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The influence of resonance (6) contributions on the electromagnetic form factors of the deuteron is calculated.
The deuteron wave functions including resonance (hh) contributions are determined by a solution of six

coupled equations. The eA'ect of various baryon-baryon potentials is discussed. The numerically discussed

deuteron electromagnetic form factors include also the meson-exchange contributions arising from m, p, and eo

pair currents as well as from the pny current.

NUCLEAR REACTIONS 2H(e, e'), resonance adrnixtures, do/dQ calculated with
lneson-exchange corrections.

I. INTRODUCTION

Since the recently performed high energy elec-
tron-deuteron scattering experiments' I enewed
interest has arised in the understanding of the
deuteron electromagnetic form factors' ' by in-
cluding meson-exchange currents. In view of
these results the determination of the neutron
form factors also has been pushed further. ' All
these calculations have been performed in a con-
ventional nonrelativistic description of the deu-
teron. As the exact short-range behavior of these
functions is not known a discussion of several
very different potentials such as Hamada- Johnston,
Reid soft core, or supersoft core has been cho-
sen." It turned out that in contrast to the im-
pulse approximation results the total form factors
including meson-exchange currents, as m, p, w,
and pry exchange, are much less sensitive to the
choice of the NN potential because of the domi-
nance of the exchange currents at high momentum
transfer. Although this kind of calculation of the
deuteron form factors did not take care of rela-
tivistic corrections" or inner degrees of free-
doms of the deuteron, as for example, the exci-
tation of baryon resonances, 9 "the theoretical
results were found in good agreement with the
experimental data.

In the present paper we investigate the influence
of baryonic degrees of freedom in the deuteron
on the elastic form factors by the inclusion of ~~
components. The main question to be answered
is how strong do the AA components in the deu-
teron alter the electron-deuteron form factors'P
The answer to this question seems to be very
important because of at least two reasons. First-
ly, as the neutron form factors are extracted

from the deuteron one hopes that the ha com-
ponents turn out to be unimportant because
otherwise the determination of the neutron form
factors will become nearly impossible. On the
other hand, in order to study the importance of
the L~ components in nuclei electron-deuteron
scattering at high momentum transfer might be
an extremely useful tool.

Electron-deuteron scattering including h ad-
mixture has been studied already at low momen-
turn transfer' with the result of a considerable
contribution of the baryonic components. In these
calculations the hA components of the deuteron
have been obtained in a first order perturbative
approach. If these results hold one could expect
a large effect of b, admixtures at high momentum
transf er.

In the present paper we determine the deuteron
wave function with the inclusion of resonances by
a full coupled channel calculation of all partial
wave components. A solution of such a coupled
channel problem has been achieved already by
some people. "" ArenhOvel, "for example, has
solved the coupled channel problem in momentum
space. Although we solve the equations in coordi-
nate space our treatment is very similar to that
of Arenh5vel.

In Sec. II we present our model for the descrip-
tion of the deuteron and discuss different possi-
bilities for the partial waves arising from the
sensitivity of the treatment from the choices of
baryon-baryon interactions. In Sec. III we cal-
culate the electromagnetic form factors of the
deuteron as determined in Sec. II. As far as the
meson-exchange currents are concerned we in-
clude m, p, &, and pmy exchange. As the explicit
form of these currents are given in Ref. 5 we do



not discuss them again, In Sec. IV, however, w' e
discuss these processes together with the reso-
nance contributions to the deuteron form factors.

transition interaction (Hx~) which can be written
as follows:

II. DEUTERON %AVE FUNCTIONS VfITH RESONANCE
ADMIXTURES

In the determination of the deuteron wave func-
tion we start with the "conventional'* nonrelativ-
istic Schrodinger equation including resonance 4
(1236 MeV) degrees of freedom:

The total Hamiltonian H consists of a pure nucleon
part (H„), a pure resonance part (H~), and a

where the constant Q ls given by

6 =2(m~ -m~),
and p is the relative momentum of two particles.
The Schrodinger equation (1) can be written in a
matrix fox'm as

(6)

where 4~ xs the nucleonic component

—„u,(» ) I hr'(LS) Z = I., T = 0)

—
~x» (&) I &'( L 3') & = 1, & = o& (B)

From selection rules we have four resonance (Ab, )
channels» namely» S1» D j+» D j+» 3Jld G j+.

