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We calculate several quantities of physical interest for an arbitrarily shaped diffuse-
surface nuclear density distribution that is made diffuse by folding a short-range function
over a uniform sharp-surface distribution of given shape. The quantities calculated include
the moment of inertia about an arbitrary axis, generalized multipole moments, Coulomb and
nuclear potentials, and Coulomb and nuclear energies. The expressions that are obtained in
terms of volume integrals are converted into surface integrals by use of single and double
divergence relations; these techniques are discussed for general functions. All of our meth-
ods and some of our results apply to arbitrary folding functions, although for definiteness
most of our results are specialized to the case of a Yukawa folding function. The diffuseness
of the nuclear surface increases the moment of inertia of light nuclei substantially, which in-
creases the critical angular momentum at which compound nuclei can no longer be formed.
The diffuseness correction to the Coulomb energy contains a term that is proportional to the
surface area; this term increases the effective surface energy by approximately 2% for light
nuclei and by approximately 1% for heavy nuclei.

NUCLEAB STBUCTUBE Calculated quantities of physical interest for arbitrar-
ily shaped diffuse-surface nuc1ear density distribution. Moment of inertia,
generalized multipole moments, Coulomb and nuclear potentials, Coulomb
and nuclear energies, Yukawa folding function, single and double divergence

relations, applications to nuclear fission and heavy-ion reactions.

I. INTRODUCTION

It is often necessary to calculate quantities of
physical interest for an arbitrarily shaped density
distribution whose surface is diffuse rather than
sharp. In nuclei, the distance' over which the den-
sity changes from 10/q to 90/q of its centrai value
is approximately 2.4 fm. This distance is corn-
parable to the nuclear radius for very light nuclei
and is 30'Po of the nuclear radius for very heavy
nuclei. The diffuseness corrections to certain
quantities of physical interest should therefore be
substantial, especially for very light nuclei.

Deformed density distributions are often made
diffuse by generalizing a Fermi function to the de-
formed shape in some way. This leads to cumber-
some expressions for the quantities of interest that
must be evaluated numerically. " A much simpler
method for generating a diffuse-surface distribu-
tion is to fold a short-range function (such as a
Yukawa function) over a sharp distribution of the
appropriate shape. ' " This method has been used
recently to make the surfaces diffuse for the cal-
culation of such special cases as the nuclear inter-
action energy of two semi-infinite distributions,

the moment of inertia, "generalized multipole mo-
ments, ' the Coulomb self-energy of a sphere and
Coulomb interaction energy of two spheres, ' and
the nuclear interaction energy of two spheres. '0

Here we consider systematically the calculation
of various quantities of physical interest for arbi-
trarily shaped distributions whose surfaces are
made diffuse by folding a Yukawa function over a
sharp-surface distribution of appropriate shape.
In particular, we calculate the moment of inertia
and generalized multipole moments of such distri-
butions in Sec. II, the Coulomb and nuclear poten-
tials in Sec. III, and the Coulomb and nuclear en-
ergies in Sec. IV.

All of our results have been derived by use of
two separate methods. One of these involves the
use of Fourier transforms and the other involves
transforming the integration variables. In pre-
senting the results here we use the former method
in Secs. III and IV; the latter method is used in
Sec. II and in an Appendix. The general formulas
that we derive in terms of volume integrals are
transformed into surface integrals by use of single
and double divergence relations. These techniques
for transforming volume integrals into surface in-
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tegrals are discussed in two Appendixes for gen-
eralfunctions. Allof our methods and some of our
results apply to arbitrary folding functions, al-
though for definiteness most of our results are
specialized to a, Yukawa folding function.

Many of our results a.re of practical importance
in the theory of nuclear fission and heavy-ion re-
actions. For example, the diffuse nuclear surface
increases the moment of inertia of light nuclei
substantially, which increases the critical angular
momentum at which compound-nucleus formation
is no longer possible. Also, the diffuseness cor-
rection to the Coulomb energy contains a term
that is proportional to the surface area, which in-
creases slightly the effective surface energy of
nuclei. These and other applications are discgssed
at the appropriate pla, ces in the paper.

The z axis need not pass through the center of
mass of the body.

We evaluate this integral by redefining variables

I(1)—
p0 r2 (x2 + y 2 ) (2.7a)

I"'-=2p, d'r, 'r„(x„x,+y„y, )g(r„), (2.7b)

and

and by interchanging the order of integration. Equa-
tion (2.5) then becomes

(2.6)

where

I,"'—= p, d'r, 'r, ,(x„'+y„'}g(r„). (2.7c)

p(r, )=p. d'r g(lr, —r. l} (2.1)

where the integration is over a given sharp-sur-
face shape whose volume is V and where

II. MOMENT OF INERTIA AND GENERALIZED MUI.TIPOLE
MOMENTS

We assume throughout this paper that we are
dealing with a diffuse density of the general form

Z 3 12 12 g 12 (2.8)

where M is the total mass of the system. Then
by use of Eq. (2.3) we find that

I(l) p 'r, (x,-'+ y, ')

Because g depends only on the magnitude of r12,
I,"' vanishes a.nd

M for a mass density
p0V=

, Ze for a charge density.
(2.2) =I,(sharp),

The folding function g. depends only on the mag-
nitude of the vector r„=r, —r, and is normalized
so that

the sharp-surface moment of inertia, .
Equation (2.6) thus becomes

I,=I,(sharp)+ —,
' M d'r»r„'g(r») . (2.10)

d'r„g(r„) = 1, (2.3}

where the integration is over all space. For de-
finiteness we consider a folding function of Yukawa
shape:

(2.4)

where a is the range of the Yukawa function. It
will be clear from the general form of the equa-
tions in this paper how to specialize to other types
of folding functions, e.g. , those of Gaussian shape.

A. Moment of inertia

The first quantity that we consider is the rigid-
body moment of inertia, for rotation about an arbi-
trary axis, which we take to be the z axis:

I, =I,(sharp}+ 4 Ma2. (2.11)

An alternative way of writing the general result
[Eq. (2.10)] is obtained by realizing that the inte-
gral appearing in this equation is a measure of the
width of the surface diffuseness that does not de-
pend upon a specific choice of folding function. In
particular, ""

d'r„r„'g (r„)= 3b',

where b is the root-mean-square width parameter
of Myers defined in terms of surface moments. ""
Insertion of this result into Eq. (2.10) leads to"

Note that the correction term (2.8) is completely
independent of the shape of the sharp surface. For
a Yukawa folding function, Eq. (2.10) reduces to

I,= p r, x,'+y, ' d'r,

= p, d'r, d'r, x1 +$1 Q r1 (2.5)

I,=I,(sharp)+ 2Mb'.

