Isospin-mixed ¹⁸F states seen via ¹⁴N(α, α_1)¹⁴N(2.31 MeV)[†]

L. C. Chen^{*}

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (Received 23 February 1976)

Extensive differential cross section measurements are reported for the isospin-forbidden reaction ${}^{14}N(\alpha, \alpha_1){}^{14}N$ over the energy range $7.6 < E_{\alpha} < 16.9$ MeV at 11 to 16 angles. A partial wave analysis with a new method of removing ambiguities and parametrizing S matrix elements yields the level parameters of 151 isospin-mixed, natural-parity states in ${}^{18}F$. These level parameters satisfactorily reproduce all the data. Many of these ${}^{18}F$ states correspond to those seen via ${}^{16}O(d, \alpha_1){}^{14}N$. A number of levels have been identified as the analogs of T = 1 states in ${}^{18}O$. Correlations in $S_I(E_x)$ suggest intermediate structure and support Friedman's bridge state hypothesis.

NUCLEAR REACTIONS ¹⁴N(α, α_1), E = 7.6-16.9 MeV; measured $\sigma(E, \theta)$: $\theta = 20-165^{\circ}$, $\Delta E = 20-30$ keV. Deduced ¹⁸F level parameters, S matrix analysis, new method excluding ambiguous solutions. Isospin mixing, deduced IAS.

I. INTRODUCTION

The primary purpose of the present experiment was to use the isospin-forbidden reaction $^{14}N(\alpha,\alpha_1)^{14}N$ (2.31 MeV) as a tool to obtain spectroscopic information in a very complex region of the compound nucleus ^{18}F and to compare the results with the $^{16}O(d,\alpha_1)^{14}N$ study of Jolivette.¹

Two common properties make these reactions especially powerful and selective for the spectroscopic study of ¹⁸F. First, they both violate isospin conservation because each incoming channel has a total isospin 0 while each outgoing channel has a total isospin 1. Therefore, these reactions can only go through those ¹⁸F states which are mixtures of T=0 and T=1. Second, both reactions involve three 0⁺ states and one 1⁺ state. With this special combination of spins and parities, only the natural parity states in ¹⁸F can be involved, but 0⁺ states of 1⁸F are strictly forbidden.²,³ Also the partial wave expansion of the differential cross section for this special combination of spins and parities.³

At the same excitation energy in ¹⁸F more partial waves contribute to the ¹⁴N(α,α_1)¹⁴N reaction than to the ¹⁶O(d,α_1)¹⁴N reaction because the former has a lower centrifugal barrier in the incident channel. Therefore, ¹⁴N(α,α_1)¹⁴N is a better tool to study the high spin states of ¹⁸F. We hoped to test whether the same ¹⁸F states were important in these two reactions and to obtain better information about those high spin states which were barely detectable or even missing in the ¹⁶O+d channel. In addition, we sought to identify

in 18 F the T=1 states which are analogs of 18 O states.

Lane and Thomas⁴ suggested that at higher excitation energies isospin conservation should first return for the low partial waves. This prediction was not verified in the ¹⁶O+d channel,¹ and we wondered if the result would be the same in ¹⁴N(α, α_1)¹⁴N.

Jolivette¹ found correlations between levels of the same J^{π} such that the complex amplitudes of nearby levels often summed approximately to zero. This result Friedman⁵ explained in terms of intermediate structure and bridge states. We hoped that a restudy of ${}^{14}\mathrm{N}(\alpha,\alpha_1){}^{14}\mathrm{N}$ would provide more tests of this explanation.

To reach these goals, we needed precise and extensive ¹⁴N(α, α_1)¹⁴N data and very reliable analysis procedures. Most of the earlier measurements on ¹⁴N(α, α_1)¹⁴N by Tollefsrud and Jolivette⁶ lacked simultaneous data at a sufficient number of angles to fix reliably the high partial waves. Also, the energy steps of 30 keV through the entire energy range were marginal for some of the narrower resonances.

In the present work the much thinner detectors now available enabled us to extend Tollefsrud's and Jolivette's data to lower energies (10.2 MeV > E_{α} > 7.67 MeV). This extension was important to overlap the $^{16}\text{O}(d,\alpha_1)^{14}\text{N}$ results were most reliable. Then we remeasured the data for the energy region 10.2 < E_{α} < 16.81 MeV in smaller steps and at more angles. We also developed a new procedure 7 of removing ambiguities and parametrizing S-matrix elements in the partial wave analysis. This new procedure was important for the successful analysis of the data.

II. EXPERIMENTAL PROCEDURE

Alpha particles from our EN tandem Van de Graaff were used to bombard a gaseous nitrogen target in the differentially pumped scattering chamber described in Ref. 6. The target gas of research grade nitrogen (99.995% pure) entered the scattering chamber after first passing through a cold trap of dry ice and acetone mixture. No contamination was ever detected. The target gas pressure was about 10 Torr throughout the experiment. For a given pressure, the target thickness is still a function of detector slit geometry and laboratory angle. Our values varied from 8 to 15 keV at $\theta_{1ab} = 20^{\circ}$, 3 to 6 keV at $\theta_{1ab} = 95^{\circ}$, and 11 to 18 keV at $\theta_{1ab} = 165^{\circ}$. The He⁻ ion source for injection into the tandem accelerator was similar to that described by Tollefsrud⁸. The He⁻ output was $1 - 4 \mu$ A, but only 100 - 400 nA doubly charged α particles after collimation to $\pm 0.1^{\circ}$ finally traversed the gas scattering chamber. The scattered alphas, after collimation by slits, were re-

2069

corded by solid state detectors whose thickness (from 11 µm to 300 µm) optimized the signal from the alpha group of interest. Signals, after amplification, passed through analog to digital converters (ADCs) to an on-line buffered scope display and finally were recorded on magnetic tape for offline data reduction. In general the detectors used were thin enough to let proton and deuteron peaks fall well below α_1 . Since the α_1 group was well separated from other groups, the background corrections were rather simple. We found it sufficient to subtract the backgrounds by visual adjustment of the background lines using the cathode ray tube (CRT) and a light pen. This was done offline on our DDP-124 computer.