The normalization of the wave function is yut to
unity as

Q01 + 821 + Q(~)1

-P 31BV.Be ~'/x+9924. 3e "/x. (10)

The tensor interaction will be left unchanged.
In the pure QN case P is equal to one. In the

presence of Ah components P is adjusted to give
the correct binding energy of the deuteron. This
choice has been taken earlier by other people.
The modification of the intermediate-range attrac-
tion as in Eg. (10) may be justified by the fact
that the AA components give rise to a similar in-
te x'ac tlon

As for the nucleon-nucleon (3TH) potential [Fig.
l(a)] we chose a modified acid-soft-core potential
by intx'oducing a parameter p in the central part of
the triplet channel:

V, = —10.463e "/x+105.468e */x

FIG. l. Illustration of the baryon-baryon potentials taken into account. Diagram (a) corresponds to the modified
acid-soft-core nucleon-nucleon potential [see Eq. (10)). Diagrams (b) and (c) illustrate the NN A4 transition
potential, v&ereas diagram (d) corresponds to the ~ interaction.
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As for the b,A [Fig. 1(d)] and NN —Ab, [Figs.
1(b) and 1(c)] transition potentials we derived
one-boson-exchange potentials due to w, p, and
(d exchange. For the meson-nucleon vertices we
used the monopole form factors. The (d-exchange
part in the interaction /~~ zz gave rise to an
unphysically high probability in the 'S,* and 'D,*
channels (3-8%). Instead of a further modifica-
tion of the short-range part of the interaction we
simply dropped the &-exchange part. The poten-
tials used in the numerical calculations have the
following forms:

Vs&e2= Vele2~(m r) +2Vele2('(m r),
Ve&s2 = Ve&e2~(m r) —Vele2('(m r)T T 7r T p

B,B,—= N~ or 44,

(13)

(14)

'Uz)(~zz (rzz'r)(z) (o)(a o~z Vc +S» Vr ),«(1)
~
«(2) «(1) ~ «(2) NQ N5 g5

(11)

zz=(vz, z ~ ra&) (Ve +oz,a gas Vc +S» Vr )«(1) . (2) ~~ (1) . (2) hb,

(12)
with

2
A A -ma2 2

V ' 2"(m r)=-', m ~' ' Y(m r) — I'(Ar) 1+ 2 A
4~ (15)

2 ( 3 2 2

Vsle2 + (m r) = —m Y (m r) — Y2(Ar) + ~ Ar Y,(Ar)fB1B2 fX A A -m f)f

T cx 3 cx 4 2 m nl 2 yn (18)

2
A A'-m '

Ve (mar) = —
4 mz Yo(m&r) — Yo(Ar) 1+

m
p 2A

(17)

Here we defined

Yo(x) =e "/x, Y,(x) =(1+1/x) e '/x,

Y,(x) =(1+3/x+3/x')e "/x,
(18)

and z denotes m or p. A is the parameter associ-
ated with the monopole meson-nucleon form fac-
tor.

The operators g~~ and v„z, are the transition
spin and isospin operators defined by

&lllc„, ll l&=&! Il~„,ll!&=2.

The operators o~~ and 7~~ are defined by

The tensor operators S»' ' are defined in the
usual way as

(19)

(20)

Numerical calculation

For solving the six coupled equations [Eq. (8)]
we adopted the Numerov algorithm. " Details are

TABLE I. Meson-baryon coupling constants used
throughout in this work.

2 2

f~~r/4. f~~p/4r
2 2

faeff/4r fa~/4ff
2

gb,~/4s'

0.36 9.24 0.0032 0.13i 0.89

(o(1) .r) ( (a) . r) ~(~) .o(~)
12 r2 B1B2' B1B2 B1B2 B1B2 '

(21)

The meson-baryon coupling constants used are
summarized in Table I.

given in Appendix A. We checked our program
by several solvable models for three coupled
channels. The solvable models are explicitly
given in Appendix B.

