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A density-dependent 8 interaction is used to calculate pairing matrix elements for actinide proton and neutron

orbitals. Tables of the matrix elements are given. The Seniority-one spectra of odd-mass actinides are analyzed

in terms of these matrix elements. Several features of actinide spectra that cannot be understood with constant

pairing matrix elements are explained with the density-dependent matrix elements.

NUCLEAB STBUCTUBE Density-dependent 6 interaction; pairing matrix ele-
ments; actinides; calculated single particle levels; deduced deformations.

I. INTRODUCTION

In this work, we use a density-dependent 6 in-
teraction (DDDf) to calculate pairing matrix ele-
ments for actinide proton and neutron orbitals. We
infer reasonable values for the parameters of
the DDDI by making use of experimental data on

excitation energies in odd and even mass acti-
nldes.

Our motivations for a residual interaction of
the density-dependent form are multipl. e. The
primary motivation for this approach is the suc-
cess of the surface 5 interaction (SDf) in explain-
ing many features of residual interaction matrix
elements. "We regard the DDDI as a somewhat
less schematic form of the SDI. Secondly, the
work of Migdal ' strongly motivates the use of
a density-dependent residual. interaction, with
major contributions to the residual interaction
coming from the nuclear surface region. A third
motivation is provided by the success of a Skyrme
force' in the nucl. ear Hartree-Fock calculations,
particularly in the aetinide' region. Here, a re-
pulsive three-body force, which is equivalent in
most respects to a density-dependent two-body
interaction, is used to guarantee the saturation
of nuclear forces. Another sort of motivation,
which is basic for al. l. forms of & interactions,
is the enormous caleulational simplicity of ~

interactions vis a vis interactions of finite range.
Because of the difficulty of evaluating finite range
matrix elements, the single particle wave func-
tions used for such purposes must be severely
truncated; usually they are restricted to a single
oscillator shell. basis set and are not a good rep-
resentation of Woods-Saxon single particle eigen-
functions. With a 6 interaction, it is a relatively
simple and speedy matter to calculate two-body
matrix elements using realistic Woods-Saxon
singl. e particle wave functions. This feature of

~ interactions is important for the calculations
we discuss here as they involve some 900 dif-
ferent two-body matrix elements.

In Sec. II, we discuss the parameters of the
two-body interaction, how the parameters are
determined, and give tables of pairing matrix
elements for the 30 proton and 30 neutron or-
bitals that we have used in our calculations. We
present the Hamiltonian considered in the cal-
culations and some discussion of the proper terms
to subtract from it. In Sec. III, we present the
single particl. e spectra of odd mass actinides
calculated using the DDDI matrix elements and
compare these results with results obtained using
constant pairing matrix elements. We also pre-
sent the apparent nuclear deformations that
emerge from this calculation when the DDDI
single particle spectra are compared with single
particle spectra of a momentum-dependent Woods-
Saxon potential. '

II. DDDI AND HAMILTONIAN

The two-body interactions we consider here
are of the form

V(r, P(r)) = —V,&(r; —r, ) l- p(r)

where r denotes the two-body center of mass
coordinate and p(r) denotes a typical nuclear den-
sity at the point r. We do not want to formulate
an interaction in terms of actual densities p(r)
because that would involve a separate calculation
of two-body matrix elements for every state in
every nucleus. There are three parameters in
this residual interaction —V, B, and q. For the
two-body T=1 pairing matrix elements, the pa-
rameter V, subsumes contributions from two
different terms, i.e.,

Vo= V, + V2cr'cr,
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FIG. 1. Proton density for Z =96. The solid curve is
obtained by averaging over gquipotential surfaces. The
dashed curve is a smoothed density. The density scale
is on the left. q(r') and x' are defined in the text. The
scale for g(r') is on the right.