For a sphere the moment of inertia for rotation
about an axis that passes through the center is
therefore given by
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0syhere 2 P,gR 2 1+ 10Z 5 0 Ro

2
= —', MR, ' [I+5—

R

where R„ is the equivalent sharp-surface radius of
the sphere. For nuclei throughout the Periodic
Table R, is given approximately by""'"

with

0 0

x, =1.16 fm .

The average width of experimental charge dis-
tributions for nuclei throughout the Periodic Table
is reproduced by the value"' "'"

5=1.0 fm

or

a= 1.0 fm/W2= 0.71 fm.

Alternatively, in order to produce a density dis-
tribution which changes from 10% to 90/p of its
central value in a distance' of 2.4 fm by use of a
Yukawa folding function, the Yukawa range a
should have the value

a=, (2.4 fm) jln5=0. 75 fm.

The diffuseness of the nuclear surface therefore
increases the moment of inertia of a spherical
nucleus substantially compared to the value for a
uniform sharp-surface density distribution, espe-
cially for very light nuclei. For example, this
increase is about 50% for a light nucleus with mass
number 20 and is about 10% for a heavy nucleus
with mass number 240. For a deformed shape the
relative diffuseness correction to the moment of
inertia for rotation about a minor axis is some-
what less.

The diffuseness correction to the moment of in-
ertia should increase the critical angular momen-
tum at which two colliding nuclei no longer fuse
into a single compound nucleus, especially for very
light nuclear systems. Taking into account this
effect would therefore increase the calculated

cross section for compound-nucleus formation
relative to that calculated for a uniform sharp-
surface density distribution.

As a particular example, "for the reaction "N
+ "Al at a, "N laboratory bombarding energy of
262 MeV, the Bass model""' predicts that the
critical angular momentum for the production of
"Ca is 39h; when the moments of inertia are cal-
culated for uniform sharp-surface density distri-
butions. When the moments of inertia are calcu-
lated for diffuse-surface density distributions the
predicted critical angular momentum becomes
47.5h. This agrees with the experimental value"
of 48 + 4k, whereas the result for uniform sharp-
surface density distributions is in contradiction to
the experimenta, l result.

In Sec. II 8 we show that Eqs. (2.10) and (2.11)
are special cases of relations for root-mean-
square radii or multipole moments for bodies of
nonspherical shape whose surfaces are made dif-
fuse by use of a folding function. ' Also, in Ap-
pendix A we show that the volume integral in Eq.
(2.9) can be converted into the surface integral

&ps) =!p, f d it, ' e, ~,y, ' e,),
S

where e„and e, are unit vectors in the x and y di-
rections, respectively. For axially symmetric
shapes this reduces to a one-dimensional integral
which can be easily evaluated by means of Gaus-
sian-I, egendre quadrature.

8. Generalized multipole moments

We define the generalized multipole moments
b

(2.12)

where F« is a spherical harmonic of degree L
and order M. In our present discussion we re-
strict ourselves to e~, en powers of k and derive
explicit expressions only for k =0 (the ordinary
multipole moment) and k = 2.

For the evaluation of Eq. (2.12) it is convenient
to use the solid-harmonic expansion"

y Y~v(8„&f) )=Q 1 ) 2 1 )
r Yr ~ ~ (8 Q )r".,Y„(8 @, )(L—A. , A. M —P. P. ~LM)

471(2L + I) !

A/L

(2.13)

where (abnpl cy) is a Clebsch-Gordan coefficient"
and where

ry r2+ ry2 ~

We first evaluate Eq. (2.12) for k=0. This we

do by substituting Eqs. (2.1) and (2.13) into Eq.
(2.12) and interchanging the order of integration,
as was done in Sec. IIA. In the X, p, summation
only the A. = p, = 0 term contributes. Then, by use
of Eq. (2.3) we find that'"
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N= P0 d t1g1 YLN 8

=- qi„)(sharp) . (2.14}

Thus, the ordinary multipole moments for a dif-
fuse-surface distribution obtained by folding are
exactly equal to those for the equivalent sharp-
surface distribution and are completely indepen-
dent of the folding function. This is to be con-
trasted to the complicated relationship that exists
between the multipole moments of a sharp-surface
distribution and those for the corresponding dif-
fuse-surface distribution obtained by generalizing
a Fermi function. "

The evaluation of Eq. (2.12}for k = 2 is much
more complicated than for k=0 because of the
extra factor

2= 2
&1 =~2 +&12 +2r2

that appears in the integrand. The x,' and r„'
terms lead to

By combining Eqs. (2.15), (2.16), and (2.20) we
finally obtains

qI 1I
= qI 1I(sharp) + 2 (2fs + 3)qi~(sharp)

12 12 g( 12}

= q~„'(sharp)+ (2 I,+ 3)f)2q~„)(sharp) . (2.21)

Equations (2.14) and (2.21) are identical to re-
lations obtained by Satchler, ' except that his ex-
pressions are in terms of the individual multipole
coefficients of the density distribution. That his
results are also valid for the entire distribution
is not surprising since Eq. (2.12) projects out the
I M components of the generalized moments.
Satchler' also derives a relation for the k =4
generalized multipole moments.

We now show that Eq. (2.10) can be derived from
the generalized -multipole -moment formalis m. We
first note that x,'+ y, ' can be rewritten as

~l P0 d +2~2 LN 2& @2 d 12g 12

= qIII(sllarp) (2.15)

=-', (4)I)'~' r, 'Y'„(8„&,)-~ r,21'„(8„{t),) .

tJ2 P0 d +P2 YLN 82& )t 2 d +12+12 g +12

Upon substituting Eq. (2.22) into Eq. (2.5) and
comparing with Eq. (2.12), we see that

=q,"„'(sha p) f q r r q{r„)',„„*
respectively.