Apart from statistical uncertainties the overall systematic errors add to <3%. In addition there are -2% random errors. These uncertainties usually dominate when the cross sections are high. Statistical uncertainties when larger than the datum point size are shown on the cross section figures. See Ref. 9 for details of the error analysis.

Our measurements consist of excitation functions taken simultaneously at 11 to 16 angles and in E_α steps of 30 keV for 7.67 < E_α < 8.46 MeV and 9.13 < E_α < 10.33 MeV; 20 keV for 8.46 < E_α < 9.13 MeV and E_α >10.33 MeV. The lower energy limit resulted from our inability to separate the low energy inelastic α particles from protons and deuterons at backward angles. The measurements terminated at high energies because so many partial waves were important that analysis became difficult.

III. RESULTS

Figures 1 through 6 show the excitation functions measured in the reaction $^{14}N(\alpha,\alpha_1)^{14}N$. In all figures, the lower energy scale is the laboratory alpha beam energy and the upper energy scale is the ^{16}F excitation energy, both corrected for energy loss to the center of the target chamber. Data taken at fixed lab angles give energy dependent center of mass angles as indicated in the figures. The error bars correspond to statistical errors and are shown only when they exceed the datum point size. The solid curves are the differential cross sections calculated from our ^{16}F level parameters as discussed below.

At energies and angles where the present data overlap that of Tollefsrud and Jolivette⁶ the agreement is generally within the combined uncertainties of the two experiments.

IV. ANALYSIS

In order to obtain complete and reliable information about the isospin-mixed ${}^{18}\mathrm{F}$ states, we put great effort on the analysis of the ${}^{18}\mathrm{N}(\alpha,\alpha_1){}^{14}\mathrm{N}$ data. Our goal was to find a set of level parameters in ${}^{18}\mathrm{F}$ which can fully describe the data, that is, which can satisfactorily reproduce all the cross section measurements. To achieve this goal, we first expanded the angular distributions in partial waves and obtained the complete set of ambiguous solutions for the S-matrix elements. Next we removed the ambiguities by applying some unique properties among these solutions. The selected "physical" solution was then parametrized into coherent sums of Breit-Wigner resonances. In doing this, both the magnitudes and phases of the partial waves were considered. This procedure enabled the level parameters to reproduce

FIG. 1. ¹⁴N(α, α_1)¹⁴N differential cross sections. Both the E_{α} scale and the E_{χ}(¹⁸F) scale have been corrected for energy loss to the center of the target chamber. The data were taken at fixed laboratory angles and the center of mass angles for the lowest and highest energy points on each plot are indicated. The error bars represent the uncertainties from counting statistics and background subtraction, and are shown whenever they are larger than the point size. The solid curves are the differential cross sections calculated from our ¹⁸F level parameters in Table I.

satisfactorily the data. The detailed analysis procedure is reported in the author's thesis⁹ and will be published separately. In the following, we will briefly describe each step and present the result.

Jolivette and Richards³ showed that the differential cross section of any reaction with three 0^{+} states and one 1^{+} state can be expanded into partial waves according to the rather simple formula:

$$\frac{d\sigma}{d\Omega} = \frac{\lambda^2}{12} \left(\sum_{\ell=1}^{L} \frac{2\ell+1}{\sqrt{\ell(\ell+1)}} S_{\ell} \frac{dP_{\ell}(\cos\theta)}{d\theta} \right)^2, \quad (1)$$

where S_{ℓ} is the ℓ^{th} partial wave of the complex S-matrix element, $P_{\ell}(\cos\theta)$ is the ordinary Legendre polynomial of order ℓ , and L is the maximum ℓ value necessary to give satisfactory angular distribution fits.

At each energy, a nonlinear χ^2 fit with Eq. (1)

FIG. 2. The same as Fig. 1 but for different angles.

was made to the angular distribution data. Figures 7 through 9 show samples of these fits and typical confidence levels (C.L.) of the fits (0.1 < C.L. < 0.9 is acceptable), Because of the squaring in Eq. (1), there are 2^{L} sets of different S-matrix elements that give identical angular distribution fits. Among these solutions, 2^{L-2} sets are different in magnitude.¹⁰ Gersten's method¹¹ was used in obtaining all ambiguous solutions. In this method, once a set of S_{ℓ} is obtained from the best fit of the angular distribution solutions of S_{ℓ} can be generated by first calculating the complex zeros of the scattering amplitude, then complex conjugating different sets of them.

