potential were obtained in Ref. 5(a). In
this paper we shall give some details of the deri-
vation of the analytic solution in the case of a A-
nucleon potential of exponential shape with hard
core. This appears to be interesting, because the
potentials, which are used in the present investi-
gation as well as in many others, are of this type.

It is convenient to perform the transformation

£-1-20 (23)

v

In the differential equation for © there is no
first derivative. This equation may be written as
follows:

LoD, (-242) vier) - s7e()

= (-%‘-ﬁ‘-”)rv(r) , csy<ewo, (24)

The boundary conditions for O(») are
O(c)=c, ©O(»)=0. (25)

The A-nucleon potential is assumed to be of the

form
Vr)== Vet ™ =_ Vetceetr. (26)

Equation (24) may therefore be written

;(2(7) +Vieto() - B*OW) =Vige™ ™, (27

where V= (2u,y/7E2)Vae .
The general solution of the homogeneous equa-



288 S. ALI, M. E. GRYPEOS, AND B. KARGAS 14

tion which corresponds to (27) can be expressed o 0.0) f h(r')O,(r")dr’
in terms of Bessel’s functions of first kind part.= — Oy w(®,,0,)
2V u /2) f RN
e+ 29
ehomog C J, ( M +@2(’}’) W(@l,ez) ( )

where k() is the inhomogeneous part of Eq. (27)
C.J <2V Vo e-hr/ 2) and W(Q,,0,) the Wronskian of the functions ©,
4 . .
K and ©,, which is given by

=C10,+C.0, (28) W(©,,0,) = [J,( )de 2 (@) _ ] :: u s;nwr
provided that the parameter »=28/p is not an in- (30)
teger.'® _
A particular solution may be found in the usual with z = (2VV?/ e 7’2,
way: The expression for O(r) becomes
J
’ r
o= crm b [ verrs (BT o iy |5, (2T )
u sinvr J, o u
’ r 1/ 7 ﬂ/ 7
+ [Cz+ Vo f 1"e""’J,,<——-2 Yo e“‘"/2> d'r’] J_,,<—2 o e"”“) . (31)
w sinvr J, n n
The constants are determined by the boundary conditions. We find
’ £
Comm Vo [“yrenerg, (2 ogeur ) g (32)
W sinvmr J,
and
2V, 2V,
C =[c—C J_,,( °>]/I< °), 33)
1 2 N v m (
where V,=(2u, v/ 52V,
The solution may therefore be written in the following form
9(’}’) C J <2F -ur/Z) FVG [J (2 Y VO e-ur/Z) fr ,rle-ur'J <2 VO e-ur‘/z)d,r/
wsinvr LY\ pu A TN u
+L&3%i€“”>f WK“UKE%ifw”ﬁmﬂ]. (34)

If we take into account the series expansion of Bessel’s functions and perform the integration we can
express ©, in a rather simple form, in terms of new transcendental functions, which are defined by
series of well known functions. After some algebra we arrive at the following expression:

o) =c 3 Eyg st (i—)—z—ﬁ‘%ﬁ v {e-wgfg-:-; [S.(C)E. (¢) - S.(C)E, (¢)] + e[S (AE. ()  S,(")E. ()] } ,

(35)
where the functions S,(») and E,(») are defined as follows:
(- l)k(V /“2)ke-ku(r-c)
S.0= 3 FEGrr DGR (36)
_ (- DXV /#2)ke-ku(r-c) v 1
E.n= k!(:tv)(:tvo+1)-'-(iu+k){[j:vp,/2+ u(k+1)]+[ivu/2+u(k+l)]3}' (37)

It is worth mentioning that somehow similar in structure is the s-wave solution for the same potential
of the differential equation of the reference spectrum method for nuclear matter.!* One of the main dif-
ferences is the lack of trigonometric functions in the solution of the present equation.

The usefulness of the analytic solution (35) we have derived is that we can obtain the asymptotic behavior
of the correlation function and also that we can check the accuracy of the numerical solution.
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TABLE 1. Parameters of the nucleon-nucleon potentials.