In Table II we give the probabilities of the deu-
teron components calculated by different poten-
tials. We take two different choices for the mono-
pole form factor, namely, A =1.1 GeV and
A'= 1.91 GeV . For eachA, we calculated the wave
functions with four different choices of potentials.
Cases 1 and 5 show the results calculated with a
one-pion exchange in the NN —~~ transition po-
tential and no interaction in the ~A channel.
Cases 2 and 6 are calculated by a transition in-
teraction mediated by m and p exchange, and
again no interaction in the b, A channel. Cases 3
and 7 include in the transition potential and in the
AA interaction the exchange of one & only. Cases
4 and 8 include n and p exchange in the transition
potential as well as in the LL interaction. The
total probability of ~~ admixtures strongly de-
pends on the meson-nucleon form factor. For

= 1.1 GeV the total probability is around 0.69-
0.76%; for A'=1.91 GeV the total probability is
roughly twice as large (1.05-1.53 Pp). In both
cases of meson-nucleon form factors the 'D,*
component is by far the most important compo-
nent. This is due to the fact that in this channel
the tensor force is most effective. The partial
wave components are not very sensitive to the
choice of the potentials, except for the 'S,* chan-
nel. The only earlier calculations of admixtures
obtained by solutions of coupled equations are the
recent ones of ArenhOvel. " The overall feature
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TABLE II. Deuteron ~ probabilities for different meson-exchange processes and different
meson-nucleon form factors.

2 2
&~~ (1)

3@+ 3D+ YD+ YQ Q

7(', P
jr

No
No

1.1
1.1
1.1
1.1

0.8316
0.8470
0.8432
0.8439

0,025
0.062
0.077
0.126

0.020
0.024
0.028
0.036

0.663
0.568
0.531
0.540

0.056
0.050
0.056
0.054

0.764 6.03
0.704 6.09
0.693 6.12
0.756 6.15

7l', p

No
No

7l', p

f.91
f.91
1.91
1.91

0.7216
0.7843
0.7450
0.7500

0.038
0.162
0.249
0.379

0.033
0.043
0.073
0.079

1.202
0.782
0.871
0.985

0.088
0.065
0.093
0.084

1.36
1.05
f.29
1.53

5.92
6.09
6.11
6.14

of the probabilities looks similar, but in some
cases there are some considerable differences.
One example to compare is our case 5 with his
case 8. Except for the '+(nn) channel the proba-
bilities of the other channels are generally larger
than ours (total probability 1.87% compared with
our result 1.36 /&). In contrast to Ref. 11 we do
not observe a general decrease of the (66) proba-
bility with the inclusion of the AA interaction.

All the results shown are those without the in-
clusion of the ~ exchange. The reason for this is
that including the w exchange we obtained unphys-
ically high Ah probabilities. This is caused by
the sensitivity of the 'Sf (aa) channel to the short
range behavior of the potentials.

Some wave functions are shown in Figs. 2-6.
The NN wave functions are shown in Fig. 2 for
comparison. The figures show clearly the sensi-

„NN(~)

NN wave functions

0.48

0.40

0.24-

0.16

0.08

r(fm)

FIG. 2. Nucleonic components of the deuteron wave functions corresponding to case (4) of Table II.

10
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Uhh( )

0.08

0.06

0.04

~A wave functions (4)

(8 = 0.8439)

VN~ (x, p)

V (K,p)

A = 1.1 GeV
2

0.02

r(fm)

-0.02

-0.04

-0.06

FIG. 3. Hesonance partial wave components of the deuteron for case (4) of Table II.

tivity of the S,*(66) component on the choice of
the potentials.

dg da'

dQ d& Moft

III. ELECTROMAGNETIC FORM FACTOR OF THE
DEUTERON

In the calculation of the deuteron form factor
we follow Gari and Hyuga ' in the treatment of
meson-exchange currents, i.e. , we include the
exchange of n, p, w, and pay. For details of the
treatment of the exchange currents we refer to
Refs. 4 and 5. The total contributions to be in-
cluded in this paper are diagrammatically shown
in Figs. 7(a)-7(c). There are certainly additional
meson-exchange currents associated with the AA

components of the wave function as illustrated in
Figs. 8(a)-8(c). These contributions seem to be
not important as the leading piece, the pion pair
current, is strongly suppressed in the present
case.