The contribution from the 2 r, ~ r» term is
3'/2

J =—2p0 — L 21+1 '/ d~r~r~gLN r

(2.16) I,= -,'(4v)"' q,',"—~ q,',"
Then by use of Eqs. (2.14) and (2.21), we find that

(0)I,= -2,-(4v)' '
q,',"(sharp) — q,",'(sharp)

+ q,",'(sharp) d'r„r„'g(r„)
dr„r„'g(r„),

where

K (r, ) =-g (L —1, 1,M - iI, p,
i
I,M )

(2.17)

x Y, , „„(e„@,)y,„(e„(j),) . (2.16)

(2.19)

Upon substituting this result into Eq. (2.17}we
find that

21
2 3 p0 r2r 2 ~ss)q(82p 4 2}

4v dr„r„'g(r„)

The summation over il in Eq. (2.18) can be performed
explicitly, "which leads to

I 3 I 1/2

+I{{q(2) 4&(2 I + I) I{{I(2s ~2) '

=f,(sharp)+ —,
' M d'r, ,r„'g(r„),

which is Eq. (2.10).
It is clear that Eq. (2.12) can always be ex-

pressed in terms of the sharp-surface integrals

q"„'(sharp)= p, J q'rr, 'q „(q„q,), (2.24)

21.+i »2
q'"„'( harp)=(h ~ 2) '( p,

, +L+0+Icy(L-1) g

as we see for example from Eqs. (2.14) and (2.21).
In Appendix A we show that Eq. (2.24) can be
transformed by use of the divergence theorem
into the following two equivalent surface integrals:

=
q q,"„'(sharp) f q*a„r„'q(r„) (2.20)
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2L+1 ~~2
q(~'„)(sharp) = (2-L+k+3) '

p,L+1

X d$, t. L+k+lg (L+1) 8
s

(2.25b)

V( )= (2v)')' d'r, d'k —,g(k)e""~ '3' .
v k

(3.5a)

Because g depends only on the magnitude of k,
this can be simplified to

where 7)~(„)(e, p) is a vector spherical harmonic. "
As mentioned in Appendix A, for L = 0 it is neces-
sary to use Eq. (2.25b}, whereas for L)0 it is
more convenient to use Eq. (2.25a).

III. COULOMB AND NUCLEAR POTENTIALS

In this section we derive general formulas for
the Coulomb and nuclear potentials for arbitrarily
shaped diffuse-surface density distributions ob-
tained by folding. We then specialize these re-
sults to the case of Yukawa folding functions.
These formulas are in turn further specialized
to spherical shapes.

d 3y'
Vc(r, ) = 4(2v)'~'ep,

r, -r,
g(k)

dk sin(k
~ r, —r, [),

k

(3.5b)

which is a general equation that is valid for any
folding function. For most folding functions of
physical interest, such as Yukawas, exponentials,
and Gaussians, the Fourier transforms are rela-
tively simple. Consequently, the single integral
over k can ordinarily be readily performed, which
reduces this equation to a three-dimensional vol-
ume integral over the sharp-surface shape.

For the Yukawa function defined by Eq. (2.4), the
Fourier transform is

A. Coulomb potential

The Coulomb potential is defined as

Vc(r, ) = e d'r, - p(r, ) .' Ir, -r, I

Upon inserting Eq. (2.1) and interchanging the
order of integration we obtain

(3.1)

( )
1 1

(2v)3/2 (1+ s2k2) )

which reduces Eq. (3.5b) to

d3r

(3.6)

(3.7)

Vc(r ) = ep, d'r, d'r, g(lr, —r, I).
Irl 2I

(3.2)

The faltung theorem" states that for arbitrary
functions f and g,

Vc(r, ) = Vc(r, ; sharp)+ DVc(r, ), (3 6)

where Vc(r„sharp) is the sharp-surface potential

The integral over k in Eq. (3.'I} is evaluated by use
of complex contour integration and the residue
theorem. This gives

d'r, f(r, —r, )g(r, —r, )

d'k f(k) g(k)e'"' "~ 's', (3.3)

where f (k) and g(k) are the Fourier transforms
of f(r„) and g(r»), i.e. ,

Vc(r» sharp) = p, e d'r,' Ir, -r, I

and where the correction term is given by

1
aV (r)= —pe d'r, e ' ~c ' '

~ 'lr, —r I

(3.9)

(3.10)

g(k) = „„d'r»g(r»)e '" "|2~'
2') (3.4)

Upon applying this theorem to Eq. (3.2), we obtain

Equations (3.9) and (3.10) can be converted from
three- dimensional volume integrals to two- dimen-
sional surface integrals by use of Gauss's diver-
gence theorem. This leads to'

and

Vc (r„;sharp) = — 0 [d5, (r, —r2) )
~
r, —r,

~

'
s

&3

( )
P [dg ( )) ( ( )

-J'J JJI-
c i a s

x a a

(3.11)

(3.12)
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These integrals are evaluated efficiently by use of Gaussian-Legendre quadrature. '
A general method for converting any volume integral (for an analytic integrand of reasonable shape) into

a surface integral is presented in Appendix A. This method should be useful for evaluating the Coulomb
potential given by Eq. (3.5b) for folding functions other than the Yukawa.

For a sPhere of radius Ro one can show that'

Vc(r, ; sharp) =

—p,eR,'[3 —(r, /R, )'], r, &R,

47t'

0 0 j&poe—RO /r, , r, &Ra

(3.13)

and

nv, (r,) =
-4wp, ea' 1 — 1+—' e eo ' ', r, &R,R, e ~, sinh(r, /a)

a r, a

Ro Ro . Ro e "& '
—47t'poeQ —co8h ——s lnh

,
a a a (r, /a)'

(3.14)

Q
n Ve(0) = —47(a'eP, = —2 —Vc(0; sharP) .

R,

(3.15)

The decrease in Coulomb potential is therefore
about 10% for a light nucleus with mass number
20 and is about 2% for a heavy nucleus with mass
number 240.

B. Nuclear potential

We use a spin-independent nuclear two-body
potential of the form~'

V 8- I 0(-82 I /)t
0

4vz' lr r I/&' (3.16)

and calculate the spin-independent nuclear single-
particle potential from

By use of Eqs. (2.1) and (2.4), we note that Eq.
(3.10) is equivalent to

n Vc(r, ) = —4''ep(r, ) .

The diffuseness correction to the Coulomb poten-
tial is therefore proportional to the square of the
surface thickness and to the nuclear density.
This means that the correction is nearly constant
well inside the shape and is approximately zero
well outside the shape. The negative sign arises
because the effective charge density is reduced by
making the surface diffuse.

As an order of magnitude estimate, we note that
the diffuseness correction at the center of a
spherical nucleus whose diffuseness is much
smaller than its radius is given approximately by

the general result

d'kVN(r() = —
3/ z d r

(271) V oo +
(3.18a)

After performing the angular part of the integral
over k, this becomes

v„(r,) = — v,
v ~r, —r3

x dkk» sin(k~r, —r, ~),
g(k)

1+ l(.'k'

(3.18b)

where g(k) is the Fourier transform of the folding
function. For most folding functions of physical
interest, the integral over k can be performed ex-
plicitly.

For a Yukawa function we use Eq. (3.6) to ob-
tain the specialized result

Vo d'r,"'"'-- (2.) f

C(0 eikIPj P3I
dkk

(1+A.'k )(1+a'k') '

(3.19)

The range X of the Yukawa effective two-nucleon
interaction is assumed to be different from the
range of the Yukawa folding function that gener-
ates the diffuse-surface density distribution.

