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Exact, closed-form eigenfunctions for the harmonic, quadrupole surface vibration model of
Bohr are developed. These angular momentum labeled, multiplicity-resolved functions of P,
Z, and the Euler angles are valid for an arbitrary number of phonons.

NUCLEAR STRUCTURE Exact y-vibration solutions, multiplicity resolved; . !

L theory. J

INTRODUCTION

The quadrupole surface oscillation model of
Bohr' has become the natural starting point for
the collective description of the positive parity
states of even-even nuclei. The harmonic approxi-
mation in which the nuclear fluid executes quadru-
pole surface vibrations about a spherical equili-
brium shape is of course entirely too restrictive
and a wide va. riety of calculations have been per-
formed which include various anharmonic terms. '
Even in such cases it is necessary to have the
solutions to the Bohr Hamiltonian as a starting
basis. One has a choice of working in laboratory
coordinates or in body-fixed coordinates oriented
along principal axes. In either set of coordinates
the energy is labeled by a principal quantum num-
ber N which is the number of quadrupole surface
phonons. Since the creation and destruction opera-
tors for these phonons obey- boson commuta. tion
rules, the basis functions are symmetric functions
of the boson coordinates. In the laboratory frame
the natural basis to use is pseudo-Cartesian and
one is faced with the problem of constructing
states of good angular momentum, J, and resolv-
ing the multiplicity which occurs as soon as N =4.
In that case there are two J= 2 states and two J
=4 states. This multiplicity increases rapidly with
increasing N. A partial resolution of this multi-
plicity is effected by using the "seniority scheme"
which is merely an alternative way of describing
the transformation properties of the basis states
under the orthogonal group in five dimensions.
Even this additional quantum number fails to re-
solve the multiplicity of J values as soon as N = 6.
A complete formal resolution of this multiplicity
problem was given several years ago' and in the
second of those papers a technique familiar from
the work of Elliott ' was used to obtain projective
wave functions given a set known as intrinsic

states. This technique is most applicable to work-
ing in the body-fixed coordinates. In these coordi-
nates the problem is one of finding an explicit re-
alization of the so-called y part of the problem.
A partial set of detailed solutions to this problem
was presented by Bes' and by Jankovic' in 1959
and the problem has received renewed interest
more recently. " The Yrast solutions have also
been given earlier' but they are a special case of
the largest angular momentum for a given seniori-
ty. The projective technique has been used for
this problem by Holzwarth" but the calculation dif-
fers considerably from ours; for example, it
starts with a variational function rather than a
group theoretic one. Our solution resolves multi-
plicities in a natural way. In Ref. 8 the multipli-
city resolution of Ref. 3 was used, but no closed
form of the y part of the wave functions was
given. In this paper we utilize the techniques of
Ref. 3 to present a closed form solution to this
24 year old y-vibration problem.

In the first section we shall review the entire
surface oscillation problem to establish the nota-
tion we shall use. In Sec. II we shall ma, ke con-
nections between the physical problem and the
relevant group theoretic problem, and in Sec. III
we shall present the solution. Finally, in Sec. IV
we shall give normalization and overlap factors
and make comparisons with earlier work.

I. PHYSICAL PROBLEM

A. Model Hamiltonian

The usual starting point is the expansion of the
nuclear surface (as seen by a laboratory observer)
in spherical harmonics which introduces the col-
lective coordinates n~. This expansion is"

R(6, p) =R, 1+ P (o.', )*Y„(0,$) . (1)
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Changes in moo and n,„correspond to changes in
the nuclear volume and center of mass, respec-
tively"; hence to lowest order one has interest
first in the quadrupole (X =2) coordinates.
Throughout this paper our interest is only in these
A. =2 coordinates. We shall drop this extra label,
which describes the transformation property of
these coordinates under three-dimensional rota-
tions. The nuclear surface may similarly be de-
scribed in body-fixed coordinates by

R(8', P') =R, 1+ g (a, )*I;,(8', Q')

If the Euler angles (8„8„8,) -=(8,.) describe the
laboratory to body transformation, then"

Qne readily finds that under rotations these co-
variant components of w transform as

v~ = ga'„~(8,.)~",

where n is the body-frame generalized momenta.
Hence the 7t" are properly labeled. The corre-
sponding contravariant components are

v, = (-1)"m ~ .
The Hamiltonian then assumes the usual form

H =— m "m„+ &C n" n„.
a„=QD'„(8,)n, .

The reality of the surface insures that

(3)

(4a)

By employing the convention of summation on
repeated upper and lower indices, and by introduc-
ing a. metric tensor, we may rewrite Eq. (11) a.s

and similarly

(a„) =(-1)"a „. (4b)

H =—m„g""m„+ —,Cn, g'"n„

or as

(12a)

It will prove convenient to define upper indexed co-
ordinates (12b)

a"—:(a„)*=(-1)"a„
which are then seen to transform as

a"= D„*„O]&" .

(5)

(6)

where

gll
& g ( I)Il 6ll

and 6„' is the usual Kroneker 6

(13)

For our purposes it is very useful to clearly
classify quantities as to their transformation prop-
erties under spatial rotations. If the components
of an object transform according to Eq. (3) or Eq.
(6) we say that these transform contragradiently
or cogradiently, respectively, and that the corre-
sponding components are contravariant or covari-
ant. In terms of the general surface expansion,
the contravariant components, a~ „, of a vector
a~ (the underline here indicates a, vector with 2K+ 1

components) form a basis for the [X] irreducible
representation (IR) of R(3), while the covariant
components a"„are a basis for the (equivalent)
adjoint representation [X]*.

For small oscillations about a spherical equili-
brium shape the classical Hamiltonian assumes
the form

[I, p, = v

0, p4v
(14)

g„V = 5„„=g„,5„' (15a)

gg V Qg V gg fyQV
fy

(15b)

It is usually convenient to cast the Hamiltonian
into dimensionless form by writing

B(d
5 (16a)

(IfB ) (16b)

Thus the metric tensor elements are the derived
6's

(7)H=T+ V=-,'B ~ &"~ +&C ~o"~

where the dot means d/dt. The scalar constants
B and C depend upon details of the model.

The momenta conjugate to these generalized
coordinates are defined by

1H'= —H,
SM

where

(16c)
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Hereafter we shall use the scaled quantities and
omit the primes unless otherwise explicitly stated.

(n„)'=n',
(v')' = v, .

(16a)

(16b)

The coordinates and momenta do satisfy the ex-
pected commutations rules, however, which may
be expressed as

[ nw]=i ;6[n, n]=[v, v]=0

which ere:ompasses, for example,

B. Quantization

Some care must be taken with quantization since
the classical coordinates are not real and lead
therefore to non-Hermitian operators. In fact,
if we use f to denote Hermitian conjugation, one
has

The form of Eq. (24) quite clearly indicates that
H is the Hamiltonian for the five-dimensional iso-
tropic harmonic oscillator. This is often re-
fer red to as the quadrupole vibrator since the one-
phonon states carry angular momentum 2.