with the two terms having pairing matrix elements
that are proportional to each other. In the limit
B-~, the interaction of Eq. (1) is a simple 5

interaction. We have searched matrix element
sets with B=p„where p, is an interior nuclear
density. With values of 8 in this range, most of
the contribution to the matrix elements comes
from the nuclear surface region. Our motivation
here is the SDI. We should note, however, that
the DDDI with B=po will not normally give matrix
elements that are the same as the SDI. The SDI
is idealized by assuming that all relevant orbitals
have equal radial amplitudes in the region that
the two-body interaction takes place. If we ex-
amine Woods-Saxon wave functions in the nuclear
surface region and the exterior region by aver-
aging the wave function intensities over equi-
potential surfaces, we find that the differences
in these intensities are -40%. This suggests the
possibility of differences in the DDDI and SDI
matrix elements. The third parameter is the
exponent g. For neutrons, we have adopted the
value of —,

' for q, as a dependence of the two-body
interaction on this power of the density is ex-
pected on fundamental grounds. ' We mention that
one can get similar matrix elements with dif-
ferent choices of q, e.g. , q =1. For protons, we
use a somewhat more complicated form for q,
as will be discussed below.

The physical picture that we associate with
this form of the residual interaction is a simple
one. Because of saturation effects, the nuclear
interior region is an energetically unfavorable
region for nucleons to be and to interact. The
interaction that we have described in Eq. (1) is
consistent with this picture for neutrons. How-
ever, the situation for proton interactions is
complicated by Coulomb repulsion effects. Be-
cause of Coulomb repulsion effects, the density

of protons is reduced in the nuclear interior re-
gion. If we were to simply use the interaction of
Eq. (1), the interaction probability for protons
would be enhanced in the interior region. How-
ever, as this region is an energetically unfavored
one for protons, this enhancement is spurious in

our picture. We have corrected crudely for this
effect by giving q a reduced value for protons
in the nuclear interior region. Another way to
correct for this feature would be to introduce
another term into Eq. (1) proportional to the
Coulomb field at point r.

In the calculations we report here, we have
used as our typical. proton and neutron. densities
p~(r) and p„(r) the densities obtained from single
particle wave functions calculated' for '"Cm,
with the deformations e, =0.24 and e4=0.00. The
densities that we have used are the sums of the
first 96 proton wave function densities and 148
neutron densities, respectively. These densities
appear to be fairly typical of the actinides and' 'Cm is in the middle of the actinide region. The
density distribution we get for Z = 92 is quite
similar to that of Ref. 9. The matrix elements
that we have calculated with these densities do
not appear to be overly sensitive to the details
of the density distribution. After comp1. eting the
calculations reported here, we reevaluated the
matrix elements using smoothed density distri-
butions and obtained rather similar matrix ele-
rnent sets. In Fig. 1, we have plotted the density
distribution of protons that we get for the first
96 protons. The densities are given as a function
of r', where

ri =(v 2p2+u 2Z')'

and the values of the density have been averaged
over the surfaces defined by different values of

We also display in Fig. 1 the value of q(r')
used in our calculations. Most of the proton or-
bitals seen extensively in the actinides do not
have large interior amplitudes and their matrix
elements are insensitive to q(r'). However, the
proton orbital —,

' —[521) does have a, peak in the
interior region and we have used experimental
data on this orbital to guide us in the matter of
suppressing interior contributions to the proton ma-
trix elements. Specifically, we have chosen the in-
terior value of q(r ') to make the average pairing
matrix element involving the orbital 2 —[521]
slightly weaker than the average pairing matrix
element involving the orbital —,+[633] as indicated
by the experimental data.

Quite generally, our criterion for determining
the parameters of the DDDI is that the pairing
matrix elements obtained from the DDDI explain
the known excitation energies of the seniority-
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one levels in the actinides in as reasonable a
manner as possible. By reasonable, we mean
that the changes in single partie1. e energy from
one nucleus to its neighbor should be consistent
with small changes in the deformation parameters.
This criterion is useful in establishing the relative
magnitudes of the matrix elements associated
with the actinide orbitals. However, it is not too
useful for determining the overall strength of
the interaction as the calculated excitation ener-
gies of seniority-one states are somewhat in-
sensitive to the overall strength. The excitation
energies of the seniority-two states in the even
actinides are quite sensitive to the overall strength
of the interaction and we have utilized data on

high spin seniority-two states to determine the
overal. l strength. We specify high spin states
(I & 2) as these are least likely to be shifted in

energy by configuration interaction effects. These
criteria do not determine a unique set of param-
eters for the DDDI, as many different parameter
choices give similar sets of matrix elements.