In analogy with the case of the Coulomb poten-
tial, we reduce Eq. (3.19) by use of the residue
theorem to obtain

&,(,(= fd*,r (~„(o(,)/p, . (3.17) V„(r,) = V„(r,; sharp)+ nV„(r,),
where

(3.20)

Upon Fourier transforming Eq. (3.17) and
reversing the order of integrations, we obtain

V e-IP)-02I/A,
V„(r„sharp) = — ', d 'r, , (3.21)
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and

V, , e)v
N 1 ig2 ~2i N

(3.22)

Equations (3.21) and (3.22) can be converted into the surface integrals"

and

(r . sharp) + 2 [df. (r r)] 1 2 1 1+ I 2 e-121%2I/ 1V Ir —rI ' jr —rj
N 19 4mX3 S

2 1 2

0 3

1 (g2 I12) N 1&

(3.23)

(3.24)

which can be evaluated efficiently by means of Gaussian-Legendre quadrature. ' Again, the general method
presented in Appendix A for converting a volume integral into a surface integral should be very useful in
simplifying Eq. (3.18b) for an a,rbitrary folding function.

For the special case in which A= a, the integral over k in Eq. (3.19) can be performed by evaluating the
residue of a double pole, or alternatively by setting a = ~+ e and taking the limit as e -0 in Eqs. (3.20)-
(3.22). For this special case in which I=a, we find that

V (r )= — ' d'2 e '21 22V
N 1 8~y3 2 (3.25)

In Appendix A, it is shown how to convert the volume integral of an exponential function into a surface
integraL Equation (3.25) for the special case in which A=a then becomes

«3 r —r 2V, [dy ( )1
Ir, —,I

2 -Iv2 Ix 2
2Ir, —

(3.26)

For a, sphere of radius R2, Eq. (3.21) becomes"

VN(r, ; sharp) =

R, », sinh(2, /X)

R, "e-"1i'
i -U, —'cosh —' —sinh —'

Ro
, (r, /II. )

'

(3.27)

and Eq. (3.22) becomes

nV„(2.,)=, , V~(r, ; sharp)+N 1 (g2 y2 j N (3.28)

8imjlarly, for the special case in which X= a, Eq. (3.25) simplifies for a sphere to

t V ~R e /1 sinh(r, /X)

R' R
n V„(2.,) = (

— ' e ~&&/ sinh(21/Z)+ 1+~ e "&&/ cosh(r, /Z)),f ]
- Ro (3.29)

U e-"1
2 (r, /X)

~ cosh~ —sinh~ (3+ 2 /X) —(R /X)' sinh(R /X) r ) R .1 0 0 ) 1 0'
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IV. COULOMB AND NUCLEAR ENERGIES

In analogy with the previous section, we derive
here general and various specialized formulas for
the total Coulomb and nuclear energies. These en-
ergies include implicitly both self and interaction
terms. Approximate expressions for the energies
are derived for the case in which the range of the
folding function is small compared to the nuclear
radius. The expression for the Coulomb energy is
compared with the second-order result obtained
by Myers and Swiatecki. '

A. Coulomb energy

The Coulomb energy is given by

which is a general relation for the Coulomb ener-
gy. For simple folding functions the integral over
k can easily be performed, which reduces this
equation to two three-dimensional integrals over
the sharp-surface shape.

In Appendix B we present a general method for
converting double volume integrals to double sur-
face integrals. This method then enables one to
convert the sixfold integral in Eq. (4.4b) into a
fourfold integral over the surface of the body. For
axially summetric shapes this reduces to a triple
integral, which can be eva, luated easily by Gaus-
sian-Legendre quadrature. '

We now sPecialize Eq. (4.4b) to a Yukawa folding
function. Upon substituting Eq. (3.6) into (4.4b) we
find that

Ec=2 drdr2, p r p r2.
lri —r2

By virtue of Eq. (2.1) this becomes

(4 1)

3E = d2d2'

d'r, d'rg()r, —r2~)g()r, —r, ().

iege r, -r, )

dk
k(1 'k')' (4.5)

"V "V
(4 2)

Application of the residue theorem to the integral
over k leads to

The faltung theorem expressed by Eq. (3.3) can
easily be generalized to three functions, which
gives the relation"

E =Ec(sharp)+ ~c,
where

(4.6)

d'r, d'r, f(r, —r, ) f. (r, —r, )h {r,—r,)
2

E (sha. rp) =
2

d'r, d'r,
, (4. 7)

=I2 )'~') 2'IfIk)2I —kIhI2) 1 t'' ''~. I'4. '3)

Upon reversing the order of integration in Eq. (4.2),
applying theorem (4.3), and relabeling variables,
we obtain

2

E = 4v —' d'2, d'r, d'k —,g'(k)e'

(4 4a)

After performing the angular part of the three-di-
mensional integral over k this becomes

(4v)2, " d'r, d'22

x dk sink r, -r,
0

(4.4b)

is the sharp-surface Coulomb energy and where

p' 7 l", , 1
+Ec

2
~ dridr, r —r

&21/a 1+ 1 . 2111r —r
2 a

(4.8)

is the diffuse-surface correction.
In Appendix C we present an alternative method

for deriving Eqs. (4.6)-(4.8) which involves vari-
ous transf ormations of the integration var iables.

By use of the double divergence relations"" dis-
cussed in Appendix B, we convert Eqs. (4.7) and
(4.8) from double volume integrals into the double
surface integrals
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and

p~ "
i [d&, .(r, -r, )][d8, (r, -&,)]

(4.10)

For axially symmetric shapes these expressions
ean be evaluated efficiently by use of Gaussian-
I.egendre quadrature. "

We now explicitly evaluate Eqs. (4.7) and (4.8)
for a sphezjegE shape. The sharp-surface result is
the usual spherical energy

Eo( sharp) =
g Z e /Ro, (4.11)

——,'e-' 0/' 1+——+V —+——

where R0 is the radius of the sphere. The first
term in the integrand of Eq. (4.8) is a Yukawa func-
tion; this integral has been performed in Refs. 24
and 25. The second term in the integrand is an
exponential function; this integral can be evaluated
by complex contour integration. The final result is

3ZeA
3

2i0

Z. (&) =
(2 sg' (4.18

By use of Eqs. (3.6), (4.13), and (4.18), we see
that the folding function appropriate to ~ has the
Fourier transform

2 Q2

(2w)'~' (1+a'0')'~(k) =— (4.19)

In the usual way we reverse the order of integra-
tion in Eqs. (4.16) and (4.11), Fourier transform,
and substitute Eqs. (4.18) and (4.19). After com-
plex contour integration we then obtain

-1F 1-I )/a
QE = —p jr1 —r2j

and

2 r r ~F F ~/0

(4.20)

For the delta folding function appearing in Eq.
(4.14) the Fourier transform [see Eq. (3.4)] is given
by

&p(r, ) =- p(r, ) -p.(r,), (4.13)

the deviation of the density from its sharp-surface
values

p, (r, ) =p, rd, (r6, —r, )

]p„r, within V

'[
0, r, outside V.

