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In preparation for a field-theoretic treatment of m-nucleus scattering„ the corresponding m-nucleon problem is
examined. In order to include two-body input in the many-body problem it is useful to have a linear wave

equation which describes m-nucleon scattering. It is shown that the nonlinear Low equation, in the one-meson,
one-nucleon truncation, may be expressed as a linear wave equation with an energy-dependent driving term
interpretable as a potential. This potential includes the usual driving term of the Low equation plus an infinite

set of higher order terms which incorporate the effects of crossing. A discussion of these terms and an iterative

prescription for calculating them is given. In the static limit, our solution is shown to be equivalent to that of Chew

and Low.

NUCLEAR REACTIONS Scattering theory, Low equation, &-nucleon scattering.

I. INTRODUCTION

There is a great deal of activity concerned with
understanding the interactions of pions with nuclei.
Many theoretical treatments use some form of
multiple scattering theory" which gives the z-
nucleus scattering an expansion in elementary off-
shell m-nucleon amplitudes. Derivations of such
theories assume the existence of a projectile-
nucleon potential. Such an assumption is believed
to be valid for nucleon-nucleon interactions. How-

ever, the corresponding evidence does not yet
exist for meson-nucleon interactions because
mesons interact by being singly absorbed by, or
emitted from, nucleons. This leads to the pos-
sibility that effects, not contained in conventional
theories occur.

In general, one would like to obtain a w-nucleus
scattering theory which includes: (1) a justification
(or disproof and improvement) of the use of a v

nucleon potentia1; (2) effects of meson annihilation
reactions, such as (v, p) and (v, pp), on elastic and
inelastic meson-nucleus scattering; (3) crossing
symmetry; (4) relativistic effects; (5) consis-
tent use of two-body input in the many-body
problem (already in standard theories); (6)
recognition that there are virtual mesons pres-
ent in the nucleus and that they might be confused
with the incident meson; and, (7) a clear relation-
ship with the coventional theory so that specific
correction terms may be isolated. In our view
these are the problems which, in addition to
problems in evaluating the standard theories,
must be solved to understand meson-nucleus scat-
tering. The first workers to consider such prob-
lems were Dover and Lemmer. ' Since then there
has been much jnterestjng work~ ~ which deals

with various aspects of the above problems.
One of the main difficulties with approaches to

m-nucleon and n-nucleus scattering which use the
dynamics of single absorption or emission is that
one must solve nonlinear Low" equations for
both systems. The present paper is a study of m-

nucleon scattering in which an energy-dependent
m-nucleon potential is obtained. This potential
when used in a linear equation gives the same m-

nucleon T matrix as the Low equation.
The Low equation gives the scattering amplitude

in terms of matrix elements of operators between
eigenstates of a field- theoretic Hamiltonian. Such
eigenstates are very complicated. For example,
the wave function of the physical nucleon may be
viewed as a bare nucleon plus an interacting pion
cloud and even this simplest nucleus is a solution
to a many-body problem. In a potential model,
for m-nucleon scattering, one uses a massive point
nucleon and massive point pion with the only inter-
action between them the potential that causes the
scattering. One is working in a different, but
simpler, Hilbert space and if the T matrix for
this problem is the same for on-shell and off-shell
matrix elements one may be able to use the simpler
dynamics to advantage in the many-body problem.

In Sec. II the derivation and properties of the
Low equation are reviewed with emphasis on its
renormalized and nonstatic nature. The "one-
meson" truncation is used. Under this approxi-
mation the m-nucleon T matrix is given as a sum
of three terms. The first is the driving term which
we interpret as a ~-nucleon potential. The second
term is quadratic in the T matrix, arises from
interations of the driving term, and includes the
right-hand cut. The third term is quadratic in
the m-nucleon T matrix and includes the left-hand
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cut. This term insures the crossing symmetry of
the solution. %e call this last term the crossed
term. Two approximations which simplify the
solution of the equation are discussed. The first
is the well-known static approximation in which
the mass rn of the nucleon is taken to be infinite.
The second is a scheme in which terms of order
I/m are kept. Both of these approximations lead
to similar equations for the p-wave T matrices.

In Sec. III the Low equation, with the neglect of
the crossed term, is shown to be equivalent to a
linear equation with an energy-dependent driving
term interpretable as a potential. The proof pro-
ceeds by making a transformation on this linear
equation which results in another linear equation
with an energy-independent but non-Hermitian po-
tential. Then a biorthogonal basis is set up and
the derivation of the Low equation from the linear
equation proceeds via conventional techniques.

In Sec. IV the crossed term is included. In this
case the potential and Green's function depend on
the T matrix and the resulting equation, while
linear in appearance, is implicitly nonlinear. An

iterative procedure to determine these quantities
is set up and a physical interpretation of the cross-
ing term ls obtained.

In Sec. V an explicit comparison with the Chew-
Low" solution is obtained and it is found that our
solution is essentially identical to theirs. The
convergence of our iterative procedure is also
discussed.

Section VI contains a summary of our principal
results. Derivations of certain equations are
given in the Appendix.

II. LOW EQUATION

In this section the m-nucleon Low equation is
reviewed. The original treatment of Low is fol-
lowed closely. Emphasis is placed on those
aspects, such as the renormalized and nonstatic
nature, of Low's treatment which are relevant for
present studies of m-nucleon and m-nucleus re-
actions. %'e start with the interaction Hamiltonian

»»&=*» 1&*».'»»&.&»'*-»- fl&*&»&*&»'*--:»&»&j»*»»'* '~J»*&*&»*& &»

d'xX(x, t). (2.1}

The first term of Eq. (2. 1) is the usual pseudoscalar w-nucleon interaction. The remaining terms are
necessary for the renormalization procedure.

Low uses the formal expression for the S matrix

S = Q dt, dt„&4&q, ja, (&»&)P[H1(t,}'' ' Hl(t„)]a;(k) ~C&gnf (2 2)

for the scattering of a meson in a momentum-isospin state ki to a meson in momentum-isospin state qj,
while the nucleon goes from t& to P'. In Eq. (2.2) 4&~ and 4&~. are noninteracting nucleon wave functions.
The indices P and P' represent the charge and spin of the nucleon as mell as its four-momentum.