For neutron orbitals, the potential that we use
ls

V~(r, P„(r)) = —23.66 MeV 6(r, —r, )

0.077

where p„(r) is the neutron density in '44Cm dis-
cussed above and has a value of 0.072 in the nu-
clear interior. The details of P„(r) depend strong-
ly on the parameters of the one-body potential.
Other choices of the single particl. e potential pa-
rameters will give rise to different densities and
hence different choices of Vo and B. The essential
feature here is that B is sl.ightly larger than the
interior neutron density.

In Table I, we have tabulated the neutron pairing
matrix e1.ements of the actinide orbitals used in

our calculations. The orbitals are identified in

terms of the asymptotic quantum numbers in Tabl. e
III. There are some rather interesting features
in these matrix elements:
1. There is an enhancement of matrix elements
for pairs of orbitals with similar values of the
asymptotic &z quantum number which we denote
the prolate-oblate effect. This effect can be seen
most easily be constructing the matrix element
ratios

This same effect has been noted" for SDI matrix
elements.
2. There is a large radial effect that is seen in
the magnitudes of diagonal. matrix elements V, ,
This effect is particularly noticeable for the

where n and P are numerical constants and 6, ,
(N, ), and ( I,. ) a. re expectation values of single
particle wave functions

8;
' = cos '(( fV, )/(.V, ) ), ,

(N, ) =(X,, +fbi, ). .

(7a)

(7b)

Each of the terms in Eq. (6) is meant to account
for one of the features that we have noted above.

For the proton orbitals, the potential we use is

V~(r, p~(r)) = —20.06 MeV6(r, —r, )

where q(r) is easily determined from rl(r') shown
in Fig. 1. The pairing matrix elements for the
aetinide proton orbitals are given in Table II and
the orbital numbers are identified in Table III.
There are the same sorts of angular and radial
correlations for the proton matrix elements that
we have noted for the neutron matrix elements.
Matrix elements involving the i „&, proton orbitals
such as ~+[642] and —, +[633] are somewhat
larger than average. Matrix elements involving
the h,&, orbitals such as —', —[523] are somewhat
smaller than average. This latter feature occurs
because the radia, l peak in the A,&, orbital is buried

j»&, orbitals seen in the actinides such as —,
'

—[752], —,
' —[743], and —,

' -[734] and the i„(,
orbital —", + [606]. For these orbitals, the diagonal
matrix elements are 0.28, 0.28, 0.29, a.nd 0.40
MeV, respectively, while the average diagonal
matrix element for neutron orbita1s is 0.23 MeV.
Most of the orbita, ls with very 1arge diagonal ma-
trix elements are far from the Fermi level
throughout the aetinide region. Orbitals such as
the ~+[631], —'. +[622], 2+[622], and —',+[624]
have much smaller diagonal matrix elements
(-0.15 MeV on the average). The reason for this
effect is that the major radial peaks of the j„&,
wave functions extend further into the low density
region than do the other wave functions. There
is a s eeond radial effect.
3. Orbitals with external radial peaks near ea,eh
other have relatively enhanced matrix elements.
This can be seen in the matrix element for the
orbitals —, +[631] and —, —[501]. For this matrix
el.ement, the quantity 8, , has the value of 0.35.
For the pairing matrix element of the orbitals
2 —[501] and —, + [624], A,. „has the value 0.26.
Rather crudely, we might characterize the ma-
trix elements as

V;, = [ V;,. x V, ,]' exp[ —n(g,. —8, ) ]
x exp[ —P(( N, —/, ) —( N, —/, ) )'],
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10

25

Neutron orbitals Proton orbita. ls

[651]

[640]

[620]

—,
"[631]

[622]