One also has

[H, b „]=b„[H,b„]= b„- (25)

&{6;)Io&= lo& . (2'f)

The one-phonon state b'„~ 0) carries angular mo-
menta 2 and projection p, , or

From Eqs. (24) and (25) the natural form for
the eigenstates of H is a (necessarily) symmetric
function of the b'„operating on a vacuum state

O& defmed by

b ~0&=O, all q . (26

The vacuum state carries angular momentum 0, or

[n„,v "]=i6, H(0,.)[b „~0& ]=QD'„„(e,.)[b „~0& ] . (28)

[n„v„]= ib„.. (19c)

These quantum conditions allow two means for
solving the problem and we shall utilize both. In
the first instance, one introduces raising and low-

ering operators whose components transform un-
der spatial rotations as angular-momentum-two
objects and which become the surface phonon crea-
tion and destruction operators. That is, one de-
fines

These properties follow directly from Eqs. (21)
and allow one to deduce the form of the physical
angular momentum operators without recourse to
approximation or details of the model (such as one
would have if the hydrodynamic form were invoked).
The components of J must be of the form of linear
combinations of the b'„b„and must transform under
H(3) as a vector Furt.hermore the laboratory
components of J must satisfy

Z,b' io&=(-1)'v 6 C(212; p+o, -&)b' „io&

1b' -=(n —iw),

1
b —= (n+ iw)

(20a)

(20b)

which is sufficient to show that

J = @10QC(221 pro)b+ b —= v 1'0 [b+b]t")

{29)
which have the transformation properties

b'„= [H(8,)b'H--'(6,.)]„=P D'„„(9,.)b;,

b"=Q fl*„( 0) 'b~,

(21a)

(21b)

where in the second part of Eq. (29) we have in-
troduced the tensorial coupling notation

[b b]t'-'=QC(22m pram)b b

and similarly for b„and b". The bar refers to
operators in the body frame. The creation and
destruction operators satisfy commutation rela-
tionships which may be written in the symbolic
form of Eq. (19a) as

[b, b]=[b, b ]=0.
Furthermore, one finds

(22)

A second approach to a quantization scheme
satisfying the commutation relations of Eq. (19a)
involves the realization for the operators a„and
m" as

8
m

Because of the nonidentity metric, some care
must be exercised in writing out the Hamiltonian,

H = —'(b' b~+b~b' ) = b' b" + —', . (24)
1

H =-— „+~~"a
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a, =a, (real),

a, (real) .

The usual choice of generalized body-frame co-
ordinates is [P,y, 8; j where the 8, are as before
the Euler angles of orientation of the body frame
relative to the fixed laboratory frame (that is,
they specify the rotation necessary to take the lab
to the body frame). Then P and y are defined by

ao = t~ cosy

8~2 = Slny
P

(33)

The requirement that the body -fixed axes lie along
principal inertial axes places restrictions on the
a, of Eq. (3). There are in fact 48 possible choices
of orientation which amount to relabeling the body
axes. Half of these result in left handed coordinate
systeIIls and ax'e not of major interest. The x'e-

maining choices manifest themselves as sym-
metries of the solutions to the body axis form of
Eq. (32). The body coordinates of Eq. (3) are re-
quired to satisfy'~

1 8 . 8—sin3y-
sin3y sy sy

1+,
g[ ( / } ]

A 4(7 8')=0 (37b)

Equation (37b) is the angular part of the five-
dimensional Laplace equation and is known as the
y part of the problem. It is the portion of the prob-
lem that we shall solve in closed analytic form.
We shall append the well-known solution to the P
part of the problem. The angular quantum number
A takes on the values

A=/(1+3), f =0, 1,2,

and the quantum number l is called the *'seniority. '*

The volume element follows from the form of
the metric tensor appropriate to Eq. (35}and is

dV =P'dP ~sin3, ~dydn

in which dA symbolizes the Euler angle volume
element. '~ The variable P which is the radial co-
ordinate of the five-dimensional space ranges from
0 to ~. The variable y ranges from 0 to 2m, and
the Euler angles take on their usual ranges

This choice results in the simplest possible form
for the Hamiltonian, and p plays then the role of a,

radiallike variable since

(34)

In terms of these coordinates the Hamiltonian of
Eq. (32) becomes

1 ( 1 8 ~ 8 1 8 . 8
H =— ———p' —— —sin3y-

p4 BP BP P~ sin3y By By

II. GROUP THEORY OF THE QUADRUPOLE VIBRATOR

A. Symmetry group of 0

The model Hamiltonian given by Eqs. (24), (32),
or (35) commutes with each of the 25 operators

(39)

One may choose as independent symmetry opera-
tors the particular linear combinations

"4P sin2[y-(2v/3)f)'P
I

(35)

in which the l., are the (dimensionless) body-frame
components of the angular momentum operator
and are realized as functions of the 8, and 8/88,.;
their specific form will not be required.

The Schxodinger equatiori to be solved then is

H4'(P, ~, 8;) =E4'(P, ~, e;)

and one readily finds that the P part of this prob-
lem separates from the (y, 8,) part. That is, the
radial part of the five-dimensional oscillator
separates from the angular part. As is well
known" Eq. (36}may be rewritten as two equa-
tions

~
viz.

y

(
j. B ~ B 2 A———P —+P+ —

~
—2E EP =0P' 8P 8P P'

which are Hermitian and are closed under the
commutation operation

(41)[S„„,S.„]=8:S„,—8"„S..
These may be cast into a Cartan-Weyl' format by
defining

IIp =8~~

in which ca.se

[Jr„,a, ]=0,
[a„,S„.]= (8„"—8".)S„..

The I ie group generated by the 5„„that is the
symmetry group of the Hamiltonian, is U(5). De-
generate eigenfunctions of H will then form a basis
for an IH of U(5}. One must then determine which
IR are represented by the model states.
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B. Symmetric IR of U(5)

It is convenient to work in a, basis in which the
H„have simultaneous eigenstates

~(A)) = ~(A„A„.. . , A, )), (44)

where the state labels are simply the eigenvalues
of the commuting generators

H, )(A)) =A„)(A)) . (45)

The ordered 5-tuple (A) is termed the weight" of
the state ( (A)). Any IR of U(5) is uniquely labeled
by the (numerically) highest weight among the
states that comprise its basis. We will label a
U(5) IR by enclosing its associated highest weight
(fl) in square brackets, as [Q„Q„.. . , 0,], a
notation which is identical to the usual partition
labeling scheme when all of the Q„are non-nega-
tive integers.