Low obtains a nonperturbative equation from Eq. (2.2) by commuting a', (k) to the left and a1(q) to the
right. By using an expression derived by Gell-Mann and Low' and transforming the operators to the
Heisenberg representation Low obtains (q ok)

ele&-q) x
S=-g d'xd'y 4'~, P J'

~ y J, x C~ +iX d'x, „, 4, 5,&(II)'x +2i P, x Q& x
4q(&lf 0

(2.3)

where 4~ are full physical nucleons and the caret designates the Heisenberg representation. The currents
are defined by

el '(X) [X»(+)yQ&( r)] l0 ygjg 8»(X&XO 0)» lg»g (Cl+ tl ) &(tX&l)

(2qoi o/
(2.4)

Equation (2.3) obeys the Gell-Mann-Goldberger"
crossing relation

&5', qi (
~

( 5, kt& =
& 0', —k' (3'

( 5, —q j& (2 6)

It is convenient to define a scattering operator T

(2.6)

whel'e &1»p, (iQ) ls all lllcollllllg wave scattel'lllg
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eigenstate withan asymptotic part consisting of a
physical nucleon of momentum P' and a meson in a
momentum- isospin state qj. Low showed that by
writing 4&, ' in terms of the time development
operator acting on a noninteracting single-meson,
single-nucleon state one could obtain

~ (e, , fz'., fe&-&)(e&-& fq„,. fe, )
k, +P, —F„+is

(2.9)

T(p'qj, ski, ) = i S(p'qj, ski ) (2 7)

for qjWki.
It is now possible to define the conventional T

matrix f via

S(P'qj, Pki) = —2' 6(E, —E~)l(P'qj, jpki),

f(j'qq, Pkf) = d'x(e, , (qj) fZ„.(x) fag,
(2.9)

where q + k and E; = ko+ Po, E& = qo+ &o. The
quantity t is related to T by performing the time
integral of Eq. (2.6) and dividing by 2v

The two terms of Eq. (2.3) are separately di-
vergent. However, Low uses the X term to can.-
cel the divergence arising from the four-meson
subgraph. Thus if the A. term is dropped and re-
normalized coupling constants, vertex functions,
and masses are used in the remaining terms, no
divergences appear and the resulting equations
are finite and physical. The finite pieces of the Q'

and (Id' terms which remain after renormalization
are neglected in this treatment.

Low showed that a, very elegant and simple-look-
ing expression could be obtained by rewriting the
operators J in the Schrodinger representation and

by explicitly performing the integrals over x, and

y, . Then x(C,
f 8,.(0)

f e,,„), (2.10)

where the matrix elements involve three-dimen-
sional space integrals only. Each of the matrix
elements contains an implicit momentum con-
serving 6 function. The states f4„' ') are eigen-
states of the full Hamiltonian with incoming bound-
ary conditions. All quantities of (2.9) are in the
Schrodinger representation.

The sum over intermediate states includes states
which have asymptotically any number of pions plus
thenucleon. The T matrix for a process in which
mesons are created and destroyed may be obtained
by reducing the corresponding S-matrix element.
The result is a set of coupled channel equations.
In the present work we consider only the sum
over nucleon and single-meson nucleon states.
Inelastic channels are important'0 and will be in-
cluded in a forthcoming paper by this author.

A more explicit form of Eq. (2.9) may be ob-
tained. Consider the sum over single-nucleon
states as a driving term and define it as v. The
use of

where Hermitian isospin operators are used, gives

~(p'qj, p») =g (e,, i 8,.(0) Ie,»,„-(~r))(e5,„-(cr)~ 8, (0) ~q, &

(4k,q,)"',k +P, - E(p' +q +)ef

(0;. l 8;(0)14; -„(or)) (4; -„(cr)(8,.(0) lC, )
p,' —k, —E(p' —k)+is (2.11)

The term involving the one-meson, one-nucleon states is simplified by noting that the matrix elements
occurring on the left-hand side of Eq. (2.9) are precisely the same as those on the right-hand side. Thus

'q„ f (p'+ q —q„, q„l;p', ql)l(p'+ q —q„, q, ;p, ki)
(2v)' A. o i Po E(p'+ q q, ) —(u(q„) + i&

d'q„ f~( p' —k —q„, q„l; p, —k j)t(p' —k- q„, q„ l; p, —q j)
(2v)' p,' k, E(p' k q„) ~(q„) +i &

(2.12)

The potential v is specified by the calculation of
the matrix elements contained in Eq. (2.11). A
theoretical calculation of such matrix elements
is implied by our choice of interaction Hamilton-

ian (2.1). However, we do not address ourselves
to this task. Explicit assumptions about Eq. (2.10)
are discussed below.

In order to simplify the notation a symbolic
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crossing operator C is introduced, i.e.

C[F(a, qj;b, bi)]=F(a, -t'ai;b, —qj), (2.13}

where F is any function of incoming and outgoing
meson lines, and a, b represent any other coordi-
nates of the problem. Application of C is equiva-
lent to crossing the external meson lines in Feyn-
man diagrams. The Eq. (2.13) is a relation be-
tween four vectors.

From Eqs. (2.11) and (2.12)

ho+Pa —E(p +q)+it z+iz,

Po —ko —E(p' —k)+i& = —z+i&
(2.16)

r-nucleon relative momenta is given by the mo-
mentum of the pion in the frame in which the
nucleon is at rest. In this case the energies of
the initial and fina, l pion are equal and designated
by the variable z, i.e. , k, =qo=z. The energy
denominators in the Eq. (2.11) for the potential
a,re given by

v =C[v],
t = c[t]

t = v+ ttDt+ C[t~Dt],

(2.14)

(2.15}

and the energy denominators of Eq. (2.12) are given
by

b, +P, —E(p'+q- q„) —(d(q„)+is =z (d(q„)+is,
(2.17}

Po &0 —E(-p' —k- q„}—(d(q„)+i& =-z — ((dq„) i+ z.

where D is the meson-nucleon propagator including
the physical spectra and a schematic notation is
used.