[633]

[622]

[624]

[613]

-', [615]
—", [604]

'-,' [615]
—[606]

—,
' [510]

~ [770]
-' f501]

—,'- [750]

—; [512]
—' [761]

—; [501]

—, [752]
—[503]

—,
' [752]

2 [503]

—', [743]

-', [734]

~& [725]

'-,' [716]

f660]

[400]

—,
' [651]

,'- [640]

—,
"[402]

—,
' [651]
—; [642]

[402]

—: [642]

—', [633]

-', f624]

~ [615]

[606]

—,
' [541]

—,
' [530]

—,'- [521]
-'- [770]

f532]

[521]

—; [761]
-' [512]

—, f523]

—,
'- f512]

— [752]

2 [514]

~~ [503]

-', [514]

& [505]

'-,' [505]

TABLE III. Key to orbit@is. a number operator; a,.(a,.), a fermion creation
(annihilation) operator; and the index —i, the or-
bita, l that is the time reversal partner of orbital.
i. The quantities V, , and H', , are antisym-
metrized matrix elements and are simply re-
lated to each other as

Vi.J ="'i,J+&;,-J ~ g4i, —i

where V(r, p(r)) is given by either Eq. (4) or
(8) and (C(('(r) has already been summed over spin
indices. From a Hartree-Foek point of view,
we should subtract ~ (p(r)) from each of the wave
function sums in Eq. (11) where the angled
bra. ckets around p(r) denote a ground state ex-
pectation value. However, we are interested in

the eigenvalues of a single particle potential that
varies smoothly as a function of macroscopic
parameters such as N (neutron number), Z, e„
and &~. Accordingly, we should subtract out only
a smoothly varying part of the density in Eq. (11).
We denote this smooth density as pz(r). Making
this subtraction, we calculate the contributions
to the energy from the terms S", , with

tV';;N,. N; = Jd' Q ((N( ——,'p', .

i gJ - i&o

V;, =W,

%e have chosen to include the diagonal pairing
matrix elements with the 8' matrix elements in

Eq. (9) to emphasize that a part of their contri-
bution to the total energy is already included in the
single particle energies as is the case for the
other matrix elements 5'; J-. Specifically, we
note that in the ground state of an even system

under the peak in the proton density distribution
at x' = 5.8 fm. A smaller value of B wouM give
this orbital unrealistically small matrix elements.

The Hamiltonian that we have used in this study
ls

H = uzi~ — V&, a,.a;a, a,
i,J&o
i&J

where ~~ denotes a single particle energy;

%'e must at the same time realize that oux single
particle energies are obtained from a potential
that includes pz(r)V(r, p(r)). We assume here that
the contribution from this term is accommodated
by the choice of parameters that one makes in
defining the Woods-Saxon potential. . If we were
to formulate the two-body interaction in terms of
the actual density for each configuration, this
wouM entail the inclusion of an extra term D in

the evaluation of the energy for each configuration
with
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(13)

The effect of res idual interactions is to smooth
out the true density distribution and hopefully
the contributions from this term would be smal. l.
For seniority-one and seniority-two states, Eq.
(12) must be modified slightly; we have taken
those changes into account in our calcul. ations.

The smoothed density distribution that we use
is constructed in two stages. First the density
is averaged over surfaces defined by values of
r' at intervals of 0.058,. This is the density dis-
tribution displayed in Fig. 1, and a similar dis-
tribution was calculated for many values of Z and

The resulting density distributions were then
fitted by smooth functions whose parameters vary
linearly as functions of N and Z. For neutrons,
the smoothed density distribution we use is of
the form

ps(r) =A„o& r'& r„ (14a}

p~(r') =A, /(1 +xep[(r'-R, )/ a]}, r'&r„

where the parameters +o, A.„+„ax, and +, have
linear dependence on N and the variable r' is de-
fined in Eq. (3). The linear dependence on N is
needed to compensate for the fact that alI. den-
sities were calculated with the '"Cm wave func-
tions.

