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Pole in kcot8 for doublet, s-wave, n d scattering
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The position of the pole in kcot8, for doublet, s-wave, n-d scattering, and its residue are shown to be
correlated with the doublet scattering length. An approximate, analytic solution of the X/D equations of
Barton and Phillips indicates a linear dependence on the doublet scattering length for the pole position, and a
quadratic dependence for the residue. These relationships are tested by means of exact numerical solutions of
X/'8 equations and three-particle equations with separable two-particle interactions, and found to be
qualitatively correct. The approximate, analytic solution of the N/D equations leads to a formula for kcotS„
which is of the same form as the phenomenological formula used previously by other authors. A formalism is
presented which makes it possible to parametrize the effect of the omitted portion of the left hand cut in an
N/D calculation.

'NUCLEAR REACTIONS Pole in n-d, doublet, s-wave k cot4, N/D calculations",
solutions of three-particle equations with separable interactions.

I. INTROOUC'AON

The earliest separable potential calculations on
the three-nucleon system indicated that there are
strong correlations among the low energy observ-
ables; correlations in the sense that a calculation
which gives good agreement for one observable,
gives good agreement for other observables. In the
calculations of Aaron, Amado, and Yam, ' and of
Phillips, ' a parameter was adjusted to give agree-
ment with the experimental value of the doublet
scattering length u, and it was found thai a good
value for the triton energy automatically resulted.
Later calculations by Phillips' indicated that there
is an approximately linear relationship between the
triton energy and a; a result which has been con-
firmed in great detail by Brady et al. '

Using dispersion relations, Barton and Phillips'
found that the low energy values of the double, 8-
wave, phase shift 5 are determined mainly by u,
and the single-nucleon exchange cut. The position
of this branch eut and its discontinuity are deter-
mined by the binding energy of the deuteron, and
the asymptotic normalization of the deuteron wave
function. These parameters are known from the
two-nucleon system, which implies that the low
energy variation of 5 is determined mainly by a.
This conclusion is strengthened by the detailed X/
D calculations of Avishai, Ebenhoh, and Rinat.

Using his three-particle boundary condition mod-
el, Brayshaw has also found strong correlations
among three-nucleon observables. He has found
that even the low energy breakup cross sections
are closely correlated with a.

It has been known for some time that the doublet,
s-wave effective range quantity k cot5 has a pole

in it, just below the elastic threshold. This pole
has been incorporated in the phenomenological
formula, which has been used to parametrize the
low energy variation of k cot5."Here w'e shall
show that the posltlon of tllls pole and its residue
are closely correlated with a. This wiB be demon-
strated by means of an approximate N/D calcula-
tion, and by exact solutions of three-particle equa-
tions with separable interactions.

The X/D formalism that we shall use, makes it
possible to include as much of the left hand cut as
desired, and to parametrize, in a systematic way,
the effect of the neglected portion of the cut. In
its simplest version the formalism cor responds
to the equations, which Barton and Phillips' solved
by means of the approximate analytical method of
Pagels. ' Here we shall present another approxi-
mate analytical solution of the same equations,
as well as exact numerical solutions. It is in-
teresting that our approximate solution of the N/D
equations gives a foxmula for k cot6 which is iden-
'ical in form to the phenomenological formula re-
ferred to above. " Furthermore, our formula
predicts an approximately linear dependence of
the position of the pole in A cot5 on a, and a quad-
ratic dependence on a, of the residue. Our exact
numerical calculations give reasonable agreement
with these predictions.

The iV/D formalism we use is presented in Sec.
II and our approximate analytic solution of the N/D
equations is obtained. In Sec. DI a comparison is
made of the approximate solution of the N/D equa-
tions, the exact numerical solution of these equa-
tions, and the exact numerical solution of the three-
particle equations with separable interactions. Sec-
tion IV gives a summary and discussion of the results.
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II. N/D FORMALISM

z = Sk2/(4a'),

f (z) = e"sins/z1/'.