Eigenfunctions of II are to be constructed by op-
erating on the vacuum with a succession of creation
operators. The general state

[Hq, 8(Q, A)] =Aq8(II, A), (49)

where a.s before 0 is the highest A in the set of
weights, and labels the IR to which the tensor be-
longs, while the A label its components. From

reducible if and only if the group is simple. " All
of the groups appearing in (48) are simple with
the exception of U(5), and their "generator IR"
can be unambiguously identified by their dimen-
sions. Adopting the usual partition labeling
scheme, we list these: SU(5), 24 generators,
[2111];R(5), 10 generators, [11];and R(3), 3

generators, [ 1].
For U(5) itself the situation is a. bit more com-

plicated, as the generators comprise two irreduci-
ble tensors. This may be seen in the following
manner. The b' form an irreducible tensor under
U(5) as well as R(3). The same can be said for the

One method of identifying an IR tensor operator
6, is through its commutation relations with the
group generators. In particular, when a Cartan-
Weyl basis is employed

1
(v)&= (b', )"2(b', )" (b"' (46) [H„,b' „]= 5„'b' „(no summation) (50a)

where the v~ are non-negative integers, is a mem-
ber of the basis (44) with energy E,

we find that the operators b' are labeled by the
five weights

E = (N+-,')

with

N= v~ .

(47a)

(47b)

(10000)(01000)~ ~ ~ (00001)

and hence belong to the [10000] IR of U(5). Sim-
ilarly

[H~, b„]= 5„'b, (no su-mmation) (50b)
We ask to what IR of U(5) does

~
(v)) belong' ?

Every state in this IR, including the highest
weight state, may be reached by operating upon

~
(v)) with an appropriate linear combination of the

S„„and only states within the IR can be created
in this manner. A little algebra leads to the con-
clusion that all states of the form (46) having the
same value of N can be obtained from ~(v)). The
highest weight is clearly (N0000), labeling the so-
called symmetric tensor IR of U(5) by the single
non-negative integer N.

and b belongs to [0000 —1], the IR contragradient
to [ 10000] ." With this information we now note
that the generators of U(5) may be taken to be the
members of the direct product b' x P, and may be
classified into irreducible parts by the reduction
of the direct product of the representations

[ 10000] and [0000 —1] . We find

[ 10000]x [0000 —1]= [ 1000 —1]+[00000],

U(5) z SU(5) z R(5) z physical R(3) (46)

by the appropriate coupling of the products b+ xP.
The generators of any Lie group form a tensorial

set under the regular representation, which is ir-

C. Generators of U(5) in the physical chain

The next task is to investigate the subgroup
structure of U(5). When a nested chain of sub-
groups exists, it is possible to construct operators
which transform as irreducible tensor components
under each subgroup in the chain. " We have in
mind forming and identifying the generators of the
subgroups in the physical chain

where the dimensions of the IR have also been
listed. It is the simple combination of generators

which commutes with all of the U(5) generators and

hence transforms under the one-dimensional
identity IR, [00000].

Under restriction to the subgroups in the physical
chain, the U(5) generator IR decompose according
to the branchings summarized in Table I." With
each of the downward paths stemming from
[1000—1] there are associated several components
of the U(5) irreducible tensor [b'b]i'Ooo 'i. These
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TABLE I. Decomposition of the U(5) generator IR.

[1PPPP] x [0000 —1]= [1000—1] + [00000] U(5)

[2111] [0000] SU(5)

[11] + [20]

[1]+[3]+[2]+ [4]

[00]

[0]

R (5)

R(3)

Q~s =A(J)QC(22J; gvM)b'~b, . (51)

The A(J) are arbitrary multiplicative factors. The
Qy„gene rate the physical angular momentum sub-

group, and can be made equal to the J„of (29) by
choosing A(1) to be ~1. We will define (dimen-
sionless) generators by choosing A(Z) = vTV for all
J=0, 1, . . . , 4.

components are labeled by the subgroup IR under
which they transform and are listed in Table II.
The generators of the subgroups have been identi-
fied there by noting the appearance of the generator
IR labels as listed.

Since each R(3) IR occurs only once, the

[ b+ &]
i"' 'i and [ b'5]~ components may be

uniquely specified by the two angular momentum
labels as Q«. The method of isoscalar factors"
(ISF) could now be used to explicitly construct the

Q« in terms of the b'„b„; this program is made
trivial here by the simplicity of the branching
rules in Table I which imply that the needed ISF's
are unity. Alternatively we may notice that the
construction of the standard form angular momen-
tum tensor Q« from the two standard form angular
momentum tensors b+„and b„can only be achieved
through the usual couplings

D. State labeling problem in the physical chain

As noted previously, eigenstates of the model
Hamiltonian with energy

& =(-,'+~)
will form a basis for a symmetric IR of U(5),
[N0000]. Within such an IR, a basis may be se-
lected in several ways, one of which was employed
in Sec. IIIB. If eigenstates of physical angular
momentum are desired, one may choose a basis to
be simultaneous eigenstates of the Casimir opera-
tors of each subgroup in the physical chain (48).
They may also be taken to eigenstates of Jp as well.
Since the eigenvalues of the Casimir operators are
in one-to-one correspondence with the IR labels,
the latter can serve to label the states. Hence a
typical basis state would be labeled by

~[N0000], [SU(5)IR], [R(5)IR], [R(3)IR],M),

(52)
where the usual partition labels are used for the
subgroup IR as well as for U(5) itself. The Casimir
operator for R(3) is just J', and the partition label
is the usual angular momentum quantum number
J; M is the eigenvalue of Jp.

The decomposition of the symmetric IR of U(5)
under restriction to the SU(5) and R(5) subgroups

TABLE II. Generators of U(5) subgroups in the physical chain.

@oo

[1000—1]
[b b] [2111]

[11]
[3]M

[1000—1]
[b'b] [2111]

[11]
[1]M

Generate physical R(3)
T

Generate B(5)

[1000—1]
[b'b] [2111]

[20]
[2]M

[1000—1]
[b bl [2111]

[20]
[4]M

[00000]
[b+b] [0000]

[00]
[o]

Generate SU(5)
T

Generate U(5)
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are summarized by the branching rules

[N0000]U& 0) [ N000]sU(s)

[NO00] „~,) —[NO] &,)+[N —2, 0]+ ~ ~ ~

+ [ 1, 0] or [0, 0]„(0)

which show that the SU(5) IR labels are redundant,
and that a single number

/ =N, N-2, . . . , 1 or 0

serves to label the R(5) IR contained in the model
states. The R(5)-R(3) branching rule is consider-
ably more complicated; for / ~ 6, the decomposi-
tion permits the possibility of multiple occurrences
of R(3) IR. For example in

[6, o] -[ol.[3].[4]+2[6].['1].[6]
+ [9]+[10]+[12]

the 140 states that form a basis for the R(5) IR
contain two independent sets which span the J= 6
IR of R(3). Hence the labeling scheme (52) is, in
general, insufficient to completely distinguish the
model states; an extra label v is required to dis-
tinquish independent states which belong to the
same R(5) IR and have the same angular momen-
tum labels. In the spirit of (52) we will label basis
states of the physical chain by

(N, I, v, J, M) .
In Ref. 3, the R(5) R(3) branching multiplicity
problem was solved by introducing the extra label
v in a rather empirical way, and the ranges of v

and 4 within a given IR of R(5) were determined.
%'e now offer a brief review of the results of Ref.
3 that are necessary for our explicit construction
of the states 4(), 8,) of Eq. (37b).