The smoothed proton density that we use is

p, (r') = A, + A, (r')', 0& r' & r„
p~(r'} =A, (exp —[(r' -ft, }/a,]'}, r, & r'& r„

(15a)

(15b)

ps(r') =A, /j 1+exp[(r' —A, )/a, ]), r' & r„
(15e)

where the parameters in Eq. (15) a,re linear func-
tions of Z. We have included the smoothed den-
sity for Z =96 in Fig. 1; it is given by the dashed
line. The structure of the smoothed proton den-
sity is complicated relative to the neutron density
because of Coulomb effects. The peak in the
smoothed density at &' - 5.8 fm is just the reflec-
tion of a minimum in the proton single particle
potential, . For both proton and neutrons, most
of the contribution to the matrix elements comes
from the surface region. In this region the true
density and the smoothed density are quite similar.

With all. of the matrix el.ements in hand, the

energies of the seniority-one states are calcu-
lated using the method of correlated quasi-par-
ticles. " A separate calculation is carried out
for each state, blocking the appropriate level in

each instance. The procedure is to assume a set
of input single particle energies, &~, and with
them calculate the energies of the seniority-one
states. The single particle energies are then
adjusted to bring the calculated energies into
agreement with experimental observations. The
single particle energies determined in this way
will be referred to as extracted single particle
energies. Having determined the extracted single
particle energies, we calculate the excitation
energies of seniority-two states in neighboring
even isotopes. These energies are brought into
overall agreement with experiment by adjusting
V,. The extracted single particle spectrum is
then recalculated. Fortunately, the single par-
ticle level spacings are relatively insensitive to
Vo and this iteration procedure is possible.

Before examining the results of the calculations,
it is worthwhile to point out the signatures of
orbitals with pairing matrix el.ements that deviate
substantially from the average values. Seniority-
one states in which the blocked orbital has stronger
then average matrix elements will. appear at
higher excitation energy than those involving
blocked orbitals at the same single particle energy
but having average matrix elements. For con-
figurations having a blocked level with weaker
than average matrix elements, the converse is
true. These effects are particularly apparent
when the orbital. of interest is slightly below the
Fermi level. . In nuclei, these effects may be ob-
scured by shifts in the single particle levels due
to changes in the nuclear deformation or particle-
vibration couplings.

We emphasize that the extracted single particle
energies that we calculate are meaningful. only
in the context of the residual interaction that we
consider. It would be incorrect to use these single
particle energies with different pairing matrix
elements, e.g. , constant matrix elements.

III. RESULTS

For this analysis, we have taken data compiled
for a forthcoming review article" on single par-
ticle states intheactinides. For our study of the
neutron matrix elements, we consider levels in
'"U, "'U, "'U, ~"Pu, '"Cm, "Crn, and the two
153 neutron isotones ' 9Cm and "Cf. For' the
study of the proton matrix elements, we consider

in ~~~Pa 23"Np

'"Es. In Figs. 2 and 3, we have plotted the ex-
perimentally observed excitation energies of the
s enior ity-one conf igurations, distinguishing be-
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FIG. 2. Experimentally observed energy spacings of
seniority-one odd-neutron nuclides. The dashed line in-
dicates the ground state.

the spacings are similar for other nuclides having
the same values of Z or N.

In Fig. 4, we have plotted the extracted neutron
single particle energies obtained from the data
of Fig. 2, using the DDDI. There are some note-
worthy features in the extracted level spacings.
We first note the comparatively reasonable be-
havior of the orbital —, —[743] relative to the
orbital —, +[631]. In Fig. 5, we display the ex-
tracted spacings for these orbitals using constant
pairing matrix elements. In '"Pu, there remains
something of a problem with either set of matrix
elements. There is a possibility of distinguishing
between the two sets of matrix elements here.
With constant pairing matrix elements, one cal-
culates that in "'U, the orbitals —, —[743] and
—,+ [631] have approximately equal occupation
probabilities; (N&, ) =0.17, (N&, +) =0.19. With
the DDDI matrix elements, the situation is quite
different; we get (N,&, ) = 0.21, (N&, +) = 0.11.
Here the bracketed N is a ground state occupation
probability. In '"U, it is somewhat harder to
distinguish between the two matrix element sets
as the energy of the —,—orbital is shifting so much
relative to the &+ orbital, using constant matrix
elements for the analysis of "'U and '"U. For

tween particle and hole excitation for convenience
in these pl.ots. For the odd-neutron nuclides
'"U-'"Cm, the energies are plotted relative to
the orbital —, +[631]; for 153 isotones, to the
orbital —, + [620]. All proton energies are plotted
relative to the orbital —,'+ [642]. By and large,