Given a model for the matrix elements of Eq.
(2.10), the solution of Eq. (2.12) would result in

a m-nucleon T matrix which is crossing-symmetric
and which includes nucleon recoil. Such a solution
is difficult to obtain, and it ha, s become customary
to use various approximations. The static or no-
recoil approximation involves the assumption that
the mass of the nucleon is so large that the nu-
cleon's kinetic energy may be neglected and the

The neglect of the momentum of the nucleon in
the expression for the matrix elements of the
current operator results in the simplified ex-
p 1'e8sion

where &4w f/t(, =g/2m and f(q) is an assumed form
factor. An evaluation of the right-hand side of
Eq. (2.18) between nucleon spin and isospin states
is implied. Because the potential is constructed
from these matrix elements, one finds

(2.19)

(2.20)

The use of Eqs. (2.16)-(2.20) allows us to write the static Low equation as

In Eq. (2.19) the spin and isospin of the initial and final nucleon are specifically indicated. In the fol-
lowing treatment the quantities v and t are to be understood as acting between nucleon states with such
quantum numbers, but the labels Ov are not specifically given.

The form of the driving term means that the solution is of the form

t(P qj, Pki) = t,(qj, ki) .

d P t P (pI 'Zj}™P(p~
g qj& 8 q2! ~ (2z)3 z

d'P tL~(pl, —ki)t(p , I—q j)
(2w)' z (c~

(2.21)

which may be given in a schemat;ic form which is
identical to Eq. (2.15) except for the replacement
of the full crossing operator C by its static form
C, :

C,[F,(a, qj; b, ki)] = F,(a, —ki; b, —qj) . (2.22)

Under Eqs. (2.19)-(2.22) it is explicitly true that

C, [v, ]=v, ,

c,[t, ]=t, .

However, one wishes to use the I ow equation at
energies up to and including the (3, 3) resonance
which occurs at a lab energy of about 200 MeV.
For this energy the lab momentum is 310 MeV/c
while the n-nucleon relative momentum is
234 MeV/c. Furthermore the center-of-mass
kinetic energy of the target nucleon is about 30
Me&. In this energy region the m-nucleon T ma-
trix varies rapidly and one could make a sub-
stantial error by evaluating it at an energy which
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is wrong by the amount. It is therefore desirable
to include nucleon recoil in some way. We keep
terms of order 1/m in Eq. (2.12). Our most
crucial assumption is about how to treat the ma-
trix elements of the current operator between
single-nucleon eigenstates. We work in the m-

nucleon center of mass and assume that such
matrix elements are well approximated by

&4', j&, ~4'„, )=
(

)&'g. T~f(q. )&4&—
Qt

(2.24)

where q, is the relative m-nucleon momentum cal-
culated to order 1/m. Once this assumption has
been made, one may further examine the energy
denominators of Eqs. (2.11) and (2.12) to obtain
expressions for the potential and T matrix. Along
with Eq. (2.24) it is desirable to work in the center-
of-mass frame and to t;reat z as the total pion-
nucleon energy (minus the nucleon mass) in that
frame.

The assumption (2.24) has powerful implications
for the solution of the nonstatic Low equation. In
particular it means that the nuv~exatox of the ex-
pression Eq. (2.11) for v occurs for v-nucleon
scattering in relative P waves only. Thus the dif-
ficulties of large s-wave scattering caused by pair
production, for example, has been thrown out.

Let us examine the energy denominators in the
expression (2.11) for the potential more carefully.
In the center-of-mass frame the total momentum
is zero and the denominator of the first term is
z. The denominator in the second term is more
complicated. One has

P,' —b, —E(p' —k) = p" (p' —k)'
2m ' 2m

goes the replacement

b(&+ f&o —E(p + q —q„) —M(q„) + I e

2

=z — " —(u(q„)+i& . (2.26)

Qne see that the cut occurs for the expected en-
ergies. The energy denominator in the crossed
term of Eq. (2. 12) involves

p,' —k, —E(p" —k- q„)- &u(q„)

2

z —~(q„) — " + —(k p- k q„+p' q„).

(2.27)

Under our approximation the driving term in-
volves P-wave scattering only; hence, the physical-
ly reasonable soultions of the nonlinear equation
are expected to have scattering in the p wave only.
This means that to order 1/m the fourth term on
the right-hand side of Eq. (2.27) may be ignored.
Under the conditions expressed by Eqs. (2.24)-
(2.27) the I.ow equation is given by

t, (q j, ki ) = v, (qj,ki)

d'q„ t'(q„l; q j)t(q„l, ki)
(2w)' z —~(q„) —q„'/2m+is

d'q„ t~ (q„l,ki)t(q„i, qj)
(2v)' z (u(q„) q„'/2v~

(2.28)

The result, Eq. (2.28) is similar in form to the
static equation. The only differences are in the
value of z, the use of relative momenta, and in-
clusion of the recoil kinematic energy of the nu-
cleon in the intermediate state spectrum. Qne
may write

(2.25)
t, = v, + ttD, t+ C[ttD,t],

where the crossing operator is given by

(2.29)

which differs from the corresponding static term
of Eq. (2.16) by a term of order 1/m. In (2.25)
all momenta are evaluated in the center of mass
and we have used the fact that

~ p ~

=
~

k
~

in that
frame. We now make a further restriction and
consider 7T-nucleon scattering which occurs only
in f waves. That means that to order 1/m th-
p' ~ k/m term of Eq. (2.24) may be ignored. Thus
the potential under the assumption of Eq. (2.24)
and the restriction to P waves has the same form
as Eq. (2.19) except that all momenta, are re-
placed by their relative values and z is calculated
as discussed in the above paragraph. This sim-
plification occurs as a direct result of using Eq.
(2.24).

An examination of the denominators of Eq. (2.12)
reveals that the first energy denominator under-

C[F,(aq i;bk, j)]=E,(a, —k, j;b —q, i), (2.80)

where the evaluation of the momenta in the center-
of-mass frame is made explicitly by the sub-
script c.

These results follow directly from our assump-
tion about the form of the current operator as well
as our focus on p-wave scattering. The results
seem reasonable in that one evaluates the on-shell
T matrix at the correct energy and momenta.
Furthermore our procedure is very similar to the
results of Chew, Goldberger, Low, and Nambu"
and several other authors. " Note that the value
of the momentum in the center of mass depends on
the energy of the meson in the laboratory frame.
In this prescription it is ~ which changes sign
under the crossing operator and not the lab en-



t, (q,t; k,i) = ( 4 ' '(q, l)
~
4„.

