Communications

The Communications section is for brief reports on completed research. A Communication may be no longer than the equivalent of 2800 words, i.e., the length to which a Physical Review Letter is limited. (See the editorial in the 21 December 1970 issue of Physical Review Letters.) Manuscripts intended for this section must be accompanied by a brief abstract for information retrieval purposes and a keyword abstract.

New mass values for ²⁰⁶Bi and secondary masses*

W. W. Daehnick, M. J. Spisak, and R. M. DelVecchio Nuclear Physics Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (Received 7 June 1976)

The Q value for the reaction 204 Pb(α , d) 206 Bi has been measured as $Q_0 = -15798 \pm 11.6$ keV. This leads to a 206 Bi mass excess of -20019 ± 13 keV which differs by 107 keV from the previously accepted value. Previously adopted mass values for 210 At, 214 Fr, 218 Ac, and 222 Pa are also directly affected by a change in the 206 Bi mass.

 $\begin{bmatrix} \text{NUCLEAR REACTIONS} & ^{204}\text{Pb}(\alpha, d), E = 48 \text{ MeV}, \text{ measured } Q \text{ value relative to} \\ & ^{206, 208}\text{Pb}(\alpha, d). \text{ Deduced} & ^{206}\text{Bi g.s. mass.} \end{bmatrix}$

The isotopes ²⁰⁶Bi, ²¹⁰At, ²¹⁴Fr, ²¹⁸Ac, and ²²²Pa are linked to the mass of ²⁰⁶Bi by rather precisely measured α -decay energies.¹ They all have a common (≈ 26 keV) quoted uncertainty in their mass excess. The link to stable and well-known isotopes seems to have been made using β -decay energies for ²⁰⁶Bi and ²¹⁰At.¹ These measurements are difficult: The ${}^{206}\text{Bi} \rightarrow {}^{206}\text{Pb}$ and ${}^{210}\text{At} \rightarrow {}^{210}\text{Po}$ ground state β^+ transitions are highly forbidden. The dominant β^{+} decay branches go to highly excited states in the daughter nucleus and compete with electron capture. Published results for ²⁰⁶Bi scatter^{2,3} and may be subject to errors considerably in excess of 26 keV. Similarly, the empirical value for the ²¹⁰Po-²¹⁰At mass difference⁴ is not very precise. Doubt in the currently adopted ²⁰⁶Bi mass value¹ should be heightened by a recent indirect deduction of the ²⁰⁶Bi mass from electron capture ratios⁵ which differs from the mass table value by 99 ± 22 keV.

In our recent^{204,206,208}Pb(α ,d) spectrograph data⁶ taken at Princeton with $E_{\alpha} = 48.2$ MeV we have a very direct comparison of the ²⁰⁶Bi, ²⁰⁸Bi, and ²¹⁰Bi masses through the (α ,d) Q values. The calibration of the Princeton quadrupole-dipole-dipoledipole spectrograph with its focal plane detector was checked and fine-adjusted by measurement of the well-known ²¹⁰Bi spectrum. This calibration predicted the position of the 2 MeV more energetic ²⁰⁸Bi ground state deuteron group to within 6 keV with respect to the commonly accepted Q value of $-15 \ 613(\pm 11)$ keV. As the ²⁰⁴Pb(α ,d) and ²⁰⁶Pb(α ,d) Q values are very close, we measured both spectra at the same angles and at identical magnetic field setting. For six of seven measurements at $10^{\circ} \le \theta_{lab} \le 40^{\circ}$ the 204 Pb(α, d) 206 Bi measurements immediately preceded or followed the 206 Pb (α, d) 208 Bi measurement with only the thin self-supporting targets having been exchanged. Figure 1 shows a direct comparison of the ²⁰⁶Bi and ²⁰⁸Bi ground state slices of the spectra for $\theta_{1ab} = 35^{\circ}$. The ²⁰⁸Bi(5⁺) ground state is relatively strong. In ²⁰⁶Bi the ground state and first excited (60 keV) states are expected to be extremely weak in (α, d) for nuclear structure reasons.⁶ The ²⁰⁶Bi ground state is not visible above background in Fig. 1; however, the well established 83 keV (5^{+}) and the 140 keV (7^+) states^{7,8} are quite strong, as expected, with the 163, 200, and 523 keV states less visible.

Measured excitation energies for strong-generally high spin-²⁰⁸Bi levels are shown in the top spectrum of Fig. 1. Differences between these levels and corresponding known levels for ²⁰⁸Bi are below ± 4 keV. We estimate our calibration error for excitation energies as $\Delta E^* \approx \pm 0.004 E^*$ for resolved states. This leads to a detector scale error of ± 1.5 keV near Q = -16 MeV. The correction for the difference in the measured thickness of the self-supporting ²⁰⁴Pb and ²⁰⁶Pb targets was 3 ± 0.5 keV. Uncertainty in the excitation energy of the relevant 140 keV level in ²⁰⁶Bi is ≤ 1 keV. The standard deviation of six separate measurements of $Q[^{204}Pb(\alpha, d)^{206}Bi(140 \text{ keV})]$ —primarily due to statistics-was 3 keV. Hence the total experimental error for the relative Q_0 value mea-