(3)

(4)

In general, "' this amplitude has a right hand branch
cut due to two- and three-particle unitarity, and a
left hand branch cut associated with the exchange of
nucleons and mesons. The cut structure is indi-
cated in Fig. i. Here we shall ignore the three-
particle unitarity cut; i.e. , we shall assume that
the phase shift is real for all positive energies.
The justification for this is that we are only in-
terested in studying the amplitude very close to
the elastic threshold. The inelasticity could be
included by means of the Frye-%arnock equa-
tions. '" Taking 5 to be real, we have from Eq.
(4),

Imf '(z)= —z'/' (z ~0).

The discontinuity across the single-nucleon ex-
change cut can be calculated from the Born term
that arises in the three-particle formalism of Alt,
Grassberger, and Sandhas. " The on-shell Born
term is given by"

2/
' g(l 2 k'+ kl)g() 2k+ k'()6, a'+(')k2+P Ff = — dx (6)

z=k' k/k2,

z plane

Multiple-nucleon exchange and
exchange of plans

-3 - II
Sing I e-nucleon

exchange

Three-particle
unit Qrlf')f

Two-particle unitarity

Here we shall only be concerned with the doublet,
s-wave, elastic amplitude for n-d scattering. This
amplitude is given by

f=e' ' 'sinS(k)/k,

where g is the phase shift and k is the w'ave number
in the e.m. frame. The total three-body energy
E, the deuteron binding energy a', and k are re-
la,ted by the on-shell condition

E= —@+4& .
%e are working in units in which A' divided by the
nucleon mass is one. Following Barton and Phil-
lips, ' we introduce a dimensionless energy vari-
able and amplitude by means of the relations

As is well known, "an amplitude that satisfies
Eq. (S), and has the left hand cut structure of Fig.
1 can be written in the form

f (z) =N( )z/ D( )z,

where N and D satisfy the equations

1 '/2 D(y)lm f ( v)
iv(z) = — dy

W

z " N(y)
D(z) =1-— dy

y —z)

(10)

Upon substituting Eq. (11) into Eq. (12), we find
that D ean be obtained from the equation,

iz' ' ' ' dvD(v)Imf(y)
D(z) I 1/2 I 1/2 1/2)(z +$

(13)

Equation (12) implies that N can be obtained fron1
D by means of the relation

fi(z)=-z '~21mD(z) (z~0).
From Eq. (13) it follows that D(z) is an analytic
function in the z plane, except for a cut along
the negative imaginary axis, beginning at -i/WS.

Since, in general, it is not practical to include
all of the left hand cut, it is desirable to have a
systematic way of parametrizing the effect of the
omitted portion of the cut. This can be done by
breaking the integral in Eq. (13) into an integral
on the range -~ to —b, say, and one on the range
—b to —3. The integral on the range -~ to -b can
be expanded as a, power series in z'/', which will
converge when ~z

~

&b Thus we can r. eplace Eq.
(13) by

D(z) = 1+ c„(—z)"/'
n=

where g is related to the spatial part of the deute-
ron wave function ~B) by"

gV) =- (&'+P')&p ~&&~4&, (7)

and has the normalization

g (ie) = 4a/[r(1 —ap)] .

Here p is the effective range for the deuteron. In
general, of course, the Born amplitude depends
on the deuteron wave function; however, its dis-
continuity across the single-nucleon exchange
cut, which comes from the vanishing of the de-
nominator in Eq. (6), depends only on n and p
and ls given by

[fs(z+ie) —f s(z —ie)]/(2i)

=Imf s(z+ie) =2//[&3(1 —np)z], —S~z =

FIG. 1. Cut structure for elastic, n -d, partial. wave,
scattering amplitudes.

iz'/' '/' dy D(y)imf (y)
1/2 (zl/2 + y1/2) {Is)
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where the e„'s are to be taken as adjustable param-
eters. It is easy to verify that they are real.