(4.12)

It is instructive" to separate Eq. (4.8) into terms
that are of first order and second order in the
quantity

(4.21)

which apply to Yukawa folding functions.
We now derive a result that is valid when the

range g of the folding function is small compared
to the nuclear radius. In this ease the major con-
tributions to Eqs. (4.20) and (4.21) come from the
regions where

~
r, —r,

~

s a. We can then approxi-
mate ~E ' and aE '

by allowing one of the re-
gions of integration to extend over aEE space. This
gives for AEc(') the approximate result

tF 1-F2t/0
C(1) P02

I

d3rl I
.$3/2

I I

OQ j~r, —r, ~j

= —4va'p, d'r~ (r, )

Upon substituting Eq. (4.13) into (4.1), we obtain
the qeygeyal result = —4PQ P0Ze = —3Z e g /+0 (4.22)

~(1) gE(2 )
C C C

where

nE~~' ~ = d'r, d'r,
,

~

po(r, )np(r, ) (4.16)

r

'jr, —r,

which is valid to second order in the surface dif-
fuseness. Similarly, it can be shown that to sec-
ond order

(2) 0 (4.23)

3@2 2 2/q 3
c 0 (4.24)

It should be mentioned that, when we refer to

From Eqs. (4.15), (4.22), and (4.23) it then follows
that the total second-order diffuseness correction
to the Coulomb energy is



terms in AF, which are second or third ox'der in
the diffuseness, %6 are implicitly neglecting all
tex'ms multiplied by exponential factors like e ' o~',
as can be seen from Eq. (4.12). Strictly speaking,
it is not mathematically possible to expand 4E~ in
only non-negative powers of {a/»I,). However, it is
clear that the exponential terms can be neglected,
except for very light systems Thus, afte» neglect-
1ng such exponential terms, %6 loos6ly refer to
corx ections %hich are second or third order in the
diffuseness or m {g/P~o)

Th6 second-ox'«Ier diffuseness col"rection Eq.
(4.24) lowers the Coulomb energy because the
chRrge 18 8pl 6Rd Gvex' R greRter effect1ve volume
%hen the surface is made diffuse. The magnitude
of this effect is about 25% for a light nucleus with
mass number 20 and is about 5% for a heavy nu-
cleus %ith mass number 240. HO%ever, as was
first obsex'ved by My618 Rnd 8%'1ateckl» the sec-
ond-order d1ffuseness cox'rect100 to the Coulomb
energy is independent of shape. It may therefore
be disregarded when calculating the nuclear poten-
U,al energy of deformRtloQ for Use 10 the theoI'y of
f188100 Rnd heavy-ion reactions» %'here only shRpe-
dependent quantit168 Qeed be considered.

%'hereas the second-ordex' diffuseness correction
to the Coulomb energy is independent of shape, it
is clear from the form"" of Eq. (4.8) that the
thixd-order correction is proportional to the sur-
fRce Rx"6R By deducxng the constaQt of proportion-
ality from Eq. (4.12), we then obtain

theless hindex s the production of heavy nuclei by
means of the multiple captuxe of neutrons.

where, as in Sec. IIIB, we use Eq. (3.16) for
y(», „)and Eq. (2.1) for p(r, ). For this application,
the quantity V, appearing in Eq. (3.16) is given
byte

2(a' —&')'a,jI —a'[{N-E)/&)'.
(3a' —5a'»' +2».')wr, '

%here g, is the surface-energy constant, g is the
surfRce-asymmetx'y constRQt, X 18 the rRnge Gf
the Yuka%R effective t%o-nucleon interaction, a
is the range of the Yuka%a function that defines
the nuclear density distribution, and x'0 is the
nuclear-rad1us constant. Th18 result 18 der1ved by
evaluating Eq. (4.26) for a sphere, expanding the
result in po%6rs of A ~~, and recognizing that the
A'~' term is the surface energy [See .our later
Eqs. (4.36) and (4.37).J

As in Sec. IV A, we use Eq. (4.3) to obtain

%here B, is the ratio of the surface area, Gf the
deformed shape to the surface area of a sphere.

The overall term in square brackets that multi-
plies A'~'B, in Eq. {4.25) varies slightly for nuclei
throughout the Periodic Table. For a light nucleus
with Rn equal number of neutrons Rnd px"Gtons 1ts
value is Rbout 0.4 M6V, %hereas for a heavy
actinide nucleu8 its value is about 0.2 M6V. There-
fore, the diffuseness col x'ect100 to the (.GuloIQb

enex'gy 10cx'eases the effective nucleR1 SUrface
tension by approximately 2% for light nuclei and by
approximately Igc for heavy nuclei.

For a, given proton number Z, the term that
multiplies A'*~'B, in Eq. (4.25) decreases with an
lncx'6R86 10 the mass QUDlber A. Thel efox'6» the
shRpe dependence Gf the third-order dlffUseness
cox'I'ect1GQ to the Coulomb energy 1ncx'eases
811ghtly t,1le f188111ty Gf nuclei %'1th the Rddltlon of

0 U 1eutlons. Although vex"y sma], l, th18 effect Qever-

This then becomes

d'Kl d g~

[ r~ —r2 (

2„, sin(A (r, —r, ~ ),1+x'0')

%'hich is a gene@nl result that is valid for an arb1-
traxy folding function. Fox' reasonably simple
folding functions the integral ovex k can be pex'-
formed, which y1elds an equat1on involving a. dou-
ble volume integral. Then, by use of the method
outlined in Appendix 8, Eq. (4.27b) can be trans-
formed into R double SUI'fRce 10tegx'Rl. For axially
symmetric shapes this integral can be evaluated
by Gaussian-Legendre quadrature.