2.0
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l.6—
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7/2 + [6I3]
I/2 + [620)

I.2—
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I.O—
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0.6—
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9/2 —[734]

7r2+ [624]

0.6—
3/2 —[52 I]0.4—

0) 0.2—

p —5/2 + [642]
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-0.6—
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2 3 Ip 24 IA 2498k
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233 237

235U

249 251Cm-

I

245
Cm

24 Ip 247CPu Cm

FIG. 3. Experimentally observed energy spacings of
seniority-one odd-proton nuclides.

FIG. 4. Extracted neutron single particle spectra using
DDDI matrix elements.
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FIG. 5. Extracted energy spacing between ~ —[743] and

2 +[631]using constant pairing matrix elements.

the DDDI matrix elements, we get (fV«, +) =0.28
and (&,/, ) =0.63 in '"U. Hopefully, the occupa-
tion probabilities in "'U and "'U can be accurately
determined in single neutron transfer experiments.
The improvement in the regularity of the —,—to
&+ level spacing with the DDDI matrix elements
is due to the larger than average pairing matrix
elements associated with the j»&, orbitals.

The other j»&, orbital that is seen in many
actinides is the —, —[734] orbital. In all of the
discussion that follows, we have taken into ac-
count the -100 keV energy shifts in the —, —[734]
and —', + [622] orbitals that are due to coupling"
with the 2 phonon in '"Cm and "9Cm. These
effects are also included in Fig. 4. In Fig. 6,
we have plotted the extracted single particle levels
in '"Cm, '"Cm, and '"Cm obtained with constant
pairing matrix elements. The apparent shift of
the —, —[734] orbital in Fig. 6 is particularly
striking and rather difficult to explain. Kith the
DDDI matrix elements, there is no problem. %e
also note that the improvements in the behavior
of the -', +[622] orbital are due to the fact that
it has weaker than average pairing matrix ele-
ments as well as being due to the strong —,—[734]
matrix elements.
There remain several features of the extracted

neutron single particle spectrum that are not
mell explained by the DDDI matrix elements.
These features are also not explained in the con-
text of constant pairing matrix el.ements. The
first such feature is the large increase in ex-
citation energy of the particle orbitals 2+ [620],
—,'+ [613], and —,'+ [622] on going from '4'Pu to' 'Cm. This shift cannot be easily understood
in terms of a deformation change of the single
particle potential. . Also, it is hard to maintain
that there has been a sudden shift in energy of
the excited orbitals due to phonon coupling ef-

fects, because the whole group of orbital. s is
shifted almost equally. A second difficulty is the
large change in the extracted energy of the or-
bital ~+[631] with mass number. The behavior
cannot be understood on the basis of reasonable
changes in the deformation parameters. It might
be of interest to examine the properties of this
state in heavier nuclei, such as 'Pu.

A most interesting open problem in the actinides
is the nature of the lorn-lying 0' excited states.
It is particularly difficult to understand why the
0' excited state in 234U is at so low an excitation
energy, using constant pairing matrix elements
and the single particle spectrum extracted with
them. The extracted single particle spectra of
'"U and "'U displayed in Fig. 4 suggest the pos-
sibility of a low-lying pairing vibration in "'U.
%e have calculated the energy of the 0' pairing
excited state in "U, using the DDDI matrix ele-
ments and previously discussed methods. " %e
get a 0' excited state at 1350 keV, in extremely
poor agreement mith the experimental" value
of 810 keV. If we assume that this 0' state is
a proton pairing excitation, me get an even higher
excitation energy. Clearly, the DDDI matrix
elements do not explain the 0+ excited state al-
though they contain the prolate-oblate effect which
has often been invoked to explain these states.