Potential ¢ (fm) pg (fm™1) Ve (MeV) g (fm ™) Ve (MeV)
OMY-1 0.6 2.6272 397.31 3.6765 947.02
OMY-II 0.4 2.0344 235.41 2.5214 475.04

IV. NUMERICAL RESULTS FOR VARIOUS NUCLEON- NUCLEON CORRELATION FUNCTIONS AND
A-NUCLEON POTENTIALS

In this section we shall give the results of our calculations.!s
The first-order energy was computed directly from expression (6) by numerical integration. For the
second-order energy, expression (7) may be used. This is easily written in the following form, which

can be used immediately in the computations:

T 2upy ary,’

dry,

prtnn [ )] (- g ) (TG T )+ Vi)

df(r
+[ROy) + Sty )17 0ry) f;(rM’}dm, (38)
Al
where
© T, 4T
M(r,,) =27'P”'A1f Vaol 2 raz) - l]d"'Azf e 7 K(ryp)dr,, (39)
4] "'Al"Az'
n® * 2 "a1*"A2 dK(7,,)
_ _ _1ld 12 2_, 2 2)q 40
R(r,,) 7TP< _2MN>>£ 7'A2[f (7)2) ]rAzﬁrAl-rAzl—__drlz o =7ay +720)dry, (40)
and
n? b df(r TALYTA2
S(rm):’m(‘ ‘Z'M—)f Fry,) J;( 22) d"’Az[ 71 K@) g2+ 7" = 7p0)dr . (41)
Al VA2 175 1=7 o)

The expression in the first brackets [ ] in (38) may also be substituted from Eq. (11) since the correlation

function f, is used in the present analysis.

It is advisable to use in practice the following equivalent formula, which is obtained from expression (7)

by applying Green’s theorem (see also Ref. 4):

= [ 0| (L2 s vy

d*flry) , 2 df("'M))]})drM. (42)

2
ary,, Va1 A¥p,

12’}'1\1\!

[ (Z22) s

The main advantage in using the above expres-
sion is that only one two-dimensional integral
(that corresponding to M) of a “product type inte-
grand” has tobe computed for each value of 7,,.
The computations in this case are less time con-
suming.

The results reported in this section were ob-
tained with expression (42), although it has been
checked that practically almost the same value is
obtained if expression (38) is used instead.

The value of the density of the “host medium”
(uniform and infinite nuclear matter) is taken to
be p=0,172 nucleons/fm3. This is appropriate to
the central density of heavy nuclei.

Several choices are made for the nucleon-nu-
cleon correlation function g(7,,), in order to in-

-
vestigate the sensitivity of the results to this
function.

Firstly, the following nucleon-nucleon correla-
tion function is assumed

TABLE IL Parameters of the A-nucleon potentials.

Potential ¢ (fm) p (fm™1) V, (MeV)
H 0.6 3.935 685.95
F’ 0.6 4.427 851.7
E’' 0.45 3.219 398.9
E 0.45 3.219 414.5
DW 0.4 3.219 330.9
HTS 0.4 5.059 1020.8
B’ 0.3 3.935 544.6
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TABLE III. Detailed results with correlation function g, and potential 4.

8 B B2 E%1)+E§\z)
(fm™) (MeV) (MeV) (MeV) |EQ/ED | I I,
1 —-100.0 28.7 —-71.3 0.29 0.443 4.794
2 -87.5 12.3 —75.2 0.14 0.256 0.890
3 -81.8 9.1 -72.7 0.11 0.230 0.246
4 -76.6 8.4 —68.2 0.11 0.219 0.032
5 -70.6 8.6 -62.0 0.12 0.211 0.063
grp)=1, 0=y,<o, (43) The procedure in determining the parameters

This means that the dynamical nucleon-nucleon
correlations are completely neglected. “Pauli
correlations,” however, which have their origin
in the antisymmetry of the wave function of nu-
clear matter and enter in the variational expres-
sion through the / functions, are included.