The most difficult part in the analysis was to remove the ambiguities. Jolivette^{1,10} did this by first sorting the degenerate solutions into consistent energy-dependent sets and then selecting the simplest solution as the "physical" solution. However, for our ¹⁴N(α, α_1)¹⁴N analysis we found some problems and difficulties particularly in staying with the same solution as the energy varied. To overcome the difficulties, I developed a new and simpler method^{7,9} of selecting the physical solution based on the fact that $|S_L|$ and $|S_L|\cos(\phi_{L-1}-\phi_L)$ are unique³ for all ambig-

uous solutions, where $S_{\ell} = |S_{\ell}| e^{i\phi_{\ell}}$ for $\ell=1$ to L. Like Jolivette¹⁰ our basic assumption is that the physical solution is the one requiring the fewest ¹⁰F states to account for the cross section data as a function of energy. Consider first the partial wave of highest ℓ since the extracted $|S_{T}|$ is

FIG. 3. The same as Fig. 1 but for different energies and angles.

unique.³ If one parametrizes the $|S_I|$ over an extended energy range with the smallest possible coherent sum of Breit-Wigner resonances,

$$S_{\ell} = \sum_{\lambda} \frac{a_{\ell\lambda} + ib_{\ell\lambda}}{(E - E_{\ell\lambda}) + i(\Gamma_{\ell\lambda})/2}$$
(2)

then the resulting level parameters for S_L also suffice to fix the relative phase ϕ_L as a function of energy. But since the extracted $|S_{L-1}|\cos(\phi_{L-1}-\phi_L)$ is also unique, ³ one can next use Eq. (2) for fitting this second unique function with the fewest levels. Finally one varies simultaneously the level parameters for both S_L and S_{L-1} until one obtains the minimum total chi squares for the two unique quantities. We then have reliable level parameters from which we can calculate $|S_{L-1}|$ as a function of energy. These values of $|S_{L-1}|$ should at each energy correspond to one of the earlier ambiguous set of $|S_{L-1}|$. If several of the ambiguous $|S_{L-1}|$ lie close to the calculated value, usually an examination of $|S_{L-2}|$, $|S_{L-3}|$ etc. will tell us which solution has the simplest structure. If this examination is unsuccessful, then the same technique applied to $S_{L-2}|\cos(\phi_{L-2}-\phi_L)$ becomes unique.

The new method selected an unambiguous solution without much difficulty. Figures 10 through 12 show the magnitudes of the resultant S-matrix elements for the entire energy region. The uncertainties shown for each partial wave are average values obtained from the angular distribution fits.

FIG. 4. The same as Fig. 1 but for different energies and angles.

The lower partial waves have larger uncertainties because they are less sensitive to the angular distributions.

Tollefsrud and Jolivette⁶ (TJ) also extracted the $|S_{\ell}|$'s for 10.3 < E_{α} < 12.7 (see Fig. 14 of Ref. 6) but did not fit the $|S_{\ell}|$'s to Breit Wigner resonances. Our $|S_{\ell}|$'s are in fair agreement for $\ell \ge 4$ but show increasingly less correspondence for $\ell < 4$. This result is not surprising since TJ's analysis antedated procedures for eliminating ambiguous solutions and hence would uniquely fix only $|S_L|$. The strong resonances for $\ell < L$ still appear in TJ's extracted $|S_{\ell}|$ but sometimes shifted in energy perhaps because of their choice of the wrong solution set. The $|S_{\ell}|$ between the resonances show no correspondence to the present solution.

The solid curves shown in Fig. 10-12 result from the parametrization of the selected S-matrix elements in terms of coherent Breit-Wigner resonances, Eq. (2). The corresponding level parameters are in Table I. The procedure, for each partial wave, involved simultaneous fits of both $|S_{\ell}|$ and $|S_{\ell}|\cos(\phi_{\ell}-\phi_{L})$ with the least number of levels necessary to give satisfactory chi squares. Because both the magnitudes and the phases of each partial wave have been included in the fitting, the resulting level parameters not only give the correct $|S_{\ell}|$ but also the correct ϕ_{ℓ} for each ℓ and hence should reproduce all the differential cross sections. Indeed, we found that the level parameters so obtained did reproduce all the differential cross section data satisfactorily as shown by the solid curves in Figs. 1-6. Absolute uncertainties in the level parameters are difficult to estimate. However, the uncertainties are in general higher for states of lower spins, weaker intensities or larger widths.

As a test of the reliability of our analysis, we did apply our parametrization procedure to a synthetic problem where we knew the physical solution. For the unphysical (ambiguous) solutions, we found it extremely difficult to get satisfactory fits to both $|S_{\ell}|$ and $|S_{\ell}|\cos(\phi_{\ell}-\phi_{L})$ for all partial waves even by putting in several more levels. In other words, the unphysical solutions of the S-matrix elements require an unreasonable number of levels to reproduce all the cross section data. Since we did fit our S-matrix elements satisfactorily and the level parameters do reproduce the data reasonably well, we believe that the solution set selected is the correct physical one. In addition, the ${}^{18}F$ states obtained in the present work give many agreements with those obtained by Jolivette via $^{16}O(d,\alpha_1)^{14}N$ especially for the energy region where his results are most reliable (as will be discussed below).