The form factors are defined by the following
cross section of electron-deuteron scattering:

with

z F~' q + 1+2tan'-,'~, F„'q'
"N

(22)

F,'(q') =Fc'(q') + ,'.q'Fo'(q'), — (22)

where q is the electron momentum transfer and

F~, Fz, and F„are the charge, quadrupole, and
magnetic form factors. According to our descrip-
tion the form factors consist of three contribu-
tions:

Fx(q') =F~~(q') +Fx(q') +Fz" (q') . (24)

The first term corresponds to diagram (a) in Fig.
7, the second and third terms to diagra. ms (b) and

(c), respectively.
The form factors Fz(q') and Fz~"c(q') are ex-

plicitly given in Ref. 5. The only difference
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0. 16 wave f Unct j gqq (8)

0. 12-

0.09

(& ~ P )

(X,P)

0.04-

r(fm)

-0.04-

-0.08

FIG. 4. Resonance parhal wave components of the deuteron for case (8) of Table II.

0. 10

aa wave functions (1)

VNN (g = 0.8316)

0. 16

hh wave functions (5)

VNN (s = 0. 722 ~

,„( )

0.08
0. 12

1 GeV

0. 06 0.08

0.04

0.02

3
1-0.04

-0.08

FIG. 5. Resonance partial wave components of the
deuteron for case (1) of Table II.

FIG. 6. Resonance partial wave components of the
deuteron for case (5) of Table II.
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NN NN

/IL

IIL

IL

sp
P 1E

NN NN

(a) (b)

FIG. 7, Electromagnetic interaction processes taken into account in the calculation of the deuteron form factors.
Diagrams (a) and (b) illustrate the impulse approximation contributions from the nucleonic and resonance parts of the
wave function. Diagram (c) corresponds to the meson-exchange currents included in the present calculations.

arises from the definition of the deuteron wave
function I E]Is. (7-9)] as the interpretation of the
nucleonic component of the wave function is dif-

ferentt.

Introducing the simplifying notation for the wave
function Eq. (8):

u] u 0$$ u2 u2]y u] u0$$

u* =u*3 23' u*=u*4 43)

u,*=u2„
(2 5)

the AA contribution of the deuteron to the form
factors F~, F~, and F„can be summarized as
follows:

q', (q*) =&'(q*) ) d"j.(l qq)[(;)' ~ (:)' (:)'~ (;)*],
0

Fo(q') =
2 G~(q') Jt dr j,(—,'qr) [2W2u,*up —(u,*)'-—', (u3q')'+(12&3/7)u3q'u, *——', (u*)'],

0

q „']q*) = " &,*(q') ) qq ]j.]l qq) j.]l qq)l]l ( :)* ', ( .')*~ l ( ;)*]-—
0

~ &']q*) ) qqj. ]-:qq))].;)'--:].:)"q]:)*- ];)')
0

~ &*(q'-) ] qj (lqq))q)jjT ] l ~ ]( l)'-l( l)*(qw/q) l; ~',]];)*]
0

(28)

(27)

(28)

Here G~(q') and Gu~(q') are isoscalar electric and
magnetic form factors. They are taken from
Iachello, Jackson, and Landd (IJL) with a differ-
ent normalization: F ~~ (0) = 1.

In the derivation of the electromagnetic inter-
action of the resonance we simply used the static
quark model and the scaling assumption.

EX

NN

(a) (b)

FIG. 8. Illustration of other types of meson-exchange currents also contributing to the deuteron form factors. They
are neglected in the present work as their leading terms are suppressed.
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IV. NUMERICAL RESULTS

In Figs. 9-11%'e show the individual contributions
of the exchange currents (w, p, ro, pry) and the sn,
contribution. %e showed here the AA contribution
together with the individual exchange currents as
the AA contribution may be regarded as a two-
pion-exchange process. For momentum transfer
q'&20 fm ' the resonance contribution is compar-
able to the small contribution of the p and u ex-
change. As for the magnetic form factor the reso-
nance contribution turns out to be relatively laxge.