Secondly, the following nucleon-nucleon corre-
lation function is considered:

gz('rlz) = {0

<
y 0=7r,=cyy

(1 _ e'a(rlz'cNN))(l F be'“(’lz‘cNN)) ,

Cyn=7p<>o. (44)
This correlation function has also been used in
Ref. 6. The values of the parameters are

cyy=0.6fm, a=2.30fm™, b=1.394.

The parameter a is determined by minimizing
at the experimental density the first-order ex-
pression in the cluster expansion of the energy
per particle in nuclear matter by using the poten-
tial of Ohmura, Morita, and Yamada,'® which is
of exponential shape with hard core. This poten-
tial will be denoted here as OMY-1. Its parame-
ters are given in Table I.

The parameter b of g, is fixed for each value of
a by the normalization condition.®

Finally, a nucleon-nucleon correlation function
g, of the same shape as that of the previous one
is considered, but with values of parameters as
follows:

cyy=0.4fm, @=2.338 fm™, b=1.257,

is quite analogous, but now the OMY-II potential
is used.'” The parameters for this potential too
are given in Table L.

A variety of central A-nucleon potentials are
used in the present calculation. All of them are
of exponential shape with hard core

Vs () == Voe v (menn) | (45)
where
Vo=iVi+3Ve, (46)

V$ and V§ being the depths of the potential is sin-
glet and triplet states, respectively.

The notation for each potential and the corre-
sponding values for the hard core radius cy,, the
range @, and the average depth V, are listed in
Table II. Most of these potentials have been used
by other authors as well 2" %1% 5o that we may
compare our results.

Potentials H, F’, E’, E, and B’ have been de-
termined by Herndon and Tang,'! while DW and
HTS are the older potentials of Downs and Ware®
and of Herndon, Tang, and Schmid,'® respectively.

Concerning the potentials of Herndon and Tang,
it should be noted that the unprimed ones have
been determined by fitting the three- and four-
body hypernuclear data, while the primed poten-
tials have been determined by fitting the three-
and five-body hypernuclear data. The potentials,
which have been used in the present calculation
are without suppression in odd-parity states. It
should be recalled, in connection with this, that
the fitting of the A-p scattering data requires a
reduction of the strength of the A-nucleon poten-

TABLE IV. Detailed results with correlation function g, and potential E’.

P £ £ B0y g

(fm™) (MeV) (MeV) (MeV) |ED/ED | I I,
1 -79.8 16.8 -63.0 0.21 0.250 3.926
2 7.7 7.3 —64.4 0.10 0.130 0.808
3 —67.8 5.2 —62.6 0.08 0.113 0.282
4 —64.2 4.6 -59.6 0.07 0.105 0.105
5 -60.1 4.5 —55.6 0.08 0.099 0.026
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TABLE V. Detailed results with correlation function g, and potential B’.

(1)

(2)

B E§Y E Ep+E}

(fm™) (MeV) (MeV) (MeV) |E? /ESY | I, I,
1 -55.0 9.2 -45.8 0.17 0.120  2.753
2 —49.7 3.2 —46.5 0.07 0.050  0.600
3 -47.3 1.7 -45.6 0.04 0.040  0.236
4 -45.6 1.1 —44.5 0.02 0.036  0.114
5 -43.9 0.8 -43.1 0.02 0.034 0.058

tial in odd states. An additional parameter x, the

reduction factor, is therefore introduced which
determines the relative strength of the interac-
tions in even- and odd-parity states. The analy-

sis of the hypernuclear binding energy data is per-
formed with x=0, while in the analysis of the A-p
scattering data the reduction factor has to be tak-

en different from zero. The introduction of this

factor leads therefore to an inconsistency, which,
however, is not expected to be too serious. This

100

E (MeV)

=100

FIG. 1. The first- and second-order energies and
their sum as functions of 8. (Nucleon-nucleon corre-

lation function g,, potential H.)

point is discussed by Tang in Ref. 20.

The A-nucleon correlation function is deter-
mined by solving the differential equation (11)
numerically or analytically. Although numerical
integration has been mostly employed, the analy-
tic solution, which was derived in Sec. II, has
also been used in checking, in some cases, the
accuracy of the numerical solution. Very satis-
factory agreement between the values of the two
solutions was found.