V. DISCUSSION OF RESULTS

Figure 13 shows the isospin-mixed ¹⁸F states obtained from the present work and those reported¹ from ${}^{16}O(d,\alpha_1){}^{14}N$. States of the same spin_m and parity are compared separately. For each J^{π} , the levels from ${}^{16}O(d,\alpha_1)^{14}N$ are plotted on the left and those from ${}^{16}N(\alpha,\alpha_1)^{14}N$ on the right. We represent each level by a triangle whose base and height correspond, respectively, to the width and intensity of the state. The location of the triangle indicates its excitation energy in ¹⁸F. States with large uncertainties appear as dashed triangles. The states that agree in both excitation energies and widths to within the estimated uncertainties we connect with dashed lines. Since the uncertainties are in general higher for states of lower spins, weaker intensities or larger widths. better agreements are expected for stronger or sharper resonances of spins close to L. For the same $E_x(^{18}F)$ the ¹⁶O+d channel has a much higher centrifugal barrier than the ¹⁴N+ α channel; hence the contribution of the high spin states to the $^{16}O(d,\alpha_1)^{14}N$ cross sections is suppressed at the lower excitation energies. In our range of ¹⁸F excitation, Jolivette detected no contribution of 7⁻ states to the ${}^{16}O(d, \alpha_1){}^{14}N$ reaction.¹ So no comparison can be made to our 7⁻ states. When a higher partial wave first becomes detectable, its intensity may be too low to permit resolution of several nearby states. Hence it is not surprising that we see many more and sometimes sharper 6⁺, 5 and 4⁺ states than Jolivette did. Generally speaking the agreements are quite good for 3⁻ states, states, and low lying 2⁺ or 4⁺ states. Even for the 1⁻ states, the comparison is better than one might expect if we consider the high uncertainties associated with $|S_1|$. As for the 6⁺ states, the intensities of $|S_6|$ in ${}^{16}O(d,\alpha_1){}^{14}N$ are so low that the comparison is hardly meaningful. We note as expected that indeed the better comparisons usually come from narrower or stronger states. The especially good agreements in 2⁺ and 3⁻ states below 11.4 MeV are expected for two reasons. First, for both entrance channels, L is small enough that there are relatively few ambiguities in the analy-

FIG. 5. The same as Fig. 1 but for different energies and angles.

sis. Second, only for this energy region, did Jolivette do the complete analysis involving a final fit of cross section data. Therefore his most reliable level parameters are for $E_{\chi}(^{10}F) < 11.4$ MeV. The states with agreement are pointed out by the footnote, a, in Table I.

Our isospin forbidden reaction does not distinguish between a predominantly T=0 state with a small T=1 admixture, i.e., T=0(T=1) and a predominantly T=1 state with some T=0 admixture, T=1(T=0). However, the natural parity ¹⁸O levels excited via ¹⁴C(α, α_0)¹⁴C will have T=1 analog states in ¹⁸F. Therefore our ¹⁸F states with the corresponding J^T and right excitation energy should be predominantly T=1 with some T=0 admixture, i.e., T=1(T=0). Morgan et al.¹² studied ¹⁴C(α, α_0)¹⁴C and identified the spin and parity for 13 of the levels between 9 < E_X(¹⁸O) < 13 MeV. Figure 14 shows a comparison of these states with the isospin-mixed states of ¹⁸F seen in our work. The ¹⁸O states with only tentative spin assignments are represented by dashed lines. For 9 of the 13 states in ¹⁸O, we find a level close to the right energy for the analog state. Note that in several cases there is a clustering of isospin mixed ¹⁸F states in the neighborhood of the expected analog state suggesting that the T=1 analog strength may be spread over several nearby levels. This clustering is most pronounced for the two 5⁻ states and lower two 4⁺ states. We had hoped that the low centrifugal barrier for the present reaction would allow us to see the analog to the lowest 6⁺ state in ¹⁸O reported by Morgan <u>et al</u>. However, our lowest observable 6⁺ state is still several hundred keV above the expected analog state and so is probably T=O(T=1).

Since high spin states should be narrower than low spin states, Lane and Thomas⁴ predicted that with increasing excitation energy isospin conservation should reappear first for low spin states. Jolivette's S-matrix elements¹ did not confirm this prediction. In our case the results are possibly different. For each partial wave Table II shows the $|S_{\ell}|$'s averaged over 1 MeV intervals. For our energy range, $|\overline{S}_1|$ is flat and low. The $|\overline{S}_2|$, $|\overline{S}_3|$, $|\overline{S}_4|$ and $|\overline{S}_5|$ show tendencies to pass through regions of maximum intensities and then decrease. But $|\overline{S}_6|$ and $|\overline{S}_7|$, which only start to contribute to the reaction at much higher energies, are still on the "up" side of the trend. The general behavior for each partial wave is consistent with the Lane and Thomas discussion but may also occur for an isospin allowed reaction. In fact the $|\overline{S}_{0}|$ for approximate equality in Table II of all $|\overline{S}|$ $E_{\alpha} > 13$ MeV and $\ell < 5$ is inconsistent with the reestablishment of isospin conservation in the low

<u>14</u>

FIG. 6. The same as Fig. 1 but for different energies and angles.

partial waves. The broad and strong l⁻, T=l giant dipole resonance around $E_{\rm X}({}^{1\,0}{\rm F})\sim 20$ MeV accounts for $|\overline{\rm S}_1|$ not approaching zero, but the failure of $|\overline{\rm S}_2|$ and $|\overline{\rm S}_3|$ to approach zero is harder to understand.