E. R(5) natura1 basis, intrinsic states, projected states

R(5) is a rank two, semisimple I ie group which
requires two labels to specify an IR and four labels
to specify basis states within a given IR. The
physical chain provides only two labels to dis-
tinguish different states within an IR. In the "'nat-
ural basis"

[js, 7,]=-VYC(111;p, , v)40~, ,

[J'&, Q„]=-2&C(133;)I, v))0)„+, ,

[Q&, Q„]=-2PTC(331; )I, v)J„+„
+W C(333; )I, v)Q„,„.

(60)

The connection between the physical basis set and
the natural basis set is developed in Appendix A

and results in

~kl 9%39 PO 10 ( 0 qo)$410

in which [p„]generates one SU(2) subgroup, [q„]
generates the other, and the remaining four R(5)
generators transform under the SU(2) xSU(2) op-
erations as a bispinor. The states of this natural
basis are labeled by

((I,k)p)Iq)1 )

in which (I, k) labels the R(5) IR, and p, )I, q, and

p are the eigenvalue labels of p', po, q', and q„
respectively. The IR labels $ and k a,re two non-
negative integers or half integers satisfying l ~ k.
For fixed $ and k the rules for the ranges of p and

q are given in Ref. 3; here we merely restate these
for the symmetric tensor IR [ I, 0], I an integer:

p=q runs from 0 to 2l in steps of —,',
)). and )I run independently from -p to +p (58)

in steps of 1.

For the symmetric tensor IR the label q is redun-
dant and only three state labels are required. The
IR labels are related to the eigenvalues of two
R(5}Casimir operators A' and M0 (given in Ref. 3}
whose eigenvalues are, respectively, —,'[I(I+3)
+k(k+1)] and (I+ I)(1+2)k(k+I). For the sym-
metric tensor IR one needs only A.' whose eigen-
value is —,'A =-,'/(1+3). The operator 4' is given by

&0 ~ +q [Tiki) Till)]too) (59)

In the physical chain the generators are the sets
[Q, o

——J'„, y, = 1, 0, -1; Q „=Q„v
=+3, 2, 1, 0, -1,-2, -31 where the Q~„are given by
Eq. (51}. These g81181'a'tol's sa'tlsfy 'the collllnll'ta-
tion relationships

R(5) z R(4) - SU(2) x SU(2) (55) q.l=s(~.l+sv 6 @.l) qo lo ( 0+ @ )t0

the decomposition to the R(4} subgroup which is
isomorphic with SU(2) xSU(2) provides the full four
labels. It must be noted that neither SU(2} sub-
group is the covering group of the physical R(3}.

In Ref. 3, it is shown that the 10 R(5) generators
may be taken to be the set

[p„, )I = 1, 0, —1; q„, v = 1, 0, —1; T~'z' l, a, P = s-,']
(56)

(61)

r,", ',I =+-,'(v 3Z„—l) 2 q„),
where upper or lower signs are to be taken con-
sistently.

The physical basis states will be labeled as in
Eq. (54) and will be eigenstates of H, A', J', and
Jo as
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H ]NlvZM& = (N+ —',) INlv JM&,

A'INlvZM) = —,'l(I+3) INlvtM),

Z'INlvJM&=~(~+1) INIv&M&

Z, INfvZ, M&=MINIvZM&.

(62)

The label v is an empirical label which distinguish-
es the multiple occurrences of J,M within a given
R(5) IH labeled by l. In Bef. 3 it is shown that v

takes on the values

v=0, 1, 2, . . . , [-,I], (63)

Il &
= I(l, 0)2I, 2l, 2I, 2l &

by use of P, and q, as

If v)=f"- q-' II&.

The physical states are then given by

Ilv JM) = dfID„r(II)H(&) If, v)

(64b)

(65)

(66)

in which R(fl) is a. rotation operator (as defined for
example by Rose") and Dvr(Q) is the M, K element
of the IB matrix for the [J] IR of R(3). In Eq. (66)
K takes the value l —3v and for given K, J has the
values

J=2K, 2K —2, 2K —3, . . . , K. (67)

Three points should be made concerning the
states of Eq. (66). First of all, they are not nor-
malized nor are they orthogonal on the multiplicity
quantum label. Normalization and overlap factors
are given in Ref. 3 but they will not be needed
here. Secondly, these are abstract states whose
properties have been deduced solely from the Lie
algebra and group properties. A realization of the
intrinsic states will lead to a realization of the
physical basis states which is our goal. Thirdly,
these states will represent only the angular part of
the five-dimensional oscillator states; the radial
part will have to be appended.

III. CONSTRUCTION OF THE WAVE FUNCTIONS FOR THE
QUADRUPOLE VIBRATOR

We are now in position to construct the explicit;
realization of the five-dimensional oscillator wave

where [—,I] denotes the integer part of —,l. The B(5)
basis vectors in the physical chain, Ilv JM&, were
determined by projecting from a small subset of
R(5) natural basis states; the members of this sub-
set are called intrinsic states and are labeled by
Il, v) where

v) =-1(I, 0)2f, —,'I —v, ,'I, ,'I &-—— (64a)

in the notation of Eq. (57). All of these intrinsic
states may be constructed from the maximal state.

gv( p 1 8 ) {YINlveTM&

=f.i(P) g g(.„(r)D;,(&;)

Explicit forms of the f„,(P) and g„zz(y) may then
be found.

We begin by noting that the intrinsic state MINI &

may be realized as

NI & f [5+ f&+][0j )(N I) /2(5+ ) t
I

0)- (68)

This state is an eigenstate of the following opera-
tors with list. ed eigenvalues:

0: N+ —, P"': —,'l(—'I+1), P, : —,'I,
A'. —,'l(I+3), q": 2I( 1+1), q„: 2l.

The validity of Eq. (68) is most easily established
by expressing each of the operators above in terms
of the b' and b via the expressions of Appendix A
and Table III. One first shows that

I
I ) =- {b'.) '

I
0)

satisfies all but the first condition. It is an eigen-
state of H but with eigenvalue l+ —,

' and hence be-
longs to the [f0000] IR of U(5). Hence, one must
modify this state by operating with an R(5) scalar
which increases the number of phonons from l to
N; such a scalar will not affect the R(5) content.
Since b' transforms under the [10000] IH of U(5)

functions from Eq. (66) which, apart from the ra-
dial part, constitut;es a formal solution. We shall
first outline the procedure and then fill in some
details.
(i) Using Eqs. (51) and (61) the two sets of B(5)
generators are expressed in terms of creation and
destruction operators b' and b. The results are
tabulated in Table III.
(ii) A realization of the R(5) state Il& of Eq. {64b)
in terms of creation operators operating on the
vacuum will be found. This state will belong to the
[f0000] IH of B(5). Operations with an R(5) scalar
formed from the b' will not affect the R(5) content
and will be used to produce a member of the
[N0000] IB of U(5) as required.
(iii) The results of (i) and (ii) together with Eq.
(65) will lead to a. realization of the intrinsic states
Nlv& of Eq. (64a) in terms of creation operators

operating on the vacuum. These will also be mem-
bers of the [N0000] IR of U(5).
(iv) By using Eqs. (20) and (31) one may find the
intrinsic states INlv& realized in terms of the o.,
and their derivatives. Similarly, a realization of
the vacuum state may be obtained by using Eq. (26)
together with Eq. (20).
(v) The laboratory to body tra. nsformation, Eq.
(3), together with the defining equations for P a.nd

y, Eq. (33), may then be used to express the in-
trinsic states in terms of (P, y, t),.). Finally, this
expression is inserted into Eq. (66) to allow us to
express the solution to Eq. (36) in the form
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TABLE III. Physical and natural R(5) generators ex-
pressed in terms of the creation and destruction oper-
ators.