~
4 )

t„(q, ;t-it) (z= w, ), (2.31)

w, =(q, '+ p, ')' '+q, '/2m. (2.32)

The I.ow equation is specifically derived for
the on-shell elements of the T matrix. However,
the equation (2.28) serves a definition of the off-
shell T matrix when the variable z is chosen at
values which are not associated with either the
incident of final pion momentum.

III. EQUIVALENT LINEAR EQUATION (NO CROSSING)

In the preceding section we have obtained a non-
linear equation which approximately includes nu-
cleon recoil. Bather than attempting a direct
solution of Eq. (2.28), we seek a,n equivalent prob-
lem. The wave functions C~, 4„' ' of the preceding
section are exceedingly complicated objects as
they consist of superpositions of n-meson
creation operators acting on the bare nucleon.
Instead we work in a Hilbert space consisting of
a massive point nucleon and massive point pion
which interact via a potential. The idea is to find
the potential, which when used in a suitable linear
equation, gives a T matrix which is the same
for all moments, and energies as t, (q, i, k,j).

It is easiest to proceed by first ignoring the
crossed term of Eq. (2.28) and to find a linear
equation equivalent to the approximate I.ow equa-
tion

ergies of the meson.
%e have ignored partial waves with l 11. In

theories which include recoil, crossing symmetry
gives relations between the various partial
waves. As dynamics, such as p exchange, which
contribute strongly to s-wave scattering have been
ignored, wedo not consldel 8-wave scattering. A
treatment which addresses itself to such questions
is found in Bef. 17.

Before proceeding it is necessary to make some
observations and definitions. The T matrices on
the right-hand side of Eq. (2.28) are evaluated for
half-shell kinematics because the energy of the in-
termediate state is not equal to the energy of the
initial state. Thus the Eq. (2.28) defines the half-
off-shell T matrix

where all momenta are evaluated in the center of
mass and only P waves are included. The full
driving term which includes the crossed Born
term is used in Eq. (3.1). One may write the chan-
nel decomposition

u(qi, kj) = Q 6 (qik, ,j)P (qi, k, j), (3.la)

where n are the spin-isospin channels and P the
corresponding projection operators, and E7 P
is assumed to be Hermitian. The driving term
u/z is completely specified by Eqs. (2.24) and
(2.19). However, we are able to prove the as
sertions of this section for the slightly more gen-
eral form of Eq. (3.la).

In the remainder of this paper we allow z to in-
clude an infinitesimal positive imaginary part.
Thus the i& term will no longer be specifically in-
dicated.

It is also useful to use a simplified notation in
which the index 4 includes the vector k and isospin
index q. An integral over j''* then includes the sum
over isospin. Then (3.1) may be given as

N(q, 0) d'p t~p (p, q)tN~(p, k)
z (2v)'

(3.lb)

It 1s our cla1m that R T matr1x equivalent to that
of Eq. (3.1) is obtained by the solution of the fol-
low1ng llneR1 equR'tlon

t, (q, k) = —u(q, k)+
1 d'p u(q, p) z

z 7T 2

x 1 t(pk),
p

(3.2)

which is given in operator notation as

u w z 1 z
t, = —+

z z hQ z —AQ+i& hQ
(3.3)

(3.4)

where v, (z) is obtained by using Eq. (3.3) in Eq.
(3.4):

where AQ includes the kinetic energy of the nucleon
and total energy of the pion. The linear equation
(3.3) is equivalent to the Lippmann-Schwinger equa-
tion

t (qg, k j)= —u (qi, kj) u Z+hQ
v, (z) = —1+,' v, (z)

Q

(3.5)

~'P t'w~(pt, q~)twp(pt, kj)
(2v)' z- W, +i&

(3.1)

Equations (3.2) (3.5) represent the situation of a
massive point nucleon RDd R mRsslve polDt ploD
interacting via a potentiaL The quantity u/z is
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viewed as the value of a matrix element of an
operator taken between plane wave states. The
value of this matrix element is given by the value
of the field-theoretic driving term which is of the
form u/z. The next step is to show that the t, of
Eq. (3.3) is the same as the t, of Eq. (3.1).

%'e prove our contention by starting from Eq.
(3.3} and showing that the T matrix defined there
obeys Eq. (3.1). The first step is to define an
auxiliary T matrix T,:

Tv(»k}=('4 ' Iu' I&a&

where
~ p~} is an eigenstate of h, .

By defining a complete Green's function

O-'(z)=z h, ff,

one may rewrite Eq. (3.8) as

(3.14)

T, = —f, , T,(pi, qj)= t,(pi, qj). (3 8) By using the completeness relationship (3.12) we
have

Note that if z = TV~+i&, as is the ease for the ma-
trix elements of Eq. (3.1), T, =t,. One has

d'P @tt,' ') (0,' '
~ „

(2v)' z W,
(3.17)

1 1 1 z
Tg = —Q+ —Q — Tg .

h, ho h, z —ho

It is useful to define an auxiliary potential Q

1
Tg =Q+Q Tg

0

(3.7)

(3.8)

or

Tw, (P, a') Tw, (P, h)

1 1 1
Q= —Q+ —Q —Q

"o ho ho
(3.9)

Ol

1 1 1u= —u 1 1-——u
ho I ho ho

which may be determined by using the T, of Eq.
(3.7) in Eq. (3.8). Then one finds

1
T =hoT

0
(3.19)

To prove Eq. (3.19}consider the relationship be-
tween u and u~.

By taking the adjoint of Eq. (3.9) we have

In general there is no simple relationship be-
tween T and T so that Eq. (3.18) cannot be further
refined. However, for the potentials under con-
sideration one may show that

1 1
1 1-—Q — —Q.

hp ho - @0
(3.10)

(3.20)

Thus u is an energy-independent but non-Hermitian
potential.