Jolivette¹ found from his ${}^{16}O(d,\alpha_1){}^{14}N$ data that there was a tendency for the complex amplitudes of neighboring states with the same $J^{\rm T}$ to lie no to lie near a line through the origin and a greater tendency for several levels to add up to approximately zero total amplitude. Friedman⁵ explained these results in terms of intermediate structure and bridge states, and he found that correcting for penetrability accentuates these tendencies. To provide more information on this question, we also examined the complex amplitudes of nearby 18 F states with same J^T. The most striking effect is found for the lowest thirteen 4⁺ states as shown in Fig. 15. With very few exceptions, the states fall close to a line passing through the origin. Also, the complex amplitudes add up to nearly zero (Σ Re = .0496-.0364 = .0132; Σ Im = .0385-.0347 = .0038). No apparent correlations of similar magnitude were seen for the low lying states of other spins. The lack of correlations for the 3- states (for which Jolivette saw strong correlations) may

result from the missing (strong) states which lie below our energy region. Correction for penetrabilities should of course be made and may enhance the correlations.

VI. CONCLUSIONS

The present study of ¹⁴N(α,α_1)¹⁴N provides extensive new data, and the analysis introduced a new method of removing ambiguities in the partial wave analysis for 0⁺ + 1⁺ \leftrightarrow 0⁺ + 0⁺ reaction. More reliable and new information about the structure of ¹⁸F results: particularly the level parameters for 151 isospin-mixed natural parity states in ¹⁸F. These level parameters reproduce the cross section measurements satisfactorily and include many of the ¹⁸F states which Jolivette¹ obtained previously via ¹⁶O(d, α_1)¹⁴N. Some levels appear to be analogs of the ¹⁸O states seen¹² in ¹⁴C(α,α_0)¹⁴C but in other cases the analog strength spreads over several nearby levels. The unfragmented analog states should be predominantly T=1 with some T=O admixture.

The complex amplitudes of the lower 4⁺ states fall close to a line passing through the origin

2074

FIG. 7. Sample angular distributions for $^{14}N(\alpha,\alpha_1)^{14}N$. Error bars including the statistical errors and 2% random errors are shown whenever they exceed the point size. The curves are the fits to the data using Eq. (1). The confidence level (C.L.) indicates the goodness of the fit (.1 < C.L. < .9 is acceptable) and L is the highest partial wave used to make the fit.

FIG. 8. The same as Fig. 7 but for different energies.

FIG. 9. The same as Fig. 7 but for different energies.

S.3

0.3 0.2 0

4.0

÷

..

S₂

0.3 0.2

s.

0.2

0.1

0.3

10.25

S4

0.3 0.2

0.1

8.0

7.5

S₅

0.2

0.1

	$E_{x}^{(18}F)$	E _α (MeV)	^r c.m. (keV)	a c.m. (keV)	b c.m. (keV)	Strength	Footnotes
	(((,) 		(1107)	x''x''	
1 2 3 4	10.749 10.886 11.271 11.431	8.142 8.319 8.813 9.019	535 147 147 184	1.7 -5,3 7.7	16.4 1.5 1.8 -12.3	$0.062 \\ 0.075 \\ 0.107 \\ 0.154$	b a
±56780	$11.460 \\ 11.789 \\ 12.558 \\ 12.696 \\ 12.007 $	9.019 9.057 9.470 10.468 10.646	313 142 45 43	-7.5 4.6 2.1 0.5	5.2 1.5 0.3 -0.9	0.058 0.067 0.093 0.049	a
9 10 11	12.807 13.335 13.536 10.699	10.788 11.467 11.726	98 43 19	$2.0 \\ -2.0 \\ 0.4 \\ 0.2$	-3.5 0.6 0.9	0.082 0.097 0.101	с
$12 \\ 13 \\ 14$	$13.639 \\ 13.763 \\ 14.028$	$11.858 \\ 12.017 \\ 12.358$	44 120 49	-0.0 3.1 0.2	$2.4 \\ -2.9 \\ 2.1$	$0.110 \\ 0.071 \\ 0.087$	a a
15 16 17 18	$14.309 \\ 14.719 \\ 14.916 \\ 15.073$	$12.720 \\ 13.247 \\ 13.500 \\ 13.702$	75 129 79 99	-1.6 5.6 3.0 1.8	3.8 5.0 -2.4 -1.0	0.110 0.116 0.097 0.042	a
19 20 21	15.635 16.160 17.158	14.424 15.099 16.383	101 150 179	$4.5 \\ 1.6 \\ 3.7$	-2.1 -7.2 2.7	0.098 0.098 0.051	a
			J=	2^{+}			
1 2 3 4	10.544 10.694 10.824 11.079	7.879 8.072 8.239 8.567	43 138 47 23	1.9 1.9 1.0 -2.2	-4.6 12.1 -0.5 0.8	$0.227 \\ 0.177 \\ 0.047 \\ 0.203$	a a a
5 6 7 8	$ \begin{array}{c} 11.111\\ 11.323\\ 11.584\\ 11.620\\ 11.024 \end{array} $	8.608 8.880 9.216 9.262	40 86 756 95	3.6 -1.2 -67.6 2.1	-0.2 -13.3 -24.4 9.6	0.179 0.311 0.190 0.207	a a b
9 10 11 12 13 14	$11.924 \\ 12.197 \\ 12.432 \\ 12.651 \\ 12.720 \\ 12.869$	$9.653 \\ 10.004 \\ 10.306 \\ 10.588 \\ 10.676 \\ 10.868$	75 252 113 246 127 174	1.8 -6.5 -10.2 13.6 11.3 19.0	4.512.513.234.35.6-7.9	0.130 0.111 0.295 0.300 0.198 0.236	a a ac a
15 16 17 18 19	$13.296 \\ 13.424 \\ 13.941 \\ 14.287 \\ 14.591$	$11.417 \\ 11.582 \\ 12.246 \\ 12.691 \\ 13.082$	73 440 46 157 51	3.3 13.9 -1.3 -9.6	1.2 -10.2 0.3 3.6 -0.2	0.097 0.079 0.057 0.131 0.024	a
20 21 22 23 24	$14.779 \\ 15.075 \\ 15.712 \\ 16.177 \\ 16.364$	13.323 13.704 14.523 15.121 15.363	79 264 134 195 70	0.2 4.5 1.2 9.7 1.5	6.1 -2.1 3.0 4.5 -3.5	0.153 0.038 0.048 0.110 0.110	a
25	17.201	16.438	524	14.7	3.0	0.057	
ı	10 448	7 755	;≔ر ⊿۵	د 80-	_4 8	0.381	а
1 2 3 4 5 6 7 8 9	10.448 10.599 10.734 11.011 11.188 11.354 11.629 12.013 12.269	7.755 7.949 8.123 8.479 8.707 8.921 9.273 9.768 10.097	49 48 37 47 42 53 67 164 69	-8.0 -0.7 -0.7 -0.4 1.9 0.9 -2.9 -7.3 0.3	-4.8 0.2 0.9 -0.3 1.0 -5.5 -0.9 -0.3 3.5	0.331 0.032 0.059 0.021 0.102 0.211 0.090 0.089 0.102	ಬ ೩ ೩೦ ೩ ೩
10 11 12	$12.542 \\ 12.762 \\ 13.021$	10.447 10.731 11.064	$112 \\ 58 \\ 165$	5.8 -6.9 0.1	-7.8 0.2 1.9	$0.172 \\ 0.238 \\ 0.023$	a a a