Upon substituting Eq. {3.6) into Eq. (4.27b) and
performing complex contour integxation, %6 find
thRt

(4.28)
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This can be rewritten as

E„=E„(sharp) + hE»,

where

(4.29)

and

E„(sharp) =- Vo
8~x' v fr, -r, [/X

(4.30)

a'(a' —2x')
N 'a2 ) 2')2 N

(a2 —X2)

2a
(4.31)

Equations (4.28)-(4.31) are valid for Yukawa folding functions.
By use of the double divergence relations"" discussed in Appendix B, we convert Eqs. (4.30) and (4.31)

into the s ur face inte grals

v. id%, i, —,iiidK, i, — .ii[1,—,
l q, 2,I, —,I), i. (4.32)

3a' —5)P)+ 2A.
' —a') ' ' + 5A,

' —3a')+ 3A. —2a') ' ' —
&

a' —A') ' ' e ~'r -r
1

a L a a'

(4.33)

As was true in Sec. III B, it is of interest to derive an expression for E~ for the special case in which
a=a. We substitute Eq. (3.6) into Eq. (4.27b) and evaluate the residue of a triple pole in the contour inte-
gral. We then obtain for this special case of A =a the result

(g y g y 1+ e ~']-'2~~~V
N 64+g3 1 2 (4.34)

By use of the method of Appendix B, we can transform this result into

V, [af, (r, —r, )][d%, (r, —r, )]

3p 8' & 2' e-I r -r, )/x 3p+22 & 2 +7Ir-rl /r-r/ /r-rl
A. A.

(4.35}

For this special case in which X =a, the previous result for Vo reduces to

8 a,ll —»[(N —Z)/A]']
15 m'o X

For a sphere of radius R„Eq. (4.30}becomes""

2P 3 A 3 A 3 A A 2~ )1
E„(sharp) = ——V, R,' 1 ———+ ————— 1+— e ' 0

3 2 Ro 2 Ro 2 Ro R() /

and Eq. (4.31) becomes

(4.36)

&E„=—... E„{sharp)(a' —X')'

+—,' ', , g'1 ———+ ————— 1+—e'o' +X' —a') 1 ———+—

a 15 a ' 15 a ' »+(a' —X') —+——+—— +—— e 'so~' [.
i2 4 R, 2 Ro 4 R,

Similarly, for the special case in which a=a, Eq. (4.34) simplifies for a sphere to

(4.37)
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0 0 8 + 3 2 0 + jj+ ~35 + e 2Rp/x (4.38)

As was true for the Coulomb energy, it is convenient to separate EE„ in Eq. (4.31) into two parts which
are first order and second order in the density deviation defined in Eq. (4.13). The two components are
given by

and

2Q V a'
(s2 y2' N

4
(2) Vo

ATE@

—
(

~ 2p E~( sharp) +
9

0(2a —X ) (s —X ) ip

(4.39)

(4.40)

respectively.
As was done in Sec. IVA, we next derive a re-

sult that is valid when the range a is small com-
pared to the nuclear radius. For this case the im-
portant contributions to Eqs. (4.39) and (4.40) come
from the regions where

I r, —r, l
a. As before,

we approximate these expressions by extending
the region of integration in Eq. (4.39) and one of
the regions of integration in Eq. (4.40) over all
space. We then find that

(&2 y2) E( P)
3( 2 y2)

and

N {+2 g2)2 N( P) 3 (+2 y2)2

n.E„=—a'. .. E„(sharp), (a' —2X')
N (s2 y2)2 N

2s V,a'R, '
3(+2 y2)2 (4.41)

V. SUMMARY AND CONCLUSION

We have seen that the calculation of various
quantities for an arbitrarily shaped diffuse-sur-
face density distribution becomes especially sim-
ple when the diffuse surface is generated by folding
a short-range function over a uniform sharp-sur-
face distribution of appropriate shape. For ex-
ample, the rigid-body moment of inertia for rota-
tion about an arbitrary axis is equal to the corre-
sponding moment of inertia for the sharp surface
plus a constant that depends only on the mass of
the system and the width of the diffuse surface.
An even simpler result is that the ( ordinary) mul-
tipole moments of the diffuse-surface distribution
are identically equal to the corresponding multi-
pole moments for the sharp surface. By way of
contrast, the analogous results for a diffuse-sur-

face distribution obtained by generalizing a Fermi
function are complicated expressions that must be
evaluated numerically.

Our result for the rigid-body moment of inertia
was seen to be of practical importance in connec-
tion with such questions as the production of com-
pound nuclei in heavy-ion reactions, especially for
light nuclear systems. The increase in the mo-
ment of inertia increases the critical angular mo-
mentum above which compound nuclei are no longer
produced. This effect was seen to be possibly re-
sponsible for the recent production experimentally
of compound nuclei with a higher cross section
than was predicted by the Bass model on the basis
of sharp-surface moments of inertia.

We also calculated the diffuse-surface correc-
tions to the Coulomb and nuclear potentials and to
the Coulomb and nuclear energies. These expres-
sions were specialized to the case of a Yukawa
foMing function, although some of the results are
more general. The diffuseness correction to the
Coulomb potential is proportional to the square of
the surface taickness and to the nuclear density.
The second-order diffuseness correction to the
Coulomb energy is independent of shape, but the
third-order correction is proportional to the sur-
face area. This increases slightly the effective
nuclear surface tension. The effect of the diffuse
nuclear surface on the nuclear potential and on the
nuclear energy can be partially absorbed by cal-
culating these quantities for a sharp surface but
with a two-nucleon effective potential whose range
is appropriately increased. However, for certain
purposes, such as describing elastic and quasi-
elastic scattering, where the tail of the ion-ion
potential is relevant, the diffuseness corrections
to the nuclear potential and to the nuclear energy
are important.

In summary, there are many phenomena in nu-
clear physics where the diffuseness of the nuclear
surface must be taken into account. The logical
way to generate this diffuseness is by folding a
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short-range function over a uniform sharp-surface
distribution of appropriate geometrical shape. We
hope that the results presented here will prove
useful in future studies that take into account the
diffuseness of the nuclear surface.

We wish to thank W. M. Howard, S. J. Krieger,
W. D. Myers, G. R. Satchler, and W. J. Swiatecki
for helpful discussions.

APPENDIX A: CONVERSION OF A VOLUME INTEGRAL
INTO A SURFACE INTEGRAL BY USE OF A SINGLE

DIVERGENCE RELATION

1. General method

Consider a volume integral of the form

)s( )= —(~) ( —(( -ss)e ' ' (A10)

e& ikr12

Z K12

=-—v» 1-(l vikr )e""»
2

xmas

3 12

(All)

Before proceeding further, we need to make two
assumptions regarding the behavior of f(r») and
its Fourier transform f(k):
(i) First, we assume that

for a delta function, Coulomb potential, and Yuka-
wa potential, respectively.