The exchange current contribution shows essen-
tiaQy the same effect as in our earlier calculations
where resonance degrees of freedom are not ex-
plicitly taken into account. This is due to the
small changes in the nucleonic part of the deu-
teron wave function caused by the presence of
resonance freedoms (Fig. 2).

In Figs. 12-16 we show the total charge Ec(q'),
quadrupole Eo(q'), magnetic E„(q') form factors
as well as Es'(q') and B(q'). In all figures we
show the total impulse results for the form fac-
tors [Imp(NN+a, a)] and the contribution of the
nucleonic components only, to the impulse form
factors [Imp(NN)]. In addition, we show the total
impulse plus exchange current form factors (NN
+an, + EXC). In all form factors the influence of
the resonance degrees of freedom is practically

negligible. The same is true for all possible
choices of potentials (Table II).

The magnetic moment E~(0) is of special in-
terest. The individual contributions of the con-
sidered processes are summarized in Table III.
%e compare two cases of deuteron wave functions,
namely, case (4) and case (8) of Table II. For
comparison we show the results for the Beid-soft-
core wave function without resonance components.

The impulse magnetic moment f' or a deuteron
wave function with hA components is given as
follows:

NX component:

E"„(0)=G„'(0) +[-,' ——,' G„'(0)]E„ -C„'(0)Z,'.~;

copopo'pie'fz t:

E„''(0) =G„'(0)p,, + — " --,'G„'(0) P',,'3 p1+

+ —— "+2G'(0) P~~
2 Nl I

3 Gs (0)4 m~

The (aa) impulse contribution Eq. (30) is roughly

comparable to the contribution of the exchange

EXC, s

(s )

~ ~ ~
~ ~ ~ ~ 4ggggggy

16
I

24 48 64
I

?2 96

q~(fm )

PIG. 9. Comparison of the exchange current (P~&xc) and resonance P'&) contributions to the charge form factor.



M. GARI, H. HYUGA, AND B. SOMMER

10

EXC, z

(q )

10

10 "

10 '

10'-

10 '

10-8

I

16 32

I

72 80

q (fm )

FIG. 10. Comparison of the exchange current P' c) and resonance (F+) contributions to the quadrupole form factor.

EXC
og10 (Fg )

-1.6

-2. 4

-4 ' 0

-4. 8

-5.6

-6. 4

-7. 2

32 40 48 64 72 80 88 96

( fm-2)

FIG. &&. Comparison of the exchange current P'z ) and resonance P'z) contributions to the magnetic form factor.
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10

& (q)

I

24 64

FIG. 12. Total charge form factor E~(XX+~+EXC). The total impulse result IlmpPW+~)] as well as the im-
pulse form factor [E~(NÃ)] of the nucleonic components, only, are also given.

10

10

10

1O
4

Imp(NN)

Imp(NN+Ah)

24 48
l

56 80 88

FIG. 13. Total quadrupole form factor E~(NN+~+EXC). The total impulse result tImp{NN+~)] as well as the
impulse form factor E+(ÃÃ) of the nucleonic components, only, are also given,
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10

1O-'

10

10

10

NN)

1O
'

lO
24 40 80

I

88
I

96

FIG. 14. Total magnetic form factor Ez(NN+ ~+EXC). The total impulse result [Imp(NN+ ~)] as well as the im-
pulse form factor I"@(NN) of the nucleonic components, only, are also given.

10
~ (q)

10

10

1O
'

1O-'
INN+ca)

lo-lo

10
80

q {fm )

FIG. 15. Total form factor Eg (q ) for NN+~+EXC. The individual. contributions of the total impulse approxima-
tion IImpPfÃ+~)] and the nucleonic impulse approximation rlmp(NÃ)] are given.
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1o 2

10

1O'-

1O'-

10 +EXC

10 8

1O
'

24 32 40 48 56 64 72 80 88 96

q (fm )

FIG. 16. Deuteron backward scattering form factor B(q ) = (q /3m g )E& with resonance and exchange current contri-
butions.

currents. The main part of the (An) impulse con-
tribution arises from the 'D~ partial wave and
roughly explains the difference between case (4)
and (8). All the results are very close to the ex-
perimental value. The relative insensitivity to
the (b.a) contributions arises mainly from the
"renormalization effect, " namely, the third term
of Eq. (29).