In Fig. 7, me have plotted the extracted proton
single particle energy spacings obtained with the

~.4 —'/z + [620]

l.2—

i.a —s/a - [734]

0 4 —7/, + [624]

0.2—
s/, + [622]~

O —'/, + [63'] =

P4 5C 247C 249C 25l
Cf

FIG. 6. Extracted neutron single particle spectra
using constant matrix elements.
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FIG. 7. Extracted proton single particle spectra using
DDDI matrix elements.

DDDI matrix elements. There are two aspects
of the proton l.evel spacings that are nicely ac-
counted for by the DDDI matrix elements and are
difficult to understand with constant matrix ele-
ments. The first of these difficulties is the ex-
tracted single particle level spacings that one ob-
tains for ' 'Pa using constant pairing matrix ele-
ments. This difficulty is il.lustrated in Fig. 8,
which is taken from a previous analysis" of pro-
ton states in the actinides. In Fig. 8, we s ee that
the extracted level spacings, using constant pair-
ing matrix elements, are much smaller than the
spacings one calculates with a Woods-Saxon single
particle potential. A glance at Fig. 7 shows that
the extracted single particle level. spacings ob-
tained with the DDDI matrix elements are in sub-
stantially better agreement with the predictions
of the single particl. e model calculations. We
find that the deformation parameters &, =0.18 and
&4 ———0.03 give a rather good description of the
extracted level. spacings obtained with the DDDI
matrix elements. Our deformation parameters
are introduced as shape deformations of the po-
tential via the substitution

CALC.

E' =0.20
& =-0024
e =0.0

23 I

Pa
CALC.

6~= O. I 5
64=-0.02
Es= 0.0

EXTRACTED
FROM
DATA

1,2—
~ 5/2=

08 5/2—

0.4—
LK

3/2+~

— I/2+o -04—I/2+—
3/2 ~

l- +-0.8—3/2—
OC

I I/2:—

5/2-
5/2=

3/2-
I/2

t.400j I/2'—
~[660j

3/2

. [400]

~S/2 + [642~

~5/2 —t523]

~l/2 —I530]
-3/2+ teSI]
—I/2 + [400j

FIG. 8. Extracted proton single particle spectrum in
Pa using constant matrix elements.

r'- r'(sin'8$"2/&+ cos'6$ '2/s

+ (2v)" [6, &(8)+ 6. &(5)]]
and correspond very closely to those of Nilsson
for the quadrupole and hexadecapole deformations.

The second feature that we would like to explain
in terms of the DDDI matrix elements is some-
what l.ess obvious. In Fig. 3, we see the change
in energy spacing of the orbitals —,

' —[523] and

2+ [ 642] in the isotopes "'Np, '"Am, and '~Am.
We note that this spacing is about the same in
"'Np as it is in "'Np and it gets smal. ler in '"Am
(-28 keV). This picture is not changed when the
extracted level spacings are determined with
constant pairing matrix elements. It is easiest
to interpret these changes in the spacing by
changing the &4 deformation parameter in '"Am,
making it more negative than it is in either "'Np
or '~Am. Although this is not at all impossible,
it seems somewhat implausible that the E., defor-
mation parameter should be fluctuating in this
way. Further, the deformations inferred for
neighboring even nuclides from Coulomb excita-
tion experiments" indicate that the &4 deforma-
tion parameter is continuously becoming more
positive with increasing mass. The direct de-
termination of deformation parameters is, how-
ever, still a rather unsettled" subject. The
DDDI matrix elements provide a more plausible
picture of the c, deformation parameter here.
ln Fig. 7, we see that the —,

' —[523) orbital is
dropping continuously relative to the —', +[624]
orbital in this region. This is consistent with
a monotonic increase of the &, deformation pa-
rameter with increasing mass.

Using the single particle spectra extracted with