We note that by making the substitution -I/a-

haik

in Eq. (AV) we obtain

(A 1)

where the integration extends over a volume en-
closed by a sharP surface and where

f (r ) =f(r„),
which implies that

f (k) =f(k}.

(A12a)

(A12b)

r12 = r1 —r2 . (A2)

The problem is, for an arbitrary function f(r»),
to find a function F(r») that satisfies the diver-
gence relation

f(r») =&, [r»F(r»)]. (A3)

Then, by virtue of Gauss's divergence theorem
Eq. (Al) becomes

(A4)

where the integration is over the surface of the
sharp shape.

Relations of the form (A3) are already known to
exist for the delta function

In other words, both f and its Fourier transform
depend only on the magnitudes of their arguments.
(ii) Next, we assume that the Fourier transform
of f (r») exists This .implies that f(r»}-0 as r»
—~ and that f (k) —0 as k —~. In addition, f (k)
must satisfy the condition

lim k'f(k) =K, (A13)

where K is a finite constant whose value is zero
unless f(k) —k ' as k-0. Equation (A13) states
that at the origin in k space f (k) is no more singu-
lar than k '. Thus, this assumption insures that
all integrals are finite.

The above two assumptions are easily satisfied
for most functions of physical interest.

We now Fourier transform f(r») to obtain

for the Coulomb potential'

+12
=-—v

and for the Yukawa potential"

(A5)

(A6)

f( )= „,f d'ke's flkj'
2 '~' " sin kr )dk kf (k),
7T Q

which by virtue of Eq. (All) becomes

f( )=-(—
) s, „

(A14)

F(r )=- —r„-, (A8)

(A 7)

The corresponding surface functions appearing in
Eq. (A4} are therefore

I
„".I —f(kik

x(s' (kr ) —k „os(ks ))I.

(A15)

and

F(r ) = ,'r„-- (A9)
Upon comparing this result with Eq. (A3), we see
that
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2F(r„)=- — r„
2

k '[1 —(I-ikr»)e""»] 0-k

f(-k) =f(k),

then Eqs. (A15) and (A16) become

(AIV)

—f (k)[sin(kr») —kr» cos(kr»)],x dk

0

(A16)

a general expression to be used in the surface in-
tegral of Eq. (A4).

If f (k) is an even function of k, i.e. , if

This means that the integral would have a simple
pole at k =0 if f(k) —k '. However, such an inte-
gral can easily be evaluated by use of complex
contour integration because we need only evaluate
the (principal-value) residue contribution from a
pole situated on the contour. " Therefore, if f(k)
is more singular than k ' at k =0, the integral is
not finite.

2. Application to specific functions

z
f(r») = —~ V,

—f (k)[1 —(I —ikr)e»C~»]
k

and
(A18)

oo

F(r») = — r» ' —f (k)[1 —(1 —ikr»)e'~'»],

(A19)

respectively. Equation (A19) is especially useful
for evaluating the surface function by complex con-
tour integration. Note that the first term in Eq.
(A19) identically vanishes. We retain this form in
order that the integrand be explicitly well behaved
at k =0.

An examination of the behavior of the integrands
of Eqs. (A16) and (A19) for small values of k re-
veals again the necessity for the condition (A13).
In Eq. (A16), we obtain the limit

and

~-re /a
-r~ /a

a(&/a&(
(A20a)

-r~/a 8
( -r»/a)

s (I/a) (A20b)

The error function appearing in Table I is de-
fined as

erf(x) =— e dt.2
v~w

(A21)

In Eqs. (A8)-(A10) we have already listed the
surface functions F(r») corresponding to a delta
function, Coulomb potential, and Yukawa poten-
tial, respectively. In Table I we present some
additional functions derived by use of Eq. (A16)
or (A19).

These functions have been checked with Eq.
(A3) by taking divergences with respect to r, . In
addition, the exponential and r~e "i~ ' functions
have been checked using the formulas

k '[sin(kr») —kr» cos(kr»)], = k'

This k' term would cancel the k ' singularity in

f(k) for the limiting case, which would make the
integrand well behaved at k =0. Similarly, in Eq.
(A19) we have the limit

This is a standard library function on most n1odern
computers and is thus easily computed.

3. Other methods

We now consider two special functions of physi-

call

inter e st whose Four ier tr ansfor ms do not exist

TABLE I. Single divergence functions.

Volume
function

f(&f2)

Fourier
transform

Surface
function

+(&f2)

12
-2

i2

7 i2/a

~ e-"f2/'
12

e -r 122/a2

4
~2g a (y2+g/'a2)2

i/2 (3/a2 y2)
2

(k2+ 1/a2) 3

-a2k2/4

2v2

-3 r r 2

2 —e "»/' 2+2~+
a

f2 / f2 f2 +f2—a — —6+e i2' 6+6—+3 +
a a a2 a3

f2 +f2 „2/ 2——e "i2 'a + —erf—
2 a a 2 a
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A = -,'(x'e, +y'e, ) (A23)

and where e, and e, are unit vectors in the x and y
directions, respectively. From the divergence
theorem it follows that

&.(» v) ~ f=&.*"(+'s')
V

= —,po ds xe„+ye, . (A24)

The second example is the sharp-surface gen-
eralized multipole moment defined in Eq. (2.24).
The integrand of this expression satisfies the di-
vergence relation"

r"'y, „(8,y) =V N(r),

where N has the two equivalent forms

N( )=(Ir )) '( )
*'""R„"((t,() (A)sa)

l/2
N(r)=-(2L, +0+3) ' r '"'Q» '"(8 P)

L, +1 I,M

(A26b)

The function 'JJ~» „(8,»t)) is a vector spherical har-
monic" defined by

Q,"„)(8,y) -=g (Z, 1, m, q ~
f.M) r, (8, y)e, ,

and for which the method described in Appendix A 1

is therefore not applicable.
The first example is the sharp-surface momenta

of inertia given by Eq. (2.9). We note that

x'+y' =V ~ A,

APPENMX B: CONVERSION OF A DOUBLE VOLUME
INTEGRAL INTO A DOUBLE SURFACE INTEGRAL

BY USE OF A DOUBLE DIVERGENCE RELATION

l. General method

Consider a double volume integral of the form

I= d rd r2 r~2
V

(Bl)

where r» is defined by Eq. (A2). The problem is,
for an arbitrary function f (r,m), to find a function
F(r») that satisfies the double divergence relation

3

f(r») = Q ( ) )
(r»), (r„),F(r»), . (B2)» 8(r ) 8 r )» i » j

where (r, ), is the ith component of the vector r„
(r»), is the ith component of the vector r», etc.
Then, a double application of Gauss's divergence
theorem transforms Eq. (Bl) into

I = dS, ~ r rÃ, -r„)F r~,
S 8

(B3)

which is a double surface integral.
Relations of the form (B2) are already known to

exist for the delta function

e, =~ (e, —ie„).