Jv =~10 Q C (221; n, P, v)b' b~,
ol

v= —1, 0, 1

Q„=~10+ C(223; o, P, v)b"„b~,
n13

v= —3, -2, —1, 0, 1,2, 3

&~i= ~~ (b~P" +b~2b")
1

a1

Pp =~(b'P —b'
pb ')+~(b'P ' —b' P ')

q j =+~2 (b 2b +b' )b )

gp = ~(b+2b —b 2b ) —2(b ~b —b gb )

T„=b 2bp- b'pb ~

T =-b'-2b p —b+ b2

T~ =b PP+b'pb '

T,=b'
( b +b pb

Since [b'b']"' commutes with all of the H(5) gen-
erators, one easily finds

Nfv} =('b'b']())(" "!'-(P )"(q )''f
1+v f s)2

( [b+ b +) [0 ) y(N s)!2
(

Since we will attend to normalization at the end we
shall drop the factors of 1/vT, 1!, and (f —v)

To proceed to step (iv) one needs

(»a)

and

b' = —(-1)'o. , +——1 [, 8
'

Then b "i 0}= 0 has a solution (again to within fac-
tors which only affect normalization)

one may form products b'b' classified in the phys-
ical chain by the reduction

[10000]x [10000]= [20000] + [1lppp] U(5)

[2000] + [1100] SU(5)

[00]+ [20] + [11] R(5)

[0]+ [2]+[4] + [1]+ [3] R(3).

The proper R(5) scalar is the left most chain and
is given by

I

i 0) = exp ——g (- 1)'o. ,a „=e
L p

Then using Eqs. (72) and ('l3', one fines directly
that

iv) =(b ~) (b i) i Q) =(~ 2@i) (v o p) i Q}.

Now, one also requires the result

[b'b']"'=-QC(220 )1 v, p)b', b'„. (69)

When this is raised to &(N —l) power and allowed
to operate on (b', )' ~0) the state of Eq. (68) is pro-
duced. The state iNl} differs from the intrinsic
maximal state il) only by an R(5) scalar pari. The
states iNlv) will differ from the ilv} of Eq. (65) by
this same H(5) scalar part, and finally the state.".

iNfvJM} will also differ from the ilvZM) of Eq.
(66) by this same factor.

The formation of the intrinsic states ~Nlv) from
Eq. (68) is easily accomplished by expressing P,
and q, in terms of b' and b, as in Table III. These
are inserted into Eq. (65). By the binomial expan-
sion one finds

or

[ b 'b'
]
i') = ~ ]

)3' —13
——H ——,

'
[.

This result is most easily established by express-
ing the right hand side of Eq. (69) using Eqs. (72),
and also using Eq. (32) to recognize the Ham-
iltonian. If one defines

T(P) =!3'—3—
BP

and

(b ', )' '(b' .)'(b ')'(b')' '
F2

(70a)

(70b)

6(p) = p' —p ——I, ——'
gp

29

then [1(j3),H] w 0 prevents writing i Nlv} as [ 8(p)]"
times Eq. (74). One may, however, write

i Nlv) = P A„, [6(P)]" o.',' 'n',
i 0)

4=0

with the A. 's determined by the recursion re-
l.ationships
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.(P, y, 8;) f. (-.P)h .(y, 8;), (76a}

f (P) == (-1)"2" (I+ -' n) E (- n I+ -,'. ; P2)P'e -"l2

&. i,2. , = Q &. (-2)
m= 1

A„0-0.

This establishes the form of (r~ fvlv) == (I)„,„(p, y, 8,.)
as

The validity of this form is established by in-
duction by noting first that apart from factors,
~ lv& of Eq. (74) yields the form

(ri lv) =-h„, (y, 8()P'e

Thus Eqs. (76) are clearly valid for n =0. The
induction proof follows easily if we recall that
&I lvfv& =(~+ —2')I &lv& =(322+ 1+."-)I aviv&.

Next, one must process the h„(y, 8,. ) further.
To do so we note that from Eq. (33) and the in-
verse of Eq. (3) one has

(76c)

=cosyD',*0(6„.)+ ~ D'~„9,. +D-'*, , 6},.)].

Thus by the binomial expansion

), , „(y, s, ).—.g P Q P (' .
'

( (".
(

(oocy)' '(~s" o

X (»2s)c )v-J(»2g )y-a(»2g )a(»2g) -(()+J—P(»'() -()Ti (»2t )y

From the form of Eq. (77) together with the completeness of the D„z"(8, ) it follow. s that

~'g), (p, y, 8;)=f.)(P) Q CJ"r e(y)»sr (8» (78)

where we may determine the C's from integration over Euler angles as

a!",„(y) = rsa(s, .)()'„,(s, )s,.(y, s, ).

In terms of this realization, the projection relationship, Eq. (66), becomes

's, „„(2,y, s )= fdali„(Q)R(a)4„, , (2, y, s ).

(It is important to keep in mind that the coordinates 8& are not the same as the integration Euler angles
symbolized by Q.) However,

R(8;)@ .(P, y, 8;)=f. (P) P C" ~ (y)R(fl)D'* (8;)
gl g I ~ I

=f„, (P) Q C';"x „(y)D„(2(Q)D"„„„(8,). ,

Jlg 1~I pit

+e).zs(PI y, 8;)=f.) (P)Q a.zg(y)»s2(8(), (80)

where f„, (P) is given by Eq. (76b) and

g„~r(y) =C~x, 2„(y) = dn(8, }D,',„r(8,.) h, „(y, 8, ).

AII that remains is to explicitly determine the g„~x(y) by evaluating the right hand side of Eq. (81). Since

r
r27f 7I 271

dn(8,. ) =, d8, sin8, d8, d8„
0 0
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we may use D„r(8,) =e '" & d„z(8,)e ' e3 and dispose immediately of the integrals over 8, and 8, to fina

(82)

(83)

One notes that the & function forces K to be an even integer.
Now, the explicit integral over the d functions is performed by using

( 1 )v (coska)2/+ m la 2 II
( s|n 8)Ill III+I V

1' (8)=[(j+m)!(j-m)l(j+m')l(j —m')l]'/'Q (. , ')l(. ) (
',

)

in Eq. (83). The integration is most easily carried out by changing the variable to f =sin' —,8 and by rec-
ognizing the hypergeometric function

1

,E,(a, b; c;z) = f' '(1 —t)' ' '(1 —zt) 'dt, Real c&Real b&0.
0

We then simplify the resulting expression for g, „«(y) somewhat by replacing the sum over j - 0 by a sum
c =p —j& 0 and replacing also the o sum by one over f = r+g & 0. We find then,

g, „«(y) = g 5,'~, /2'[&6 cosy]' P[siny//W2] ~(-1)"'""
cps fl

c p-c —r 7 8+ &
—3v 1 4- /+3v)!