I ow equations for non-Hermitian potentials may
be derived by introducing the basis wave functions

(y, ) and g, ) where

(W, -h, —u) (P, ) =0,

By multiplying Eq. (3.9) by h~ from the left and

1/h, from the right, we have

(3.21)

which may be solved for

(W, —h, u') [P)=0. -
(3.11) 1 1 1 1

h, u —= u—1 1-—u — =u' . (3.22)
hp h h ho

d'A

2+ 3 ~k (3.12)

We assume that the scattering solutions are com-
plete

From a similar procedure on Eq. (3.8)

hoTg —= hoQ —1+1 -1 1 1
ho Tg—

(3.23)
~~ere incoming boundary conditions are used and
where the index k includes the isospin state and
the integral over k includes a sum over such
states. We also have the relations

so that ho T(1/ho) satisfies the same equation as 7
and the proof of (3.19) is complete.

The use of (3.19) in (3.18) gives

Tg =Q +Q Tg2 ~
p

(3.13) u(q, h) d'P W, Ttv, (P q)T~ (P h)

(3.24)
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which becomes

T,(q, k) = —u (q, k) + &+

/
/

/
/

/
/

when one uses

Wp z 1~ —= —1+
z —Wp 8'p z —t'Vp

and Eq. (3.9). The quantity b is given by

u—— T~ (P, q)T~ (P, k) (3.26)
1 1 d'p

l
/

/
/

/
/

/
/

/
/

/
/

/

/
/

/
/

/
/

/

/
/

/
/

/
/

p

or

But

1 1a=—u —u+ lim (T, —u).
(go jgo z- o

(3.27)
FIG. 2. The diagrammatic expansion of Eq. (3.2) up

to fourth order in g.

1
s- 0 ' 1+u(l/h, ) h, 1+u(1/h, )

(3.28)

1 1 1—w, ——u —- - — — u.
ho h, h, 1+u(1/ho)

By solving Eq. (3.9) for u(1/ho)

(3.3O)

and 4=0.
Upon using Eq. (3.6) in (3.25) we find

„) u
)

d'P twp(P, q)tg~(P, ir)

z ' (2v)3 z —W~

(3.31)

which proves our assertion that the solutions of
Eqs. (3.1) and (3.2) are equivalent.

Note that the only assumption about the form of
the driving term is that it is given by a factor of
1/z times a Hermitian, energy-independent opera-
tor.

The physical content of Eq. (3.2) is examined by
defining an equivalent diagrammatic expansion.
The driving term is given and v =u/z is defined in

/
/

/
/

/
/

Fig. 1. Some higher-order terms are given in
Fig. 2. The intermediate Green's function contains
the factor (z/h, )'. Some comments are necessary to
explain the seeming occurrence in Fig. 2 of nucleon
mass renormalization and meson nuclear vertex
corrections. Each vertex is renormalized and
the renormalized physical coupling constant, form
factors, and physical nucleons a,re used. The
"unusual" graphs of Fig. 2 are simply finite pieces
of those Feynrnan graphs which remain after the
infinite divergences have been removed.

As an example consider the Feynman diagram
of Fig. 3(a) which is designed as the divergent
self-energy Z(P) which may be given as expansion
in powers P —m. Then as explained in Lnrie, "
for example

The ter~~ Zo and Z, are quadratieally and linearly

(b)

I
FIG. l. The driving term v. The solid line represents

nucleons and the dashed line represents pions.
FIG. 3. Divergent Feynman diagrams: (a) Nucleon

self-energy; (b} meson-nucleon vertex.
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divergentandproduce shifts in the effective fer-
mion mass and coupling constant which are ab-
sorbed by renormalization. The term Z, (P) van-
ishes when f(= m and is finite. It is an approxima-
tion to this finite and physical term which is in-
cluded in the graphs of Fig. 2 while the divergent
pieces are absorbed by the renormalization in-
herent in Low's treatment.

A similar argument applies for the graph of
Fig. 3(b). The terms included in Fig. 2 which
have this term include only the finite contxibu-
tions which remain after renormalization.

It i.s useful to introduce the concept of reducible
and irreducible graphs. A graph is reducible if
it is obtained by an iteration of lower order di-
agrams. Thus in the series of Fig. 2 only the
Born term v is irreducible.

Contact may be made with conventional graph-
ical notation by recalling that v is defined in Fig.
1 and giving Eq. (3.2) as in Fig. 4. Thus a field-
theoretic definition of a m-nucleon potentia, l, as the
driving term of the Low equation, has been pro-
vided.

IV. INCLUSION OF THE CROSSED TERM

In this section we find a potential which, when
inserted into a linear equation, gives the same
T matrix as the solution to the field-theoretic,
crossing- symmetric Low equation. This potential
and linear equation depend on the solution. and it is
necessary to set up an iterative procedure to ob-
tain these quantities.

We start with the field-theoretic Low equation,
Eq. (2.28), which is repeated for the sake of
clarity

( k)
u

( k)
d P twp(P q)twp(P k)

d'P twp(P, —k)twp (fp, - q)
(2v) ~ —z —Wp

where the notation —k designates (- k, i) for

Hermitian isospin operators. A schematic version
of (4.1) is

t, = v, + tiD, t+ C[tiD, t].
By redefining the driving term as m,

u&, =v, +C[t~D, t]

we have

(4 2)

{4.3)

t =so, +t~a,t. (4.4)

=ZA. u (q, k), (4 5)

where P is the projection operator for the given
spin-isospin (angular momentum = 1) channel n.
Just as in the static model the T matrix has the
form

t, (q, k) = 4v Q k, (z) P, (q, k)
42(d, u2+&

= gt. (z).

The use of (4.6) allows us to write the third term
on the right-hand side of Eq. {4.1) as

C[t'D t]= ~u ( k)
4n' (z+ Wp)

Note that Eq. (4.4) has the same general form as
Eq. (3.1). However, the energy and momentum de-
pendence of u is unknown. The simplified form
of the interaction current, Eq. (2.24), allows us
to make further statements about the form of the
operators appearing in Eqs. (4.1)-(4.4). Our
interaction current differs from that of Chew and
Low ony by the evaluation of the pion momenta in

the center-of-mass frame. Hence, just as in the
static model, the driving term u/z and the T ma-
trix are separable. That is, the driving term has
the form of Eq. (2.19) with momenta and energy
given by the center-of-mass values. We have

(q, k) =Z..4. f"'f'"' P.(q, k)N

y.y

y

y (4.7)

where A z is the familiar" crossing matrix. The
function b (z) is defined by

y
+ 0 e 4

CP&D.t]= gb. (z)u. (q, k). (4.8)

FIG. 4. The uncrossed T matrix ia given by the cross-
hatched object.

