Evidence for inversion of 0⁺ phonon states and γ softness in ¹³⁴Ba⁺

R. A. Meyer, R. D. Griffioen, * J. Graber Lefler, \ddagger and W. B. Walters Lawrence Livermore Laboratory, University of California, Livermore, California 94550 (Received 13 July 1976)

The γ -ray spectra of ¹³⁴La have been studied by γ -singles and $\gamma-\gamma$ Ge(Li) spectroscopy. The γ -ray decay of the low lying 0⁺ levels has been used to suggest that, because of softness toward γ deformation, the lowest 0⁺ excited state in ¹³⁴Ba, with $B(E2; 0^+ \rightarrow 2\frac{1}{2}/0^+ \rightarrow 2\frac{1}{1})$ = 28, arises from the N=3 phonon state. This is shown to be qualitatively consistent with calculations of transitional nuclei.

RADIOACTIVITY $^{134}Ce \rightarrow ^{134}La$, mass-separated, equilibrium sources, measured E_{γ} , I_{γ} , deduced ^{134}Ba levels.

A number of recent papers have employed the use of the triaxial rotor-particle (TRP) coupling model, to account for the negative parity levels observed in nuclei such as ¹³³La.^{1,2} In doing so, the required values of the parameters have suggested a large degree of γ softness ($\gamma \approx 28^{\circ}$). If this is true, then the core nucleus (in the La case, the barium nuclei) ought to exhibit properties that are concomitant with γ softness. Few tests to prove this are possible; however, one of them is the re-

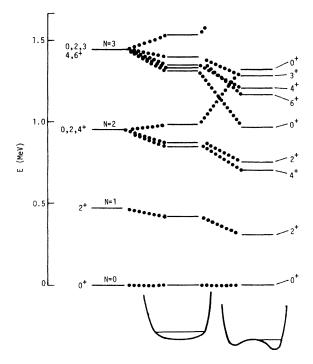


FIG. 1. Levels of even-even nuclei arising from (left to right) a spherical harmonic vibrator, a slightly anharmonic vibrator, and a γ -soft vibrator (these are taken from the results of Refs. 3 and 4).

quirement that the 0⁺ state from the third phonon (N=3) drops below the 0⁺ state from the second phonon,^{3,4} as illustrated in Fig. 1. The γ -ray decay of such a state would be expected to predominately populate the second phonon 2⁺ level instead of the first phonon 2⁺ level.⁵ Also, a relatively large

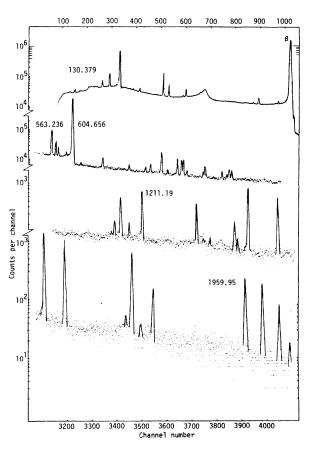


FIG. 2. Compton suppression spectra of a massseparated $^{134}Ce \rightarrow ^{134}La$ equilibrium source.

2024

<u>14</u>

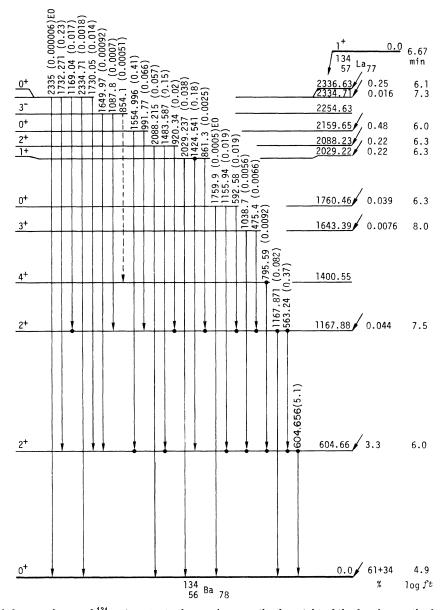


FIG. 3. Parital decay scheme of 134 La (see text; the numbers on the far right of the levels are the log*ft* values for the populations of the corresponding levels).

E0 transition to the ground state might be expected, since this state in a permanently deformed nucleus becomes the β bandhead, which has the property of a large, E0 ground-state, deexcitation mode. However, no such state has been identified in the even-even barium nuclei to date. Here, we wish to identify the 1760-keV level in ¹³⁴Ba as such a state.

In their conversion electron studies, Alexsandrov *et al.*⁶ identified an *E*0 transition in the decay of ¹³⁴La at 1760 keV. In addition, they placed a 1156-keV γ ray as decaying to the 604-keV level.