(37'+h+f —v-c}!(2v+2e —3T h+Z)—! J' —f+3v Z+f —3v
(v+ c+/+ i+ 1)! h E —3v- K+A

x,E,(- l+ v+ c, 3r c+h+ l ——v+ 1; v+ c+8+ f+ 2; 2). (84)

This expression may be simplified even further by using the symmetry properties of the g, „«(y}dis-
cussed in Appendix B. The one we use here is g, „/ «(y) =(-1}g, „«(y) to confine our attention to K-0
in Eg. (84). We define integers m and P by

K=4m+2P~ 0, P=0, 1, m =0, 1, 2, . . . .
Then the index f in Eq. (84) is found to run over the values

f =0, 1, 2, . . . , [-,'(f-P)]-m.
The use of the 5 function in Eq. (84) then yields the final results

@Nr zs(!»8&)=+//i /f r(8) Q &i /rc(y}D////(!/() (85a)

where for K = 4m+ 2P ~ 0, m = 0, 1, 2, . . . , P = 0, 1,
f(t ~) /23-m

g,„~r(y) = [cosy]r P /t, (fvs)[tanyl'/'»/2 (85b)

and the coefficients A/(lvZK) are given by

(fvs) (2) I /2 K/2 2/(3) l /-2 w /-4-/

(Z+ f —3v)!(8 —l + 3v)!

xP (-1)" "2'+,(-f+ v+c, 3v —c+k+l —v+1; v+c+8+f +2; 2)

)(,%+2/ — (t —

)( )(J
—1+av)( z t —s

)
X

(3v + h + f —v —c)!(2v + 2c —3v —h +j)!
(v+c+8+f+1)! (85c)
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For K&0 one uses the above together vrith

(y) =(-IA... (y). (86)

In Eq. (85a), 5l»„z is a normalization factor whose value is given in Sec. IV. The main result of this paper
is that given in Eqs. (85b) and (85c) which are the closed form expression for the y-vibration part of the

quadrupole oscillator. All the sums of Eqs. (85b) and (85c) are finite and hence these expressions are
easily prepared for use on modern computers. It is of interest to note in passing that separation of the
problem into a P or radial part and angular parts is associated with introducing the direct product SO(2, 1)
x R(5) into the problem. See Ref. 15. Chap. 20.

IV. NORMALIZATION AND OVERLAP FACTORS

It is now relatively straightforward to calculate the overlap of two wave functions of the form (85a).
First ere &&rite the wave function to explicitly display the symmetry property vrhich restricts the sum to
K~0

+Nl ZN(~ »9') =+N! Zf l(~) g [1 5 ] &! ZK(y)[DNK(9 )+(
1

If.~P E, 0

1 [2[1+( I)z5„7 'Z2
=3I„...f„,(i1) g „—

&

" g, „„(y)(c,„,(9,),
IN

(87)

where the )j)z«(9() are just the properly symmetrized wave functions for the symmetric rotor, "
21+1

z«)2[I
X/2

These are normalized, i.e.,

((), , , (&;),v„,(9;)I = Jnnv;, , (&;)(),„(e;)nn = &„p„.~„.. (88)

Thus

[ 2[1+(-I)z5K.,] l,
¹

l'v' ZN) NlvZlf) N'l'v'Z' NlvZ(f n'!'(I ~ f nl (S p ) (2d 1)(1 5 )2
I
(+!'v'ZK(y) ~+lvZK(y)) ' (89)

The p-separated integral is easily found by noting that the, E, is just a Laguerre polynomial. There &vill

be a 5„, from the R(5) IR property of the wave functions, so one needs only consider

(f; ( )(9,f., (P))= f)'f „., (P)f„,(P)dP = 2'" 'll l F(!2+I+-')5„„.

Next we consider the y integral and use Eq. (85b), plus 5, , from the IR property to find

2'
((gl v' ZK(y) +l ZK(y)) gl ' ZK(y)g(. ZK(» I

sin3y ldy

= PAf (fv'JI0A& (Ivy)
~
sin3y~(cosy)'~ '~l 'z2(siny) "zl"z2dy . (91)

We define

2r

8(p, q) =
~
sin3y

~

(cosy)22(siny)"dy

From symmetry one has for the integral of (92b)

(92c)

=3I(p, q) -4I(p, q+1),

2ff

I(p, q) = (siny) '"(cosy) 2dy.
0

(92a)

(92b)

The indefinite integral is easily found to be

((
q (COSy)2n+22+l

I(p, q) = Q ( )
-1)".

A little algebra then yields

(93)
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+l ~+1 ( I)3+3
J P, lf =4+ (

n=o

+q + 1 22n+2P 1
(94)

so that

«l 'JK(y) gl /K(»)

= QA/ (fv' JI()A/ (Ivjg

+nrvz = Nni Niv z i (96)

where N„, normalizes the P part and N, „~ normal-
izes the y part of Eq. (87). Then by writing the

,F, off„,(P) as a Laguerre polynomial, one has

f (8) ( I)nnIPl e-B /2Ll+3/2(P2)

and

2n~
nl I (n+I + —,')

(97a)

(97b)

Then, the normalization factor for the y part of
the equation is just

2[1+(-1)~5K,] )-3/2

r
lvtP 'i (2j+ 1)(1+5 )2 (glvIK& glv/K)

~

(98)

The normalized states of Eq. (87) agree with those
previously given by Bes' for low values of l as
well as with the Yrast states given in Ref. 10.

Finally, we note that very recently Chacon,
Moshinsky, and Sharp" have also given exact solu-
tions to the quadrupole vibration problem. Their
resolution of the multiplicity problem is in terms
of a quantum number il, =0, 1, 2, . . . , [—3'I] such that
n, (n, =2il for J even or n, =2p+1 for J odd) is
the number of zero angular momentum coupled
boson triplets. This labeling was first suggested
by Iachello and Arima. " That is, n, is the ex-
ponent of [b'b'b']'20' in their polynomial solutions
to the problem. By combining Eqs. (4.13a) and

(4.13b) of Ref. 21, one finds that their rule for
multiplicity resolution is precisely the same as
ours. That is, our multiplicity label v and their
label p take on the values 0, 1, 2, . . . , [3l] and the
angular momentum (our j, their L) takes on the
values 2l —6v, 2l —6v —2, . . . , l —3v. In the cases
where no multiplicity exists our states and those
of Ref. 21 will be at most different in sign when

x J(l —2K f, —f„,K-+f,—+f,) . (95)

We may now write normalization factors separately
for the P and y parts of the wave functions. We
write

normalized; this includes all states for l &6. For
l ~ 6 multiplicities occur and while the labels will
be the same, one must not conclude that the states
are identical; indeed they are likely not. The
simplest multiplicity occurs for the two states
J=6 for l= 6. The two states in our solution are
given quite simply by application of Eqs. (85).
The sta, tes of Ref. 21 have to be constructed
iteratively starting from the l = 0,J= 0 state. For
this reason we have not computed the overlap be-
tween their states and ours. It would be an inter-
esting piece of future research to compute the nec-
essary transformation brackets in the general use.