An examination of Eq. (4.7) tells us that b (z) has
a branch cut along the negative real z axis for
z &- p. We further assume, as do Chew and Low,
that 5 has no other singularities off the real axis.
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The quantity w(z) is given in terms of b, (z) as

w(z)=g —+h (z) u =g o
M

a, (z)

w, (z} . (4.9)

lt is tempting to use Eq. (4.9) as a potential, or
driving term, in a linear equation. However, it
is necessary to define the auxiliary functions f ',
a ', and u ' where

regions where a,'(h, ) is real and there is no am

biguity about which root to use.
By multiplying Eq. (4.12) by [a'(h, )] '~' from

the left and from the right and multiplying Eq.
(4.12) by an overall factor of a '(z) and using the
definition (4.14) we have

a '(z)
[a '(h )]'~' o [a '(h )]'t'

f '(q)f.'(P)
(u

(4.10)
d 'p t."'(W,)t."(W,}

(2w) z —Wo
(4.15)

with a ' and f ' to be determined below except that
a' has the same analytic properties as a . That
is, a ' has a pole at z = 0 and a left-hand cut. The
quantity w' (z) is given by

If one makes the identification

1 1
a'(z) [,(h )],&, w'(z) [,(h )],&,

——w (z) (4.16)

a,'(z)
I z Ct (4.11) or

In the Appendix it is shown that the linear equa-
tion

t '(z) =w'(z)+w, '(z) — —;' t '(z)
oz 0 0aaz

a"(z) f '(h)f '(P) a (z)
[,,

( )pt, [,,(„)),g, =, f(h)f(p)

which implies

(4.17)

is equivalent to the nonlinear equation

(4.12) a"(z) = a, (z),

f.'(h) = [a.(~ ))"'f(h)
(4.18)

d'P t '~(Wo}t'(W~} a '(z)

(4.13)

then one has

„( ) )
d P t"

(Wgt "(W~)
(2w)o z —Wo

(4.19)

where for notational simplicity we ignore the mo-
mentum dependence in the integral.

We again stress that Eq. (4.12) is a potential
equation and not a field-theoretic equation. We
work in a Hilbert space consisting of point nu-

cleons and point pions and hope to obtain a
linear equation which has the same T-matrix
elements as the field-theoretic solution.

The presence of the factor a '(z)/a'(Wo) in the
integrand means that the left- and right-hand cuts
are not separated as they are in the low equation.
Let us define another T matrix t,":

(4.14)

where we intend to show that t, of Eq. (4. 1) and

t, are equivalent. It is necessary to comment on
the presence of square root operators in Eq.
(4.14}. The quantity [a'(ho)]'~' is always evaluated
between our plane wave states where Ap takes on
positive values only. Hence we use [a'(ho)P~' in

Because of our choice of w(z), Eq. (4.19) is of the
same form as Eq. (4.1) and we make the identifi-
cation t, = t,". One may obtain a linear equation
for t, by multiplying Eq. (4.13) from the left and

right by and by a factor of a (z). Then

t (z)=w„(z)+w (z)— — o t (z)
z 1 z a (ho)

'
o o o ao

(4.20)

and the problem is formally solved. Equation
(4.20} represents a linear equation, the solution
of which is equivalent to that of Eq. (4.1).

The function a (z}, hence the potential w(z) and
Green's function, depend on the solution t,. In
order to demonstrate the validity of Eq. (4.20), it
is necessary to show how to determine ~ from the
known driving potential v and to explain the phys-
ics contained in that equation.

One method of solution is to use a self-consis-
tent procedure. First one neglects the crossed
term, calculates a T matrix, and uses it to ob-
tain an approximation to a (z). Then one solves
the linear equation with the new potential and
Green's function to obtain a better estimate of the



'2240 GERALD A. MILLER 14

T matrix and an improved function a (z). The
improved a (z) is then used to generate a new T
matrix. This procedure is continued until con-
vergence is achieved. The remainder of this sec-
tion is devoted to a detailed discussion of this
procedure.

The procedure is begun by defining a first ap-
proximation to the potential se:

Zl
78 = —=V= V0 at

Oi

(4.21)

The notation v given by (4.21) is used in the re-
mainder of this section. The first approximation
to t is simply obtained by summing the diagrams
of Fig. 4 via an integral equation as in Eq. (3.2),
l.e. )

t0 = V+ Vg0t0,
(4.22)

1

h0 Z —h0

Whereas v is crossing- symmetric, f, is not, as
is clearly seen in Fig. 4. In order to remedy the
lack of crossing symmetry one might add the
crossed version of the iterated diagrams
C[t, —v] to t,. The resulting T matrix is crossing-
symmetric, but it is not complete because the
new term, as shown in Fig. 5, is itself irreducible
and should be used to generate even more higher
order diagrams.

One therefore defines a potential

w, = v + C [to —v] = v + C [vg, t, ]

a(o& z=v+C[t(Dt, ]—= g u

FIG. 5. Some terms introduced by crossing the re-
ducible term of Fig. 5.

meson has been produced. Although a new, in-
finite class of diagrams is included, f. , is not
crossing-symmetric because the crossed version
of the diagrams of Fig. 6 are not included. The
addition of the crossed terms, C[t, ] —C[t, v] —t, ,

some of which are shown in Fig. 7, to t, results
in a crossing- symmetric T matrix. However,
these new terms are irreducible and should a, l.so
be used to generate more diagrams. This step is

w, (z), (4.23)

and immediately notices that the third line of Eq.
(4.23) looks more like Eq. (4.3) than does Eq.
(4.21). Thus the estimate of w has been improved.
However, Eq. (4.23) is not the final solution
because t, is not the same as t. The function a(o'(z)
is assumed to have the same analytic properties
as a (z).