TABLE I. Isospin-mixed ${}^{1\,8}F$ states from ${}^{1\,4}N(\alpha,\alpha_1){}^{1\,4}N$. For parameters, see Eq. (2). For comment on precision, see footnote d.

TABLE I (Continued).

E _x (¹⁸ F)	E	Г _{с m}	a _{c m}	b. m	Strengtl	n Footne	tes
(MeV)	(MeV)	(keV)	(keV)	(keV)	$ S(E_x) $		
13 14 15 16 17 18 19 20	13.309 13.513 13.600 13.746 14.149 14.511 14.696 14.960	11,434 11,696 11,808 11,996 12,514 12,979 13,217 13,556	35 50 69 144 164 138 47 71	$\begin{array}{c} 0.8 \\ -2.5 \\ -1.9 \\ 4.1 \\ -4.4 \\ 4.3 \\ 1.7 \\ 2 \\ 1 \end{array}$	0.9 2.7 4.6 2.5 5.7 6.6 -0.3 0.1	0.069 0.146 0.142 0.067 0.087 0.114 0.073 0.059	a
21 22 23 24 25 26 27	15,295 15,513 16,047 16,261 16,865 17,068 17,380	$\begin{array}{c} 13.987\\ 14.267\\ 14.954\\ 15.230\\ 16.006\\ 16.266\\ 16.667\end{array}$	100 131 190 44 75 298 147	0.4 3.0 5.3 0.0 -2.3 5.3 -3.0	-4.7 0.3 -2.7 -2.3 -2.0 2.8 3.2	$\begin{array}{c} 0.093 \\ 0.045 \\ 0.062 \\ 0.107 \\ 0.062 \\ 0.040 \\ 0.060 \end{array}$	a a
T	30.010	0.040	J=4	- -	0.0	0.005	
1 2 3 4 5 6 7 8 9	10.910 11.246 11.343 11.385 11.570 11.793 12.000 12.173 12.203	8.349 8.781 8.906 8.959 9.198 9.485 9.750 9.973 10.011	43 73 56 111 225 67 28 22 52	-0.2 -4.2 -8.3 15.5 4.0 0.4 -0.3 0.8 -0.9	-0.6 -6.7 -1.7 14.4 -7.4 0.5 -0.8 -0.2 -1.9	0.025 0.215 0.304 0.382 0.075 0.019 0.061 0.077 0.081	ac
$ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 $	12.440 12.510 12.565 12.702 12.806 13.098 13.146 12.410	10.316 10.407 10.477 10.653 10.787 11.163 11.224	183 94 62 343 35 25 64	-15.4 17.1 -7.2 11.8 0.6 -2.0 3.0	-12.7 15.6 -2.7 7.9 0.3 0.3 3.4	0.218 0.496 0.248 0.083 0.039 0.163 0.143 0.155	c a a
17 18 19 20 21 22 23 24	$\begin{array}{c} 13.410\\ 13.518\\ 13.702\\ 13.846\\ 13.942\\ 14.056\\ 14.296\\ 14.296\\ 14.526\end{array}$	11.702 11.939 12.125 12.247 12.394 12.703	110 71 63 228 61 54 107 70	0.6 -10.0 16.1 1.7 0.7 7.7	-1.8 -5.9 -0.7 -20.1 0.0 0.1 -0.9	0.167 0.319 0.226 0.056 0.025 0.145	c a
25 26 27 28 29 30 31	14, 703 15, 431 15, 897 16, 121 16, 327 16, 713 17, 245	13.226 14.162 14.761 15.049 15.313 15.810 16.494	348 127 471 235 55 180 232	-14.1 -6.8 -10.0 -9.3 -2.6 -0.1 -5.5	-14.0 -8.8 16.5 -11.7 0.9 10.2 0.6	$\begin{array}{c} 0.140\\ 0.114\\ 0.175\\ 0.082\\ 0.127\\ 0.100\\ 0.113\\ 0.048\\ \end{array}$	b
1	11.187	8,705	J= 23	5 -0.5	0.3	0.050	
2 3 4 5 6 7 8 9	12,672 12,730 13,186 13,346 13,368 13,433 13,787 13,931 14,018	10.615 10.689 11.275 11.481 11.510 11.593 12.047 12.234 12.345	80 37 149 273 36 149 293 112 29	$\begin{array}{c} 0.6 \\ -1.6 \\ 0.3 \\ -23.6 \\ -4.0 \\ 15.3 \\ 4.0 \\ 3.4 \\ 0.3 \end{array}$	-6.8 5.4 -8.1 22.5 -4.0 9.7 27.0 6.0 -0.2	$\begin{array}{c} 0.171 \\ 0.306 \\ 0.109 \\ 0.239 \\ 0.316 \\ 0.244 \\ 0.186 \\ 0.183 \\ 0.021 \end{array}$	c a a ac
11 12 13 14	14.137 14.223 14.372 14.784	12.498 12.609 12.801 13.330	379 110 149 126	12.6 10.8 -4.6 4.7	-23.8 -1.4 -9.1 -4.8	0.142 0.198 0.136 0.107	a