This was used to identify a 0⁺ level at 1760 keV. In our γ -ray studies, we have shown that a 592.58keV γ ray is in direct coincidence with the 1167and 563-keV γ rays that depopulate the known 2⁺ level at 1167.88 keV. These data were reported in preliminary form,⁷ and the consequences of the 592.58-keV γ -ray placement were discussed earlier.⁸ Our complete γ -ray data are available elsewhere.⁹

The ¹³⁴La sources were prepared by the ¹³⁴Ba(α , 4n)¹³⁴Ce reaction on enriched ¹³⁴Ba targets. After bombardment in the 223.5-cm cyclotron

(Lawrence Berkeley Laboratory), the targets were chemically processed and the cerium fraction was mass-separated at the isotope separation facility of the Radiochemistry Division at the Lawrence Livermore Laboratory. The ¹³⁴Ce sources with a 74 h half-life provided equilibrium sources of 6.67min ¹³⁴La. The sources were measured on a variety of Ge(Li) detectors, including a Compton suppression spectrometer (spectra are shown in Fig. 2). One of the sources was transported by air freight to the University of Maryland, where γ - γ coincidence spectroscopy was performed.

The results of our studies are shown in Fig. 3. Filled circles at the bottom of the arrows represent placement of the γ ray by coincidence relationship. Filled circles at the top of the arrows signify that a coincidence gate has been set at that energy. The γ -ray intensities, as well as the β intensities to the right of a level, are given per 100 decays of ¹³⁴La. The amount of ground-state feeding was taken from *Nuclear Data Sheets*.⁹

We have compared the decay properties of the ¹³⁴Ba levels populated in ¹³⁴Cs decay elsewhere.¹⁰ They agree well with the calculations of Rohozinski, Srebrny, and Horbaczewska.⁵ In addition, we concluded that the 1969-keV level was not their (0 34) state. Instead, it was predominately the two quasineutron $(d_{3/2}d_{5/2})$ configuration.

We suggest that the lowest 0^* excited level at 1760 keV in 134 Ba is consistent with the calculations

- Work performed under the auspices of the U. S. Energy Research and Development Administration, under contract No. W-7405-Eng-48.
- *Summer visitor to Lawrence Livermore Laboratory. Permanent address: Physics Department, Calvin College, Grand Rapids, Michigan 49506.
- [‡]Chemistry Department, University of Maryland, College Park, Maryland 20742.
- ¹E. A. Henry and R. A. Meyer, Phys. Rev. C <u>13</u>, 2063 (1976).
- ²R. A. Meyer, in *Problems of Vibrations Nuclei*, edited by G. Alaga, V. Paar, and L. Sips (North-Holland, Amsterdam, 1975), Chap. 7, p. 128; and Report No. UCRL-76207, Lawrence Livermore Laboratory, Livermore, 1974 (unpublished).
- ³G. Gneuss, U. Mosel, and W. Greiner, Phys. Lett. 30B,

of Gneuss, Mosel, and Greiner,^{3,4} in that the lowest 0⁺ level expected in a γ -soft nucleus arises from the third phonon rather than from the traditionally expected second phonon. The relative transition probability ratio of $B(E2)[0_1^+ + 2_2^+]/B(E2)[0_1^+ + 2_1^+] = 28$ for the γ -ray decay of the 1760keV 0⁺ level is consistent with such a description.

We conclude that, in general, the properties of the collective levels of ¹³⁴Ba are consistent with the nucleus being soft toward γ deformation, and that the properties of the lowest lying 0^+ excited state qualitatively agree with this description. However, detailed calculations that allow the mixing of β and γ degrees of freedom are necessary, before any quantitative agreement can be expected. The calculations of Rohozinski et al.⁵ do not agree too well with the experimental values for this level.¹⁰ However, they do not allow mixing of the β and γ degrees of freedom, which is to be expected. Further, as mentioned earlier, this state is expected to have some properties of a guasi- β band. The 0^+ level arising from the N = 2 phonon is difficult to identify, since it is expected to rise in energy above the pairing gap. It should possess a relatively large E0 ground-state transition. The only other low lying 0⁺ levels that have been identified are at 2159 and 2336 keV. The former has no observable ground-state E0 transition that depopulates it, while the latter has a very low intensity E0 transition to the ground state.

297 (1969).

- ⁴G. Gneuss, U. Mosel, and W. Greiner, Phys. Lett. <u>31B</u>, 269 (1970).
- ⁵S. G. Rohozinski, J. Srebrny, and K. Horbaczewska, Z. Phys. 268, 401 (1974).
- ⁶V. S. Alexsandrov, B. S. Dzheletov, A. I. Medvedev, V. E. Ter-Nersesyants, I. F. Uchevatkin, and S. A. Shestotalova, Izv. Akad. Nauk SSSR Ser. Fiz. <u>37</u>, 1035 (1973) [Bull. Acad. Sci. USSR Phys. Ser. <u>37</u>, 106 (1974)].
- ⁷R. D. Griffioen and R. A. Meyer, Bull. Am. Phys. Soc. 18, 680 (1973).
- ⁸J. Graber, W. B. Walters, and R. A. Meyer, Bull. Am. Phys. Soc. 19, 502 (1974).
- ⁹E. A. Henry, Nuclear Data Sheets 15, 203 (1975).
- ¹⁰J. R. Van Hise, D. C. Camp, and R. A. Meyer, Z. Phys. A 274, 383 (1975).