The equations solved by Barton and Phillips' are
recovered if b is taken to be 3, and only the n = 1
term in the series is retained. We shall now derive
an approximate analytic solution of this truncated
equation. We write the equation in the form

dy D(y)f, (v)
D(z) 1 sclz +

2 1/2i 1/2 1/2) ) (16)2F g $ (Z +Q

where the closed contour C goes around the single-
nucleon exchange cut in the counterclockwise
sense. If we take g in Eq. (6) to be the constant
value given by Eq. (8) we obtain

2 5@+3fs( ) +3 (I )
QO

where Q, is an associated Legendre function of
the second kind. " It possesses an expansion of
the form"

This expression for z' 'cot5 is of the same form as
the phenomenological formula referred to above. "
In particular there is a simple pole at z =z„and
in our approximation, the pole position is simply
related to the doublet scattering length by means
of Eqs. (23) and (24).

If we take a —-0.2316 frn ' and p= 1.701 fm [see
Sec. III], then from Eq. (19) we find 2= 1.524,
which is approximately 2@~3=1.549. Thus for

5
reasonable values of P, the second term in the
denominator of Eq. (24) is negligible compared
with the first. If we approximate d everywhere by
2v-,' and use Eq. (3), we find that

P cot/= 1 —
2

—+ -- 1

2- 8 3
ko = —— ~ma,

5~5

residue= lim (k' k,')k cot6

q, (r)= P --, ..., (~&j-I). (1

Since we are only interested in small z (large r),
we shall approximate Eq. (I'/) by

d 8f ~(z) =
z+-,' 5v 3(1 —o.p)

SubstttutlIlg this approximation into Eq. (16), we
f1nd

D(z) = 1 —ic,z'/'+ (20)
(z / IV+:~ -I-

where D(- —,'-) can be found in terms of c, by simply
setting z = ——,

'- in the equation. By combining Eqs.
(4), (10), and (14) it is easy to show that

HeD(z), /, HeD(z)
N(z) ImD(z) '

(21)
Using this relation, the unknown pa, rameter e, can
be eliminated in favor of the doublet scattering
length a. When this is done, we obtain the result

z'"cote=

x ———1 —M —(z, + =',), (22)
5z, P

p 3P 'z,

[1+(~5d/2) ](36/5)
(5d/3)+ [1 (v 5 /f/2)]6

'

5~5
'

~5
(27)

Thus our approximate solution of the N/D equa-
tions suggests that the position of the pole in k cot5
varies linearly with a, and the residue varies
quadratically. In the next section we sha, ll present
results of exact numerical calculations, which
mere carried out to test these implications of our
simple formula.

III. NUMERICAL RESULTS

In this section we present the results of two sets
of numerical calculations; one set is based on the
N/D formalism of Sec. II, and the other set con-
sists of exact solutions of the three-particle equa-
tions that arise when separable potentials are used
to describe the two-nucleon interaction. In all of
the calculations we took e =0.2316 frn ' and p
= 1.701 fm. This insured that a,ll of our exact
numerical calculations produced amplitudes with
the same discontinuity across the single-nucleon
exchange cut.

The exact numerical solutions of the N/D equa-
tloIls wel e carr'led out with only the fl = 1 term
retained in Eq. (15,', with 5 set equal to 3 and with
Imf (z) taken from Eq. (9). The integral in Eq. (15)
mas replaced with a Gauss- Legendre quadrature
rule, and the resulting equation mas solved by Ina-
trix inversion. The parameter e, mas adjusted to
a set of values for the doublet scattering length g,
and for each value of g the position of the pole and
its residue mere determined.