Because Eq. (A26a) contains lower-order spheri-
cal harmonics than does Eq. (A26b), it is convenient
for most applications to use the former expres-
sion. However, for f, =0 one must use Eq. (A26b).
Upon substituting Eqs. (A25) and (A26) into Eq.
(2.24) and using the divergence theorem, we obtain
Eqs. (2.25).

where (abo(P»cy) is a Clebsch-Gordan coefficient,
yz (8, P) is a spherical harmonic, and e, is a
spherical unit vector defined by

47»,~,8(r, ), s(r, ), (r»)'

for the Coulomb potential

(B4)

e„=—~ (e, +ie,),

eo =e, ,
(A26}

1 1 ' 8 8 (r»)(r»),
r» 6,~, 8(r, ), 8(r, ), r»

and for the Yukawa potential'4

(B5)

The corresponding surface functions appearing in Eq. (B3) are therefore

F(r») =-—r»



K. T. R. DAVIES AND J. R. NIX

F(r»}=- 'r-» ',

(89)

for a delta function, Coulomb potential, and Yukawa potential, respectively.
We note that by making the substitution -I/a- +ik in Eq. (86), we obtain

+ ikri2 y
3

ir» k i(car iar i r, (810)

(811)

which is a completely generaI expression for the surface function F(r»)
If f(k) is an even function of k, then Eq. (811) becomes

We make the same two assumptions for f(r») and its Fourier transform f(k) that we made in Appendix
A. From Eqs. (A14), (810), and (82), it follows that

2 ~', "da
F(r») = — r» ' —,f (k)[-2+kr» sin(kr») +2 cos(kr»)],

m 0

"d
F(r») = „,r» ' f(k)—[ ikr» —-2+(-ikr»+2)e""»],i2 (2v}i/2 i2 (812)

which is especially useful for evaluating F(r») by
complex contour integration. The first term in
Eq. (812} identically vanishes. This form is re-
tained in order to have a well-behaved integrand
at k =0.

As was true in Appendix A, an analysis of the
integrands of Eqs. (Bll) and (812) indicates that
Eq. (A13) must be satisfied in order to obtain a.
finite integral. Thus, f(k) must be no more singu-
lar than 4-' at &=0.

If f(k) is very complicated, then the integration
over k in Eq. (811)or (812) might be difficult or
impossible to perform in closed form. Evaluation
of this integral numerically (e.g. , by means of
Gaussian-Laguerre or Gaussian-Her mite quadra-
ture) means that the original sixfold integral (Bl)
is reduced to a fivefold integral, namely the four-
fold integral in Eq. (83) and the extra numerical
integration over k.

2 Application to specific functions

In Eqs. (87)-(89) we have already listed the
surface functions F(r») corresponding to a delta
function, Coulomb potential, and Yukawa poten-
tial, respectively. In Table II we present some
additional functions derived by use of Eq. (Bll)
or (812). These functions have been checked with

Eq. (82) by taking derivates with respect to (r,),
and (r2), and summing over i and j. In addition,
the exponential and r~e "i2 ' functions have been
checked using Eqs. (A20).

APPENDIX C: DERIVATION OF THE EXPRESSION FOR

THE COULOMB ENERGY BY TRANSFORMING

THE INTEGRATION VARIABLES

Throughout Secs. III and IV of this paper we de-
rived all of our results by taking Fourier trans-

TABLE II. Double divergence functions.

Volume
function

f«&2~

Surface
function

-2
r12

-r)2/a

f2

122(f12

r 2

6 —2——e "&2~ 6+4—+
a a a a

12 12 -y g, f2
2

a — 24 —6—-q '12~' 24+$8—+6 -+
a a a a a

4

l —e "i2" ———erf-
a a 2 a
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forms of various functions. However, this method
cannot be used for all quantities of physical in-
terest. For example, in Sec. II we did not use this
method to derive the diffuse-surface corrections
to the moment of inertia and generalized multi-
pole moments because the Fourier transforms of
such functions as (x'+y') do not exist. Instead,
we simply interchanged the order of integration and
transformed the variable of integration to obtain
Eqs. (2.10), (2.14), and (2.21}. This latter method
is also very powerful and could have been used in
Secs. III and IV instead of the Fourier-transform
method. As an example, we derive Eqs. (4.6}-(4.8)
for the Coulomb energy of a diffuse-surface dis-
tribution by means of this alternate technique.

Upon substituting Eq. (2.4) into Eq. (4.2) and
reversing the order of integrations, we obtain

1 p

where

e-I r 2-r41 /a

II'2 —I' [/ a
(C 1)

(C2)

By making the substitution

r~ —r3u=
a

and performing the angular integrations, we ob-
tain

2 1 r, -r, i/a
Z(r„r, ) ~- -, q (au+ (r, —r, ()e 'du — ([r, —r, l

—au)e "du—
2 3 r r

(

3 2
0

(au- ~r3 —r~~)e "du

3 r21/a

(C3)

The integrals in Eq. (C3) can be performed easily,
which leads to

3r e-tP2-1 t /a

4ga3
J(r r )= (1 —e '2 '3 ')

Ir —r 12 3
(C4}

Substitution of this result into Eq. (Cl) gives

(C6)

This time we redefine variables by making the
substitution

1 p'
c=

2 4ga

where

d'r P'r,K(r„r,), (C5)
r, —r,

u a

After some manipulation, Eq. (C6) becomes

a 00

K(r„r,)= 1 —e ~3 ~&'~&+~e "~ '4 ' e ~ du'—
4 Ir, —r, i 0

IP g I/a
dg' --.'e' '.-'4 '

r3-P4 I /a

e ~dg'

(C7)

The integrals in Eq. (C7) can be performed easily,
which leads to

4ga3" 4 Ir3-r4I

1 i r, —r4 t -[ r" -r ) /a
2 a

Substitution of this result into Eq. (C5) gives Eqs.
(4.6)-(4.8), which were originally derived by
means of the Fourier-transform method.

This method of transforming the integration vari-
ables could have been used for deriving all quan-
tities obtained in this paper for the Yukawa folding
function. However, when it can be applied, the
Fourier-transform method is somewhat more
powerful and the derivations using it are some-
what simpler than for the alternate method. Also,
the Fourier-transform method was used in Secs.
III and IV to derive general expressions for arbi-
trary folding functions. These expressions are
usually handled fairly easily by means of complex-
variable integration or some related technique.
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