The next step is to calculate the T matrix cor-
responding to the potential of Eq. (4.23). One has

t, (t) = w, [1+@, (z)t, (z)], (4.24)

where the notation t„(z) designates the nth iterate
in the channel n. The Green's function is given by

1 z ' a(o'(tz, )
gl, a z t tz a(0) (z)

(4.25)

Some of the terms of t, not included in t, + C[t, —v]
are shown in Fig. 6. Note that each of the graphs
contains at least one state in which another virtual

FIG. 6. Some terms caused by using terms of Fig. 5
as driving terms added to v.
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facilitated by defining

t~ =to+ At,

(4.26)

+ C[f) —((),j is shown in Fig. 8. Clearly f, is not
crossing- symmetric, because the crossed version
of the new terms is not included. One such term
is shown in Fig. 9. These crossed terms are ir-
reducible. By the reasoning of the paragraphs
preceding Eq. (4.28), one has

Then w, = v+ C[fiDf, j. (4.30)

t, = —+&v l+ o+ t, +~t

=f +bv+ —g &t+ g, —kg t,
I

(4.27)

The procedure of this section leads to an in-
finite sequence of potentials which may be sum-
marized by

A. u
$0 =V= ai

0

By crossing the last three terms and using them
as an additional potential, one finds a new total
potential sv, :

f, = v(1+g,t,),
~n = v+ C[vn-x&n-) fn-). j

&(n-\) &=v+ C[t„, D„f,] = Q u
(4.31)

wn —v+ C[vg()fo]+ C[vg() J] + Q v((g) (n ) (n

()(n-1)
(f ) 2

&n, n =
S(n-))(~) &() ~

= v+ C[1())g(f(]
Furthermore, if the sequence converges (inclusion
of terms in which I additional mesons are pro-

(4.28)

Equation (4.28) shows that the addition given by
crossing the terms of f) not in C[f, —v] results in
an equation for a potential which has the same
form as Eq. (4.4).

The new terms involve the production of another
(virtual} meson. If one recalls Chew's idea" that
(multi)meson production is associated with large
energy denominators, there is then some hope
that t, is not very different from to. This means
that there is a good chance that this iterative
scheme will converge.

Note that each of the successive graphs is computed
with a different Green's function. The successive
potentials Ml„have no cuts for positive z and are
real even at energies high enough so that physical
multimeson production could occur. The graphs
of Figs. 4-9 are not Feynman diagrams.

The next step is to use u, to generate still
another T matrix:

E ~V

f, = u), (I +g, f, ,), (4.29)

where g, is obtained from the energy dependence
of u, . A typical term of t, not included in t,

FIG. 7. New terms introduced by crossing terms of
Fig. 6.
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duced is negligible for a given energy), then there
is an integer m such that

V. EXPLICIT COMPARISON WITH THE CHEW-LOW SOLUTION

This means that

(4.32)
In this section we compare the solution inherent

in Eq. (4.20) with the solution of Ref. 13. To do
this we use the static approximation which involves
the neglect of all I/m terms. We first state the
Chew-Low solution. The driving term is

=v+t' at +c[t'.at.]

which implies that u and f are solutions of Eq.
(4.2). Now t is a physically meaningful solution
as long as none of the intermediate potentials ui

introduce an additional ~r-nucleon bound state.
Thus w =~ and t =t. Since ~~~ is known, its
energy dependence is known so that one may write
the linear equation (4.20).

The requirement that the iterative procedure
converge is not more restrictive than the require-
ments of the original Chew-Low solution. Indeed,
in order for Chew and Low to obtain their function
tt (z) from g, (z) it is necessary to assume that the
value of the t, -nucleon coupling constant be small
enough so a power series expansion for their
"crossed term" converges.

It is useful to describe in words, the procedures
of this section. A potential v generates a T ma-
trix. Only v is crossing-symmetric and the
iterated terms are not crossing-symmetric. The
crossed version of these terms may be used to
generate an additional potential which is added to
v. This potential, so formed, generates another
T matrix which contains an infinite set of non-cross-
ing- symmetric diagrams (as well as an infinite set of
terms which are crossing- symmetric). The crossed
version of any remaining nonsymmetric diagrams
is added to the cumulative potential. This potential
generates another T matrix and an iterative pro-
cedure is established. Each new step results in
the addition of terms with an intermediate state
containing an additional meson. Thus even
under the one-meson truncation, an infinite number
of (multimeson) irreducible terms is contained
in the solution of the Low equation.

Any solution of the Low equation, whether by
our iterative procedure or by other means, neces-
sarily contains the full set of terms discussed
here.

(5.1)

One has

f„2 1
(5.2)

where f„ is the renormalized coupling constant
(f„'=0.088) and tt is the meson mass. The P
are the channel projection operators of Ref. 13.
Chew and Low find the following expression for
the T matrix:

(p k)
4 yy2 tt (z) P (p tt)
47tf( p)f(tt)

4(d~4) ~

with

h (z) = —a '(z) = —e''~ sino /p'v'(p),

1 z' q'dq f'(q)
Z tt CO 8 —(d

where B (~,) is a function which insures that the
solution is crossing- symmetric":

&u(~) = lan(- ~)
I Z ~ (a ~ p

(5.5)

and A ~ is the crossing matrix.
Before comparing the solution of Eq. (4.20) to

Eq. (5.4) it is worthwhile to examine the Chew-
Low solution in the absence of the left-hand cut.
In the limit B = 0, one sees that Eq. (5.4) differs
from the solution to the Lippmann-Schwinger
equation with an energy-dependent potential by

I

I I I

FIG. 8. An iterate of Fig. 7. FIG. 9. The crossed version of Fig. 8.
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the presence of the factor z'/&~' in the integral.
This factor is the result of a subtraction made by
Chew and Low to insure the amplitude has a pole
when z =0. Consider now Eqs. (3.8) and (3.9).
The solution of Eq. (3.9) gives

q dqf (q)
2 3' Q) z —QP

(5.14)

0 QQ= 74 )
hp

where

The separability of u leads to the solution

(5.6)

(5 7)

zb (z)
+zX b (z)

A z q4dqf2(q) a 2(&u, ) —a '(z)
v (u, '(z (u, ) a '(z)

(5.15}

The function & (z) has the following properties:

T,(q, b) = —t, (q, b)

/1, (z) f (k)P, (q, b)

(5.8)

(1) lim 4 (z) =0;
(2) 6 (z) has a branch cut along the real negative
z
(3) 6 (z) has no cut for z ) p.