The three-particle equations that mere solved,
and the method used to solve them are given in
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Ref. 13. Two rank one, spin-dependent, s-wave,
separable interactions were used; one employed
the Gaussian form factor, as in Ref. 13, and the
other the standard Yamaguchi form factor. " The
triplet Gaussian interaction was fitted to a deuteron
binding energy of 2.2246 MeV, and a triplet ef-
fective range of 1.747 fm. This leads to the values
for n and p stated above. The Yamaguchi triplet
interaction was fitted to the same values of a and

p, Both singlet interactions were fitted to a
singlet scattering length of -23.715 fm. The sin-
glet effective range was allowed to vary from 2.2
to 3.6 fm, so as to sweep out a range of values for
the doublet scattering length. Clearly some of
these effective ranges are unphysical, but this is
irrelevant to the point we are trying to make;
namely, that the position of the pole in t, cot5 and
its residue are determined mainly by the doublet
scattering length, and the single-nucleon exchange
cut. For each value of the doublet scattering
length the position of the pole and its residue were
calculated.

The results of the calculations are shown in Fig.
2. The simple formula results were obtained from
Eqs. (25)-(2V), and all of the residues were cal-
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FIG. 3. k cot& for the doublet, s state as a function
of & „where k is the relative wave number. Solid 1.ines
ar e from the exact% /D calculations. Dashed lines are
from Eq. (25). Circles are for either separable poten-
tial. . In all cases the doublet scattering length is 0.652
fm.

culated a,s in the first line of Eq. (27). It is seen
that the results of the two sets of separable po-
tential calculations almost lie on the same curves.
The exact solutions of the N/D equations lie closer
to these curves than the simple formula results.
Even though there are some discrepancies among
the various calculations, it is clear that the qual-
itative implications of the simple formula appear
to be correct; namely, the pole position and resi-
due are closely correlated with the doublet scat-
tering length, and this correlation comes about
mainly through the single-nucleon exchange cut.

In Fig. 3 we show the results of four different
calculations for k cot5, all of which were adjusted
to give a doublet scattering length of 0.652 fm.
There are two separable potential calculations;
one with Gaussian form factors (singlet effective
range =2.8625 fm) and one with Yamaguchi form
factors (singlet effective range =8.5190 fm). The
two sets of points are indistinguishable, and appear
as one in the figure. The N/D calculation is of the
type described above, and gives almost the same
results as the separable potential calculations.
The results of the simple formula are also shown.
These calculations strongly support the idea that
the low energy values of k cot5 are determined
mainly by the doublet scattering length and the
single-nucleon exchange cut.

-0.6 -0A -0.2 0 0.2 04 0.6
a{fm3

FIG. 2. Pole position and residue as a function of
the doublet scattering length. Solid lines are from the
exact%/D cal.culations. Dashed lines are from Eqs. (26)
and (27). Circl.es and squares are from the Yamaguchi
and Gaussian separable potentia1. calcu1ations, respec-
tively.

We have developed a systematic way of param-
etrizing the effect of the neglected portion of the
left hand cut in an N/D calculation of the elastic
amplitude for n-d scattering. From the truncated
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form of this scheme, which corresponds to the
equations solved by Barton and Phillips, ' we have
obtained a simple, approximate formula for k cot5
in the doublet, s-wave channel. This formula pre-
dicts a simple pole in k cot5, whose position varies
linearly with the doublet scattering length a, and
whose residue has a quadratic dependence on a.
Exact numerical solutions of the N/D equations,
and of the separable potential, three-particle equa-
tions give reasonable agreement with these pre-
dictions.

It is rather remarkable that the two separable
potential calculations give almost identical results
for k cot5 [see Fig. 3], since their singlet effective
ranges are quite different, and moreover the one
for the Yamaguchi potential is quite unphysical.

It is also surprising that the numerical N/D cal-
culation does so well, since there is a complete
neglect of three-particle unitarity, and only one
parameter is used to treat the neglected part of the
left hand cut. This was already seen by Barton
and Phillips. '

At the present time, we are studying the two-
nucleon exchange cut in order to see how model
dependent it is. The triton energy falls just above
the junction of the one- and two-nucleon exchange
cuts, and it is known' that neglect of the two-
nucleon exchange cut in an N/D calculation leads to a
poor result for the triton energy. %e also plan to
take into account the inelasticity by means of the
Frye-Narnock equations, in order to study its re-
lationship to the other three-nucleon parameters.
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