E _x (¹⁸ F (MeV)	') E ₀ (Me	eV) (keV)	a c.m. (keV)	b c.m. (keV)	Stren S(E	ngth Foot	notes	
						7		
15	15.015	13.628	147	-9.4	1.8	0.130	a	
16	15.115	13.755	71	3.8	0.9	0.109		
17	15.254	13.935	114	2.1	-1.3	0.043		
18	15.474	14.217	44	1.1	0.2	0.048		
19	15.647	14.440	92	-1.3	-2.1	0.054	a	
20	15.762	14.587	109	0.7	-1.9	0.036		
21	16.043	14.948	151	-2.2	1.4	0.034		
22	16.417	15.430	137	-3.8	-6.6	0.110		
23	16.602	15.667	224	6.9	11.0	0.116		
24	16.873	16.016	270	-1.9	-2.7	0.024	a	
25	17.224	16.468	486	-4.5	3.6	0.024	b	
			.T=	£ ⁺				
			0-	U U				
1	12.948	10.970	98	0.7	1.3	0.031		
2	13.329	11,459	62	-2.0	0.4	0.066		
3	13.489	11,665	102	1.0	2.9	0.059		
4	13.658	11.882	98	8.0	2.2	0.169	с	
5	14.017	12.344	37	0.2	0.7	0.037		
6	14.139	12,501	78	0.5	-1.3	0.037		
7	14.634	13.138	104	-2.5	0.7	0.050		
8	14.893	13.471	165	3.1	4.6	0.067	a	
9	15.024	13,639	82	1.9	-1.7	0.063		
10	15.634	14.422	49	-0.2	-1.2	0.049		
11	16,295	15.273	76	-1.7	-2.5	0.079		
12	16.428	15.444	183	-12.4	10.5	0.177		
13	16.637	15.713	415	28.4	14.8	0.154		
14	16.781	15.898	207	26.3	-2.1	0.255		
15	16.872	16.015	140	-15.5	-18.5	0.344	a	
16	17.094	16.300	186	-0.2	1.2	0.013		
17	17.309	16,576	285	7.2	-4.7	0.061		
18	17.449	16.757	95	1.7	-1.1	0.043		
<i>ן=</i> נ								
1	16,631	15.705	118	-0.6	-1.9	0.034		
$\overline{2}$	16.834	15.965	73	-5.2	-0.8	0.142		
3	16.955	16.121	143	4.5	6.8	0.113		
4	17.452	16.760	109	0.4	2.7	0.051		

TABLE I (Continued).

a. A level of the same J^{π} , approximate width and $E_{\chi}^{(1^{\theta}F)}$ occurs in ${}^{1^{6}O(d,\alpha_{1})^{1^{4}}N}$. See also footnote d.

- b. There are large uncertainties in the level parameters of this very wide level.
 c. An ¹⁸O state of the same J^T occurs at the corresponding E_x(¹⁸O).
- c. An ¹⁸O state of the same J" occurs at the corresponding E_{X} (¹⁸O). Therefore this state probably has a large T=1 amplitude.
- d. While the analysis procedure gives the energy values to a keV, this precision has significance only for the relative values of nearby narrow levels. The absolute values of even the narrow levels may be in error by perhaps 10-20 keV. Uncertainties in level parameters are difficult to assess because they depend in complex ways on many factors such as the level width, the J value, the corresponding L value, the level density and the level strength. If we neglect level density and L-value effects, then the uncertainty in level width, $\Delta\Gamma$, is $\sim \sigma\Gamma/|S(E_X)|$ where σ is the uncertainty in $|S_{\ell}|$ as estimated from the angular distribution fits. Averaged $\overline{\sigma}_{\ell}$ over our energy range are \sim .03 for ℓ =5; and .010 for ℓ =6 and 7. The uncertainty in E, is approximately $\Delta\Gamma$ plus \sim 20 keV systematic error. Neglect of the change in penetrability across a broad level introduces additional uncertainty. For comparison with the $^{16}O(d,\alpha_1)^{14}N$ levels, (footnote a) we estimated Jolivette's uncertainties in the same manner except for increasing his σ 's by a factor 1.5.