The third property obtains from the presence of
the a '(&u, ) —a '(z) term in the integral. Thus we
may write

b (z)=y, 1 ——'Yo P'dP f'(P)
(5 9)

(z —QP~) (d ~'
Z z " dqC'((u, )

7T &+ {d
(5.16)

We see that (5.9) is the solution of a Lippman-
Schwinger equation with a potential with a different
strength than v. The next step is to write b (z)
in terms of X . Using (5.7) in (5.9) one has

where C,'(z) is an unknown function which is as-
sumed to fall off so that the integra, l converges.
To make contact with Eq. (5.4) one may define
another unknown function C (m, ) such that

(5.17)

P'dPf '{P)
v &u~'{z &u~)

Thus the use of u in a Lippman-Schwinger equation
instead of v insures that the amplitude has a pole
at z =0.

Let us turn to Eq. (4.20); recall

The use of Eqs. (5.16) and (5.17} in (5.14) shows
that our solution (5.12) has the same form as the
Chew- I.ow solution. %e have

)
X~ 2 q dqf (q)

27f (d z —(d

(5.18)

a.(z) =x. +z.b( )z. (5.11)

Because the potential is separable, the result for
b (z) may be given immediately by

b (z)= D -'(z),

) 1 ( )
z 7T

(5.12)

h (z) = —E '(z) (5.13)

To compare (5.12) with (5.4) multiply the numer-
atoranddenominatorof (5.12) by X /z[A /z+b (z)] '.
Then

Our solution is the same a.s the Chew-Low
solution if C, (x) =B,(x). If the crossing relation
uniquely" specifies B (x), this condition will
obtain because h, (z) is constructed to be crossing-
symmetrlc.

It is worthwhile to comment on the convergence
properties of the expansion of Sec. IV. Prom
Eqs. (5.15) and (5.18) one see that, even with the
first estimate of a (z), a'0)(z), the form of b (z)
is the same as that for b {z).

VI. SUMMARY OF RESULTS

(1) A derivation of a linear equation (3.3) equiva-
lent to the Low equation (neglecting crossing) with
nucleon recoil included [to order (I/m}] is given.
The renormalizability properties of the Low equa-
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tion are maintained so that a physically meaning-
ful potential is defined. This linear equation
embodies in a potential scattering problem the
scattering solution of the field-theoretic Hamil-
tonian Eq. (2.11).

(2) A similar linear equation (4.20) is derived
for the case when the crossed term of the Low
equation is included. In this case, the potential
and Green's function of the linear equation depend
on the solution. An iterative procedure to compute
these quantities is dex'ived. A diagrammatic in-
tex"pretation of this pxocedure is made and the
specific procedure for calculating the potential
and Green's function is given in Eq. (4.31).

(3) Our solution is equivalent to the solution of
Chew and Low in the static limit. Furthermore,
it seems that the iterative procedure of Sec. IV
converges.

These results show that the concept of a n-
nucleon potential, even when crossing is included,
is a useful w'ay to characterize n'-nucleon scat-
tering. This makes m-nucleon input easier to
insert into the many-body problem.

T (z)= — 0 t (z}.z a (h,)
Pg0 u

By multiplying (A4) by

a, (h, )
h, a (z)

fxom the left, ere have

(A5)

T,(z)=u +u T (z),
0

with

u = —a (h)u 1+—u0 4
p

(A8)

The procedure of Eqs. (3.11)-(3.18) as augmented
by the definitions

T (z) = —a (h, )u + —„a(h, )u — T (z)
I z

(A6)

which is expressed as an equivalent Lippmann-
Schwinger equation:

I thank B. A. Eisenstein, E. M. Henley, L. S.
Kisslinger, Li-Fong Li, F. Tabakin, and J. F.
Walker for useful discussions. I thank the T-5
group for their hospitality during a stay at the
Los Alamos Scientific Laboratory.

APPENMX

gives

d'P 7'.(W,) T.(W,)
(2v)1 z —W~

(AB)

(A10)

In this Appendix we prove that the solution of
the equation

t„(z)=u (z)+us„(z) — —— ' t (z),
z 1 z a (h, )

h z —h h a (z)

(Al)

The next step is to determine the relationship
between T and T which is obtained from the re-
lationship between u. and u. . At this point we
use the fact that in order to calculate T or T one
uses matr1x elements of Q~ and Q~ 1n a plane wave
basis. For such matx'ix elements, h is always
greater than or equal to l1 and a1(h,) = a (h,). It
is then straightforward to use (A8} to show that

a(z) X ~) (A2)
(All)

with b, (z) regular except for a branch cut along
the negative real z axis for z &- p, ; and

is equivalent to the solution of

(A4)

By multiplying (AV) by h,/a (h,) from the left and

by a„(h,)/h, from the right and using (All), we
obtain

h, a (h,)
a (h, ) h,

where the momentum labels of Eq. (A4) have been
supp re 88ed.

The proof proceeds by using the techniques of
Sec. IIL In analogy with Eq. (3.6) define

k0 a (h, )T (z)= (h)
T (z)

Qo 0

The 11se of (A8) a11d (A13) ill (A10) g1ves

(A13)
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a (h, ) a, (h, ) 1

0 0 0

I' h, 1+u (1/h, )

d'p W~ a (h, )
(2z)' a.(W,) z W,

a (h,) a (h, ) 1

0 0 o

d'p a (h~)
(2 )., —

(
—,

)
T~(W~)T„(Wq)

d'P za, (h,) T', (W~) T (W~)
(2v)' a.(W,) z- W,

(A14)

(A15)

The relation

a(h) 1 1 1

h, h, h, 1+u (lag
which is obtained from (AS) gives

a (h,) 1
lim T (z) —u, =- — ™' u —rf

'0 0

The use of (A16) and (A19) in (A15) gives

)
a (h,) d'p z a (h,)

h, (2w}'z W, a (Pr,)

(A1S)

The next step is to show that the sum of the
second and third quantities on the right-hand side
of (A15) is zero. From (A14)

d'p a (h, )
), (

'
)

T', (W~) =lir() T, (z) —~7

x T'. (W,)T.(WP (A20)

which, when expressed in terms of T, (z) via
(A5), gives

a (z) d'p f'(W~)f, (W~) a, (z)

and the solution of (A7) at z = 0 gives which is the desired relationship.
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