14

2011

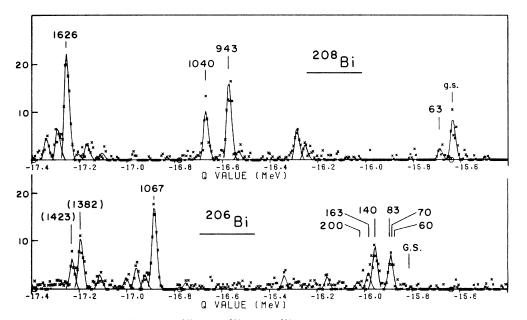


FIG. 1. Typical comparison of ${}^{206}\text{Pb}(\alpha, d){}^{208}\text{Bi}$ and ${}^{204}\text{Pb}(\alpha, d){}^{206}\text{Bi}$ spectra taken in sequence under nearly identical conditions. The spectrum shown was taken at $\theta_{lab} = 35^{\circ}$, $E_{\alpha} = 48.2$ MeV. The solid lines show fits with the analysis program AUTOFIT. The Q value is derived from the fits to the ${}^{208}\text{Bi}$ ground state and the ${}^{206}\text{Bi}$ 140 keV state, as the third height position of the latter is not affected by other levels. Other peak fits are shown to demonstrate consistency with known levels.

surement is ±3.5 keV if errors are added in quadrature. This is small compared to the 11 keV uncertainty in $Q_0[^{206}\text{Pb}(\alpha, d)^{209}\text{Bi}]$.

On the basis of our six best measurements relative to ²⁰⁸Bi with $Q_0[^{206}\text{Pb}(\alpha, d)] = -15\,613\pm11$ keV we obtain

 $Q_0[^{204}\text{Pb}(\alpha, d)^{206}\text{Bi}] = -15798 \pm 11.6 \text{ keV}.$

This value differs by 107 keV or four standard deviations from the previously accepted value $(-15\ 691\pm 26\ keV)$.

Including an uncertainty of ± 6 keV for the ²⁰⁴Pb mass the deduced ²⁰⁶Bi mass excess is ME(²⁰⁶Bi) = -20019 ± 13 keV, provided our identification of

- *Work supported by the National Science Foundation.
- ¹A. H. Wapstra and N. B. Gove, Nucl. Data A <u>9</u>, 265-468 (1971); N. B. Gove and A. H. Wapstra, Nucl. Data A <u>11</u>, 127-277 (1972) and references therein.
- ²C. F. Perdrisat, J. H. Brunner, and H. J. Leisi, Helv. Phys. Acta 35, 175 (1962).
- ³J. H. Brunner, H. J. Leisi, C. F. Perdrisat, and
- P. Scherrer, Phys. Rev. Lett. 2, 207 (1959).
 ⁴F. Schima, E. G. Funk, Jr., and J. W. Mihelich, Phys. Rev. 132, 2650 (1963).
- ⁵S. C. Goverse, J. Kuijper, and J. Blok, Z. Phys. <u>269</u>, 111 (1974).
- ⁶W. W. Daehnick, M. J. Spisak, R. M. DelVecchio, and W. Oelert (unpublished).

the low-lying ²⁰⁶Bi states is correct. This value is in agreement with the value deduced in Ref. 5 but in considerable disagreement with the result of Ref. 2. It should be emphasized that a reassignment of the ²⁰⁶Bi mass excess directly affects the derived (secondary) mass values of ²¹⁰At, ²¹⁴Fr, ²¹⁸Ac, and ²²²Pa, and possibly others which were derived or extrapolated⁹ on the basis of the ²⁰⁶Bi mass. Using the currently accepted α -decay energies for the ²²²Pa \rightarrow ²⁰⁶Bi chain^{7,10-12} we suggest the following improved mass excess values: ME(²¹⁰At) = -11963 ± 14 keV, ME(²¹⁴Fr) = -950 ± 15 keV, ME(²¹⁸Ac) = + 10852 ± 18 keV, and ME(²²²Pa) = + 21974 ± 35 keV.

- ⁷N. A. Golovkov *et al.*, Izv. Nauk USSR Ser. Fiz. <u>33</u>, 1622 (1969) [Bull. Acad. Sci. USSR Phys. Ser. <u>33</u>, 1489 (1969)].
- ⁸M. Kanbe, M. Fujioka, and K. Hisatake, J. Phys. Soc. Jpn. <u>38</u>, 928 (1975); L. A. Jardin and A. A. Shihab Eldin, Phys. Rev. C 13, 348 (1976).
- ⁹V. E. Viola, Jr., J. A. Swant, and J. Graber, At. Data Nucl. Data Tables <u>13</u>, 35 (1974).
- ¹⁰D. T. Torgerson, R. A. Gough, and R. D. MacFarlane, Phys. Rev. A 174, 1494 (1968).
- ¹¹K. Valli, E. K. Hyde, and W. Treytl, Phys. Rev. A <u>161</u>, 1284 (1967).
- ¹²J. Borggreen, K. Valli, and E. K. Hyde, UCLR Report No. 18992, 1970 (unpublished).