APPENDIX A: R(5) GENERATORS

To make connection between the physical and
natural basis generators for R(5) summarized by
Eqs. (61), it is perhaps easiest to proceed via. the
tartan-Weyl" formalism. Briefly, one needs to
identify the commuting set H„H, and the stepping
operatorsE such that [H;,E~] =a,E~. If we start
in the physical ba.sis the R(5) generators are
given by Eq. (51) and J=1,3 andA(J) =~10. Then,
among the sets J,=-Q,„and Q„-=Q„ the commuting
subset is J, and Q, which we temporarily call H,
and H„respectively. Then, one has

(H„j,g =~ j„, [H„Q„)=vQ„,

[H„j,J = + 3/ 6 Q „, (H „Q,J =~ (3 6 J„+Q„),
[H„Q„,] =+Q„, and [H2 Q%31 =+Q33.

It is therefore necessary to define four new opera-
tors („g, which are linear combinations of J„
and Q~y If we define

(, =AJ~, +BQ „
and impose the condition

(H2 (.) =+ p&.

we find the roots p =3 and p= -2. Therefore

h. =B [3 ~6 j. +Q. )
and

3), =B(-—'W6 J„+Q„),
where B is a "normalization" factor and

(H„E,] =s$ „[H„$,] =+3(, ,

[H„q,] =+3)„[H„q,] =~23), .

Thus we have the root diagram shown in Fig. 1
from which it is clear that a simple rotation will
make the two commuting SU(2) subalgebras mani-
fest. This corresponds to a change of basis from
H„H, to H„H, . That is, H, and H, are to be lin-
ear combinations of H, and H, such that
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[I7„Q„]= [a„~,] = 0 chosen to make the remaining equations involving
p„and q„valid. Thus, one finds

[a2 Q.31 =+Q.s

These conditions yield

a, = ~(a, +3a,) = k (z, +3Q,) -=q,

and

and

h~1T, , =+~ Q~,

Now we must impose the condition on F„=—q„
such that [q„,q J = -q, . This yields B =&6jlo so
that

Similarly, one finds

1
~ kl $1P @k3 '

The two commuting SU(2) subgroups are then
generated by the sets {P,„p„p J and (q„,q„q J.
The remaining generators Q „and q+ are to be
grouped into a bispinor T t& 2& under the two

SU(2) subgroups. That is

[p„,T ~ 8 ] =(-1)'C(—,
'

1~g, o. +v, v}2&3T(„','-„a-

and
3'$]

[q» T ~ z ] = (-1)'2 l3 C (~z 1 z~,' P + v, —v) T ~ 's+„.
The bispinor nature is evident from [P„Q„]
=+ 2 Q yp [qp Q &2] =+iQ y2 [Po &ig] =+4 g

[qo, q, ] =+—,q, . These conditions of course remain
valid when Q „and g, are multiplied by constants

The root diagram corresponding to this choice of
generator basis is shown in Fig. 2.

APPENDIX B: SYMMETRIES OF THE WAVE FUNCTION
4'(P,&A;)

In Sec. II the collective coordinates (S,y, 8, )
were defined. The 0, are the Euler angles speci-
fying the rotation from Laboratory (lab) axes to
a set of body-fixed (BF) principal axes while 6
and y are shape variables specifying the appear-
ance of the nuclear surface in the BF frame, in
accordance with Eqs. (2) and (33). In Fig. 3 we

display a sampling of quadrupole shapes as they
would appear to a BF observer. As is well known,

p is a measure of the overall deviation from
sphericity while y is seen to influence the rota-
tional asymmetry about the BF z axis.

There are 24 distinct ways of selecting sets of
right handed axes fixed along principle directions
in the body. If (x, y, z} and (x, y, z) are the Car-
tesian coordinates employed by observers in the

Hz Qo

T++

H)= Jo
p

) P)
Po

FIG. 1. Root diagram for R(5) in the Cartan-Weyl form
of the physical basis generators.

FIG. 2. Root diagram for R(5) in the natural basis
which manifestly displays the R(4) = SU(2) && SU(2) sub-
group.
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FIG. 3. Effect of increasing P. In this series of drawings y is fixed at 20' and P takes on the values 0, 0.3, 0.6, 0.8,
and 1.0, respectively, from left to right. In each case the surface is viewed from the point (X&,X&, X3) = (1,2, 2) in the
body-fixed (BF) frame, and the X& axis is upward.

two principal axes frames BF and BF, respec-
tively, then these coordinates are related by one
of the entries in Table IV which also gives the
Euler angles (p„p„p,}which specify the BF-BF rotation in each case.

Let us consider using two sets of collective
coordinates to describe the nuclear surface:
(Py8, ) and (Py8, ) referring, respectively, to the
body-fixed frames BF and BF. The wave func-
tions g(p, y, 8,) constructed in Sec. III are clearly
single valued in the lab coordinates o'.„. Hence
one must have

where (Q, ) = (p„p„p,) are the BF-BF Euler
angles of Table IV. When Eqs. (B4) and (B3) are
substituted into Eq. (B2), one may equate the co-
efficients of the independent D'„~(8,.) to obtain the
following.

(v = 0) cosy = cosyD,'*~(Q)

(B5)

(v = I)0= cosyD,'*,(P)

4({f,r, &) =4(P, r, 8;) (Bl)

if both sets of collective coordinates give rise to
the same n„, i.e. , if

(v= —l)0= cosyD.',*,(Q)

(B7)

p cos7D'.*„(8;)+ ~ [D'.*, ,(8;)+D'*, ,(8;)]

=p cos7'D', *,.(&)+ [D'.*„(&)+D',", ,(&)]

(B2)

(v = 2) = cosPD,'*,(P)

slny
(v = —2) = cosyD',*,(P)

(BS)

To write Eq. (B2) we have used the inverse of Eq.
(3), namely,

n = g D~*,(8,}a„

together with Eqs. (33). The deformation is uni-
quely specified by the n„ through Eq. (34) and the
fact that p is a radiallike variable and ranges
over 0 to ~. Hence one has

The representation property of the rotation ma-
trices may be invoked

+ ~ [D'.,*„(0)+D'.*, ,(0)l- (B9}

One may verify that for all of the entries in Table
lV

[D'„*,(0)+D'.,*,(0)l = [D',*„(0)+D'*, ,(0)] (r«l),
D'„*.(0) =D'.*,.(0) (r«l)

and hence Eqs. (BB) and (B9) have identical con-
tent. Also

D,';0(4) =D',*,.(0) =[Di,*a(@}+D,',*,8)]
=[D',*,.(e) D',", .(4)]=0

D', *,.(&$) = g D',; (8&)D'*,.(4 l), (B4)
insure that Eqs. (B6) and (B7) are satisfied. The
two independent equations (B5) and (B9) may be
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TABLE IV. The octahedral group symmetries of the
quadrupole surface expressed in terms of the group
generators denoted by R&, R2, and R&. The quantities
x,y, z, and y refer to one principal axis frame, BF,
while x,y, z „and P refer to a second such frame, BF.
The Euler angles ft)&, $2, and ft)3 specify the BF BF
1otation.