For each nucleon-nucleon correlation function
and each A-nucleon potential, the values of the

100

50

E (MeV)

(2)
El\

-so}
L (E+ER

EY

=100}

FIG. 2. The first- and second-order energies and
their sum as functions of 3. (Nucleon-nucleon corre-
lation functions g,, potential E’.)
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100}

i
B (fm)

V)

I M
-s0} /—/
| )

Ep

(2)

-1004

FIG. 3. The first- and second-order energies and
their sum as functions of 8. (Nucleon-nucleon corre-
lation functions g,, potential B’.)

first- and second-order energies E{’ and E{?,
their sum E{" + E?’, and the absolute value of the
ratio E{2’/E{", as well as the values of the “heal-
ing integral” I, and the “normalization integral”
I, were computed for various values of the param-
eter B. This parameter is connected to the
Lagrange multiplier A%, which appears because of
the healing condition imposed in the variation, by
the relation

TABLE VI Values of E{Y, E?, BV +E(®, I, and I,
for values of § which minimize ESJ) +E5\2) (ME case).
The g nucleon-nucleon correlation function was used.

EY E?  Ep=EQ+EQ

Potential (MeV) (MeV) (MeV) I 1,
H -97.9 10.6 -87.3 0.393 3.845
F’ —83.3 8.5 -74.8 0.368 3.589
E’ -79.1 7.7 -71.4 0.233 3.523
E -~86.8 9.0 -77.8 0.241 3.513
DW —49.8 3.3 -46.5 0.150 2.742
HTS -57.4 6.0 -51.4 0.167 2.559
B’ -~54.6 5.5 -49.1 0.118 2.475

FIG. 4. The “healing integral” I; and the “normaliza-
tion integral” I, as function of 8. (Nucleon-nucleon cor-
relation function g,, potential H.)

1.0
0.5}
I2
l1
° R .
2 4 6 8 10
B (fm™")

b
-0.5F

FIG. 5. The ‘“healing integral” I, and the “normaliza-
tion integral” I, as functions of 8. (Nucleon-nucleon cor-
relation function g,, potential E’.)
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0.5

FIG. 6. The “healing integral” I, and the “normaliza-
tion integral” I, as functions of 8. (Nucleon-nucleon
correlation function g,, potential B’.)

2 1/2
B= <_gy xZ) . @n
The expression for I, is the following:

L=p [ [f*0)- 1JaF. (48)

Detailed results obtained with the nucleon-

nucleon correlation function g, and three “repre-
sentative” A-nucleon potentials, H, E’, and B’ of
hard core radii 0.6, 0.45, and 0.3, are exhibited
in Tables III, IV, and V, respectively. The vari-
ation of the previously mentioned quantities with

B for the other nucleon-nucleon correlation func-

TABLE VIL Values of E\Y, E?, BV +EY, 1, and 1,
for values of 8 which minimize Ef\“ +Ef\2) (ME case).
The g, nucleon-nucleon correlation function was used.

TABLE VIIL Values of EY, E?, EP +E?, 1, and 1,

for values of 8 which minimize Ef\l) +E5\2) (ME case).

The g; nucleon-nucleon correlation function was used.

EY EQ  Ey=EW+EQ
Potential (MeV) (MeV) (MeV) I 1,
H -90.9 12.3 -178.6 0.284 1.575
F' -77.6 10.6 -67.0 0.273 1.419
E’ -75.0 8.7 —66.3 0.161 1.707
E -82.1 9.7 -72.4 0.164 1.745
DW —-48.2 4.9 —43.3 0.114 1.380
HTS —54.0 6.0 —48.0 0.109 1.148
B’ -52.0 5.2 —46.8 0.072 1.260

tions and A-nucleon potentials is rather similar.

In Figs.1, 2, and 3 the energy quantities E{V,
E®, and E{V’+ E{?) are plotted as functions of B,
for potentials H, E’, and B’, respectively, while
in Figs. 4-6 the integrals I, and I, are plotted as
functions of the same quantity.