FIG. 12. The same as Fig. 10 but for different energies.

FIG. 13. Comparison of isospin-mixed ¹⁸F states obtained from the present work and those seen via ¹⁶O(d, α_1)¹⁴N. For each J^T, the levels from ¹⁶O(d, α_1)¹⁴N are plotted on the left and those from ¹⁴N($\alpha_1\alpha_1$)¹⁴N are plotted on the right. The base and height of each triangle correspond, respectively, to the width and intensity of the state. States with large uncertainties have dashed triangles. Dashed lines connect states that agree in both excitation energies and widths to within the estimated uncertainties.

and add up to nearly zero. Jolivette observed the same characteristics in his ${}^{16}O(d, \alpha_1)^{14}N$ results. Friedman⁵ interprets this behavior in terms of intermediate structure and bridge states. David Wang¹³ has extended Friedman's intermediate structure and bridge state analysis to our present data. Wang identified intermediate structure in all the partial waves. The bridge pairs involved appear to belong to rotational bands built on particle states of the last proton and neutron each moving in a Nilsson potential well. This work will be published separately.

ACKNOWLEDGMENTS

I sincerely thank Professor H.T. Richards for his advice and guidance throughout this work. I also thank Professor W.A. Friedman and Professor K.W. McVoy for several helpful discussions. I am grateful to Dr. P.L. Jolivette for his help in data analysis. Dr. Violeta Porto from the University of Sao Paulo, Brazil initiated the present study in 1971 with some preliminary measurements for $E_{\rm Q} < 10$ MeV. I also wish to thank Dr. J.C. Chen, Dr. H.V. Smith, Dr. B.D. Murphy, G.M. Klody, L.C. Boueres, D.J. Steck, J.H. Billen, C.A. Davis for help with accelerator operation and data taking.

FIG. 14. Comparison of the ¹⁸O states reported in Ref. 12 from ¹⁴C(α, α_0)¹⁴C and the ¹⁸F states seen in the present work. For the significance of the ¹⁸F triangles see Fig. 13 caption. Dashed lines mean uncertainty in ¹⁸O spin assignments or in ¹⁸F level parameters.

FIG. 15. Complex amplitudes a + ib from Table I for the lowest thirteen 4^+ states in ${}^{18}F$ obtained in the present work. The straight line is only a guide to the eye.

E _α range (MeV)	$\overline{ S_1 }$	S ₂	S₃]	S ₄	S ₅	S ₆	<u> </u> S7]
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.045 .063 .035 .040 .049 .051 .045 .034 .043 .047	.120 .157 .075 .114 .048 .068 .054 .037 .047 .053	.147 .057 .046 .090 .061 .046 .040 .041 .037 .051	.070 .035 .096 .092 .134 .044 .085 .067 .043	.007 .040 .084 .096 .061 .031 .063 .033	.005 .052 .016 .027 .011 .060 .081	.012 .035

TABLE II. Energy dependence of $\overline{|S_0|}$

- Work supported in part by the U.S. Energy Research and Development Administration.
- Present address: Computer Sciences Corporation, 8728 Colesville Road, Silver Spring, Maryland 20910.
- P. Jolivette, Phys. Rev. C 8, 1230 (1973). J. Jobst, S. Messelt and H.T. Richards, Phys. 1 2
- Rev. 178, 1663 (1969).
- P.L. Jolivette and H.T. Richards, Phys. Rev. 188, 1660 (1969).
- A.M. Lane and R.G. Thomas, Rev. Mod. Phys. 30, 257 (1957). 5
- William A. Friedman, Phys. Rev. Lett. 30, 394 (1973). P. Tollefsrud and P. Jolivette, Phys. Rev. C 1, 6
- 398 (1970).
- For a brief outline of the procedure see the analysis section of this paper. More details are in the author's thesis, ref. 9. A note in

preparation will include this procedure, the empirical behavior of the corresponding complex roots of the scattering amplitude, and a computer simulation which supports the empirical behavior.

- P. Tollefsrud, Ph.D. Thesis, University of Wisconsin (1969). Available through University Microfilms, Ann Arbor, Michigan.
- <sup>MICrOTIMS, Ann Aroor, MICrigal.
 ⁹ L.C. Chen, Ph.D. Thesis, University of Wisconsin (1974). Available through University Microfilms, Ann Arbor, Michigan.
 ¹⁰ P. Jolivette, Phys. Rev. Lett. 26, 1383 (1971).
 ¹¹ A. Gersten, Nucl. Phys. Bl2, 537 (1969).
 ¹² C.L. Morren, D.P. Tillor, G.F. Mitschell
 </sup>

- ¹² G.L. Morgan, D.R. Tilley, G.E. Mitchell, R.A. Hilko and N.R. Roberson, Nucl. Phys. <u>A148</u>, 480 (1970).
- ¹³ David Wang, Ph.D. Thesis, University of Wisconsin (1975). Available through University Microfilms, Ann Arbor, Michigan.