= cos'&[4 csin'Q, cos2@,]
W2

+ co82$3 co82$1
siny (1+cos2$, )
W2

+ co8$2 co82~3 sln2ft)1

(4i 02 4s)
BF BF

1 (x,y, z) (0, 0, 0}
1 1 12 (x,z, —y) (—2x, 2m, 27r)

1 13+ (x, -y, -z} (-—,m, ~, 2')
1 1 14 (x, -z, y) (z7r, z7r, -zm)

5 (—x, y, -z) (0, ~, 0)

6 (-x, z y} (zx, zm, zm)

7 (-x, -y, z) (vr, 0, 0)
1 1 1(-x„—z, —y) (-27r, 2m', -~x)

9 (y, x, -z) (—47r, 7r, 47r)

10* (y, z, x} (0, —,~, —,~}

ll+ {y,-x, z) {~m', 0, 0)
1 112 (y, -z, -x} (7r, —,7r, --,~)

13 (—y, x, z) (0, 0, -z7r)

14 (-y, z, -x) (7r, zx, &x)
1 1

(—y, -x, —z) (4x, x, —47r)
1 1

16 {—y, -z, x) {0,2~, —2~)
1 1

1 1
(qm', ~7r, m')

18 @,y, -x) (7r, 2m, ~)

19 (z, -x, -y} (—z7r, z~, 7r)

20 (z, -y, x} (0, z7r, 7r}

21 ( z x, -y} ( zm z7r, 0)

22 (-z, y, x) (0, qx, 0)

23 (—z „-x,y) (27r, ~7r, 0)

24 (—z, -y, -x) (x, z x, 0)
1

rewritten as

cosy = cosg-,' cos'P, --,']

Expression in
terms of

generators

R1 =R2 =R3

R )R2R3

R@3

R jR)

R2R

R2

R1R2 R3

R MRS

R2

R1R2 R3

R F2
R,'R~

R 1R2R3

R 1R3

R1R2 R3

R2 R3

R R

2r 3—y+— R)R2 Rg3

These equations may be solved for 'P in terms of
y for each p of Table IV. Since only $2= O, g, —,'g
appears, it is helpful to solve (810) and (Bll)
for each of these cases separately:

sin/

p =0
cosp= cosj

Sing
cos2($~ —$3)

cosj' = cosg',

W3
sing = GOSj'

L 2 cos2$3

1
+

2 CO82$, cos2$,
sin')/

~

vS
cosy = [-&] cosy+ siny.

2 CO82$3 i

The Q, =m~ equations in turn imply that

—y+2w/3, cos2$, =1, cos2$, =1,

(812)

y —2v /3, cos2$, = l, cos2$, = —l,
y+ 2v/3, cos2$, = —1, cos2$, = l,
-y —2w/3, cos2$, = -l, cos2$, = —l.

(813)

At this point y can be easily computed for each of
the entries in the table and the results have been
listed. If one defines the operator R by its effect
upon an arbitrary function of the collective coor-
dinates

ftf(P y e&)=f(P y, &) (814)

then Table IV identifies 24 such operators which
leave the n„(p, y, 8,) invariant. Only three of these
are independent, however; they have been selected
and labeled R„A„and A, in accordance with
Bohr, ' and are indicated by ~. All others may be
obtained from the successive application of the 8
as indicated in the table.

I et us now ascertain the consequences of Eq.
(Bl) which we may write as

+ [—,
'

v 6 sin'Q, cos2&f,],vY

(810)

ft,e(P, y, 8,.)=e(P,y, 8;.) =e(p, y, 8,), f= l, 2, 3.

(816)

If we take the separated form of the wave function
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FIG. 4. Effect of increasing y. Here p is fixed at 0.8 and, from left to right, y runs through the values 0 15 30'
45, and 60'. Again the viewing point is (X&,X&,X3) = (1, 2, 2). Notice that the y=0 surface has axial symmetry about
the X3 direction.

FIG. 5. Illustration of surface symmetries. From left to right, the top row of drawings depicts the surface ~~ )
(P, —y), and (P, 120' —y) as seen from the BF po~nt (X&,X~,X3) =(1,2, 2). Here P=0.9 and y=20'. The prime meridian

semiequator have been drawn as double lines to aid orientation. Directly below each drawing is a second view of
the same surface from a rotated vantage point (X&,X&,X3). The new vantage point is determined by X'= jj'. X where
8; represents one of the three basic BF BF rotations in Table IV. From left to right B, R, and B have beenave een
applied to obtain (X&X&X3)= (X&, —X&, —X3), (X&, —X&,X3), and (X&,XS,X&), respectively. The three surface views of
the bottom row can be seen to be identical to the initial view at top left. Thus the surfaces of the top row are not
distinct in the sense that they may be rotated into one another. Furthermore, the rotation R& takes the top left surface
into itself.
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described in Sec.IIIas E(I. (85a)

e(p, y, e, ) =(r ~zfvZM)

z( zfz&(P ) Z g( nr(&)D&(,*z(e() (B18)
K

we have from (B4) and (B15)

Z g(vzz(r) t», K(e()

= + g &.~r (I') Z ~uz(e()D»z (&() (»'I)

E( Jr(&)= gZ( zz'( r+-z r (&&(

= Z/ & zr'(
K'

e(z(w/2&+

+: &( zr(I')= Z% zz'(1' —2&/'8)Dz z (0 '"
K'

(B20)

(B21)

implying that

g(.~r(1') = Z /f(. ~» (&)D»z (4() ~ (B18)

)I
-iz(r/2&( I)i »5 (z'(r/2&]

= ( I) Z& z-z(y)

For the three R„E(I.(B18) becomes

+(: g( zz(&)

= Z &( zz'(I')Dz, *z'(

Notice that the second symmetry applied twice
implies that g, „zz(y) vanishes if K is odd, a re-
sult which arises manifestly in our formalism.

Figure 5 displays the well-known symmetries of
the surface which lead to these symmetries of the
wave functions. We note that these are the well-
known' symmetries of the quadrupole vibration
problem. There are additional symmetries which
manifest themselves as relationships among the
A's of Eq. (85c). A11 these symmetries have their
counterparts in the octapole surface vibration
problem as well and we intend in a future publica-
tion to discuss these symmetries more fully.
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