It is seen that the sum of the first- and second-
order energy E, =E{" + E®) has a minimum for a
value of B8, which is usually in the range 1< 82
fm™'. One possible choice of the value of this pa-
rameter would be the one for which E, becomes
minimum. We shall refer to this choice as ME
(minimum energy) choice.

The results for the various quantities with such
a choice for the value of B, for each nucleon-nu-
cleon correlation function and A-nucleon potential
are given in Tables VI-VIIL. In Figs. 7-9 the A-
nucleon correlation functions with the ME choice
for B, the nucleon-nucleon correlation function
gZ,, and the A-nucleon potentials H, E’, and B’ are
plotted.

Another choice of the value of 8, which seems
reasonable, is the one for which the ratio
|E®/E| takes its minimum value. Such a
choice of B might be considered quite attractive
because the magnitude of |E’/E{"’| is an indica-
tion (though not fully satisfactory) of how rapidly
the energy cluster expansion converges. We aim

TABLE IX. Values of EQ), E®), E{D+ E®), I, and
for values of 8 which minimize |EQ)/E®| (BC case). The
g nucleon-nucleon correlation function was used.

By B Ep=E{0+E{)

E(/i\) E(/%) EAZE(I{)"'E(/%)

Potential (MeV) (MeV) (MeV) I, 1, Potential (MeV) (MeV) (MeV) I I
H -89.0 13.7 -75.3 0.267 1.172 H -72.2  0.09 =721 0.213 —0.045
F’ -76.1 11.9 —64.2 0.258 1.043 F’ -62.1 0.01 —-62.1 0.211 -0.061
E’ ~73.6 9.0 —64.6 0.145 1.270 E’ -57.4 0.09 -57.3 0.097 —0.001
E -80.4 9.8 -70.6 0.148 1.309 E -61.8 0.06 —-61.7 0.095 -0.004
DW —-47.7 5.5 —42.2 0.107 1.081 DW -38.7 0.12 —38.6 0.074 0.014
HTS ~53.2 5.6 —-47.6 0.101 0.923 HTS —45.1 0.00 —45.1 0.069 0.033
B -51.4 4.8 —46.6 0.065 1.056 B’ —40.6  0.00 —40.6 0.031 0.016
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FIG. 7. The correlation function f, obtained with the ME choice for 8. The g, nucleon-nucleon correlation function

and potential H were used.

therefore, in this way, at a better convergence
compared with that in the previous case (ME).
For this reason we shall refer to this choice of
B as BC (“better convergence”) choice. It should
be noted, that in this case the corresponding val-
ues of B are larger and vary usually between 3
and 7.

The results with the BC choice, for the value of
B, are given in Tables IX-XI.

A discussion of the reported results is made in
the following section.

V. DISCUSSION AND CONCLUSIONS

We may first remark that all the values of D
=~ E,, which were calculated variationally and
were reported in the previous section exceed the
empirical value, in agreement with other calcu-

£ 0

r (fm)

FIG. 8. The correlation function f, obtained with the ME choice for 8. The g, nucleon-nucleon correlation functio~

and potential E’ were used.
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FIG. 9. The correlation function f, obtained with the ME choice for 8. The g, nucleon-nucleon correlation function

and potential B’ were used.

lations. The observed overbinding, however,
varies considerably. It depends on the nucleon-
nucleon correlation function, the A-nucleon poten-
tial, and the choice of B.

The results obtained with the nucleon-nucleon
correlation function g, and the ME choice for B8
are poorer. This indicates that it is not justifiable
to neglect in this case the dynamical nucleon-nu-
cleon correlations. On the other hand use of the
correlation function g, or g, leads to improved
results. The results with g, are a little better
(closer to the empirical value).

The dependence of D on the A-nucleon potential
is strong. For some potentials (H,F’ and E', E),
the overbinding is too large, even with the best
nucleon-nucleon correlation function. These are
the potentials which have the larger hard core
radii and the values of the corresponding healing
integrals are larger. For these potentials the

TABLE X. Values of E\Y, E\?, E{V+E®, I, and I,

for values of 8 which minimize lEf\z)/Exl)] (BC case).