V. CONCLUSION

In the present paper we investigated the influ-
ence of baryonic degrees of freedom on the elec-
tromagnetic form factor. The interest in this
problem for us was twofold. Firstly, since the

Deuteron
description

Magnetic moment Ez(0) (p,N)

Imp(NN) Imp(b, b, ) EXC Total

Case (4) Table II
~a(%) = 0.756

Case (8) Table II
aZ(%) = i.53

0.838

0.832

0.843

0.008

0.0i7

0.0i i 0.857

0.0i i 0.860

0.0i i 0.854

TABLE III. The magnetic moment of the deuteron E&(0)
for different descriptions of the deuteron state. The ex-
perimental value to be compared with is Fz~(0) = 0.8574@&.

neutron form factors are extracted from the deu-
teron measurements it is of greatest interest to
determine how strongly the baryonic degrees of
freedom will invalidate this. A large resonance
contribution to the deuteron is likely to spoil the
idea of obtaining a reliable neutron form factor
from deuteron measurements. Because of the
presence of meson-exchange currents such a task
is already very difficult. On the other hand, large
effects in the deuteron form factor from baryonic
resonances could provide an excellent study of
such contributions in nuclei. In order to answer
some of the questions we solved the full coupled
channel problem for the deuteron. As the baryon-
baryon potentials are not very well defined at
short relative distances (high meson exchange) we
discussed the solutions of the equations for many
choices of baryon-baryon interactions. The solu-
tion of the coupled channel problem has been
checked with several solvable models (Appendix
B) which makes us confident of the numerical ac-
curacy of our calculation.

Summarizing the effects of different potentials
we note that a large influence on the resonance
wave function arises from the choice of the meson-
nucleon vertices. Altogether the percentage of
resonance (aa) contributions to the deuteron is
in the range of 0.7-1.5% depending on the choice
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of meson-nucleon vertices. Except for the
'S,*(n,n) partial wave the contributions are rather
stable concerning the changes in the baryonic in-
tex actions.

The influence of the baryonic degrees of free-
dom on the electromagnetic form factors of the
deuteron have been discussed with the variety of
deuteron wave functions given in Table II. The
calculation of the electromagnetic form factor
has been based on the earlier calculations of Refs.
4 and 5, where the meson-exchange cux'rents have
been treated in detail.

In the final analysis the effect of the A~ reso-
nances in the deuteron turned out to be rather
small for all choices of potentials. For the fur-
ther study of resonance contributions of nuclei
by electron-deuteron scattering this result is not
very encouraging [we should note in this context
that this does not imply a small resonance effect
(T = 0 channel) on the binding energy of nuclei].
However, for the determination of the neutron
foxm factor these findings seem to be of greatest
importance.

APPENDIX A NUMERICAL SOLUTION OF THE SYSTEM
OF COUPLED EQUATIONS

The numex ical integration of the system of six
coupled diffex'ential equations has been performed
in three steps:
(i) Outward integration u'"' from the core radius
x, of the potentials to the matching point r = 1.4
fm. The core radius has been chosen as r, = 0.014
fm (which is the Heid-soft-core choice) for all
baryon-baryon potentials. This xntegration leads

to six linear independent regular solutions

(Al)

(
[M(I)l" [.(6)]-

[ g{I)]in [ g(5)]in

For the integration px'ocedux'e we used the
Numerov algorithm. " At the matching point
F' = 1.4 fm linear superpositions of the functions
u'" and u'"(, ~espectively (which are continuous
at this point), can only be chosen if we are at the
exact energy of the system. In general one ob-
tains a discontinuity in the first derivative of one
component, say the 'S,(NN) wave function. This
fact can be used to derive an energy correction
formula for the eigenvalue problem. " In the gen-
eral case of nonsymmetric potential matrices
U(g [E((l. (6)]) we split U mto a symmetric and
antisymmetric part as