The g, nucleon-nucleon correlation function was used.

values of E,‘f’ are generally larger too and the

convergence of the cluster expansion is not rapid.
It is not therefore justifiable, particularly in
these cases, to use an expansion truncated in the
second term.

Concerning the comparison of the results ob-
tained with the ME and BC choices for the value
of the parameter B, it is seen from Tables VI-
VIII and IX-XI that the energy values correspond-
ing to the latter choice are closer to the empirical
value of E,. The ME choice for the value of B8
implies that this parameter is considered as
variational. Although such a possibility might
not be a priori excluded, it appears more justi-
fiable to attribute a different role to 8. The pres-
ent method is based on a first-order functional
variation and the origin of B is the “healing con-
straint,” which was introduced in order to “rem-

TABLE XI. Values of EYY, E?, ESV+E®, I, and I,
for values of 5 which minimize |E5\2)/E$\1)| (BC case).
The g3 nucleon-nucleon correlation function was used.

B B g, =EQ+?

Potential (MeV) (MeV) (MeV) 1, I,
H -79.0 8.5 -70.5 0.223 0.105
F’ -68.1 7.7 —-60.4 0.221 0.084
E’ —64.3 4.6 -59.7 0.105 0.109
E —-69.3 4.5 —64.8 0.103 0.098
DW —42.9 3.4 -39.5 0.081 0.114
HTS —44.1 1.5 —-42.6 0.068 0.017
B’ —40.3 0.6 -39.7 0.031 0.014

EE\O EE\Z) EA=E$\1) +E5\2)

Potential (MeV) (MeV) (MeV) I, 1,
H -78.2 5.9 -72.3 0.222  0.077
F’ -67.5 5.4 —-62.1 0.219 0.061
E’ —64.0 3.5 —60.5 0.104 0.100
E —69.1 3.5 —65.6 0.103 0.093
DW —42.9 2.6 -40.3 0.081 0.114
HTS -44.4 1.6 —42.8 0.068 0.023
B’ —-41.4 0.9 -40.5 0.031 0.022
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TABLE XII. Values of D obtained with different methods.
Rote Dabrowski Ram Mueller
and and and and Present Present
Bodmer Hassan Williams Clark calculation calculation
Potential (Ref. 2)  (Ref. 18) (Ref. 21) (Ref. 6) (ME case with g,) (BC case with g,)
H 56.8 56.7 57.7 72 75.3 70.5
F’ 64.2 60.4
E’ 56.0 55.6 56.9 62 64.6 59.7
E 61.7 61.1 62.4 69 70.6 64.8
DW 36.3 36.4 42 42.2 39.5
HTS 42.4 47.6 42.6
B’ 46.6 39.7

edy” for the omission of the higher terms. Con-
sequently, it should be more appropriate to con-
sider B as a parameter, which is at our disposal
in order to guarantee, if this is feasible, good
convergence of the energy cluster expansion. It
is therefore reasonable to expect the results with
the BC choice for the value of B to be improved.

In Table XII the values of D obtained with nu-
cleon-nucleon correlation function g, and the two
choices for the value of 8 are compared with the
values produced with other methods. Most of the
values for this comparison have been taken from
Ref. 21 and it should be noted that the rearrange-
ment energy correction in the reaction matrix
methods has not been included.

It is seen from Table XII that the variational
calculations give larger overbinding as it has also
been pointed out in Ref. 19. It is encouraging,
however, that the present calculations with the
BC choice for the value of 8 lead to somehow less
overbinding, compared with other variational cal-
culations.*” The gap between the values of D in
the reaction matrix and variational methods is
therefore a little narrowed.

In conclusion, it should be pointed out that it is

important for a variational calculation like the
present one to use appropriate A-nucleon poten-
tials which lead to as small as possible higher-
order terms in the energy cluster expansion in
order to diminish the observed overbinding. A
p-wave suppression or other effects like those
commonly discussed in the literature may further
reduce the theoretical value of the binding energy
of the A particle.
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