U,', =-,'(U, , +U„),
(A3)

and obtain the following correction formula

u""((k) and [u*(k)]'"' are two and four component
vectors, respectively, as defined in E(I. (25).
(ii) Inward integration from r = 10 to 5 fm for the
nucleonic coxnponents only.
(iii) The resonance components are switched on at
t' = 5 fm and the full system is integrated up to the
matching point P =1.4 fm. This again gives six
independent solutions

(A4)

here we have put e =Em„and u(e) is the wave func-
tion for the energy e. The derivation of Eq. (I4)
assumes that q' =g+g is the correct eigenvalue,
so that

APPENDIX 8

In order to check the numerical accuracy of our
coupled channel calculations we performed solv-
able model calculations. %e assume three chan-
nels, namely, an 8 wave for the nucleon channel
[u(r)] and 8-wave [M+(r)] and D wave [gy *(r )] chan-
nels for the resonance components. %e define
first the opexators

(B2)

and V;,- denote the potentials. Then our coupled
channel equation can be written as

Rl@V12Q +KEgV13gg + = T1Q y

m&V»Q+mz, V»m* = T2Q*,

~gV13Q +~gVpsQ* = TSN*.
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We assume the wave functions u, g*, and so* to
be of the following form:

3 6 6Gr)=1+ +, , +
(n+m„)r (n+m, )'r' (n+m„)'r'

u =e "'f(r),
I'=B,e ""-Y(r)f (r),
u *=C,e-"' Y{r)Z(r)f '(r),

where

Y(r) =e &', f(r) =1 —Y(r)

with the definitions

c =(n+m„)'-P', d =m„(2n+Sm, ),
g=Sm„(n+m ), h =4m, 2.

(812)

(81S}

3 3Er) =1+ +
(n+m„)r (n+m„) r

(as)
So far V,(r) and V,(r) are arbitrary functions of

In order to obtain a somewhat realistic case
we impose the following conditions on the poten-
tials Vq~

We further assume V» and V» in Egs. (Bl) and

(BS) to be zero, then the potentials V,&
which

solve together with Eq. (84) the coupled equa-
tions (BS) are given as follows:

(i) V„.(r) = e™"
(i~) V, (r) =O(r-').

(814)

m $2n +m, ) Y(r)
m „ f(r)

This leads to the following restrictions for V2 and

V3

Y'(r)
, , [B,'V, (r) +C,'V,(r)],

m~ tr)

Y(r)
2m~B, f(r)

(i) V,(r), V.(r)„„=„e

(ii) V,(r) —W (r) =O(r), (815)

xfB,'[V,(r) + W,(r)]+C,'[V,(r) —W,(r)]},
(ac)

Y(r)
2m, C,Z(r)f'(r)

V.(r) „=,o(r) .

In the actual calculations we took two simple
choices which fulfill the conditions Eqs. (814)
and (815), namely,

x(BO [V2(r) —W2(r)]+Co [V~(r)+W3(r)]],

(as)

2 m, B,C,Z{r)f'(r)

case 1:
V,(r) =W,(r) and V,(r) =W,(r);

case 2:

V,(r) =W, (r) and V,(r)=G.

(816)

(81 I)

where

x(B,'[V,(r) —W,(r)]+C, [V,(r) —W,(r)]) .

(89)

W.(r) =.f(r) -d Y( ), (810)

W, ( ) =&(r)f'(r)(~I" (r)f'(r) gG{r)f(r) Y(r)-

+ hE(r) [4Y (r) —Y(r)]], (811)

The only freedom remaining is then associated
with the constants BOCO in Eq. (84) and the en-
ergy of the system B in Eq. (82).

Our numerical calculations have been checked
for both cases Egs. (816) and (817) with various
choices for Bo and Co and binding energy E of the
system. The accuracy for the binding energy in

the numerical calculation actually reached was
better than G. 1%.
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