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The direct reaction A(a, b)B is described by exactly solving the Schrodinger equation for a few-body
Hamiltonian within a restricted model space. The model space allows for coupling to rearrangement channels

by including basis vectors classified according to different mass partitions. The nonorthogonality of basis
vectors that correspond to different mass partitions is investigated in detail. A surface approximation is
developed to understand the magnitudes of multistep amplitudes produced by channel coupling to rearranged
partitions. The surface approximation uses a separable Green's function approximation to the multistep series,
and gives a convenient closed-form expression. Finite-range coupled-channels calculations are presented for
the reactions (d, d), (d, p), and (p, p) on oxygen and zirconium targets, and for (' 0, ' 0), (' 0,"C), and
("C,"C) on silicon and sulfur targets. To assess higher-order effects, these results are consistently compared
with lowest-order results using folded distorting potentials. The calculations indicate that the effects of
nonorthogonality are small for these reactions, but the light-ion reactions showed much larger effects.
Theoretical explanations of the behavior of nonorthogonality and channel-coupling effects are given, and lead
to criteria for predicting when such effects may be important. Channel-coupling effects are expected to be
important whenever the distorted-wave Born-approximation transfer amplitude is unusually sensitive to the
intermediate channel optical potential. Nonorthogonality efFects are roughly proportional to channel-coupling
effects, but are much smaller than coupling effects except when a small mass is transferred between two large
masses.

NUCLEAR REACTIONS '60(d, d), '6O(d, p), E =10.49, 14.8, 20 MeV, ' O(p, p),
E =10.98 MeV, Zr(d, d), Zr(d, p), E =12 MeV Si( 'O, O) $1( Q C),
E =42, 48 MeV, S( C, ' C), E =41.71 MeV; calculated o(0). Folded-potential
DWBA plus multistep contribution of rearranged intermediate channels, cor-
rected for nonorthogonality. Surface approximation with separable Green's

function.

I. INTRODUCTION

The distorted-wave Born approximation (DWBA)' '
has provided a convenient framework for analyzing
direct nuclear reactions and, with several lowest-
order refinements, has satisfactorily explained
many experimental observations. However, in the
last few years improved experimental techniques
have enabled measurements which have established
that the basic one-step mechanism of the DWBA
is inadequate' ' to represent certain reactions.
These reactions are nevertheless believed to be
direct because the cross sections depend smoothly
on energy, and can be described in terms of only
a few degrees of freedom. This accumulation of
evidence has made clear that an improved reac-
tion theory is needed to include higher-order cor-
rections. A 1964publication by Penny and Satchler"
describes a procedure [now referred to as the
coupled-channels Born approximation (CCBA)] for
including excitations of the target and residual
nuclei in transfer reactions. In subsequent appli-
cations and developments" "of this method large
multistep corrections occurred for reactions in-
volving collective nuclei. In CCBA only inelastic

channels are included as intermediate states.
In this paper we are concerned with intermediate

states of a different type, namely those involving
rearrangement of the particles into different mass
partitions. As discussed in previous works" "on
this subject, the extension to intermediate rear-
rangement states introduces new difficulties. One
major difficulty in including different partitions is
that rearrangement always involves the use of a
different free Hamiltonian for each partition. Con-
sequently, the free states in different partitions
of the system are not orthogonal. In formal re-
action theory, this difficulty is avoided by intro-
ducing a different interaction for each partition,
with the result that the familiar integral expres-
sions for the amplitude can be derived. However,
if one wishes to extend coupled-channels ideas to
include intermediate rearrangement, one is forced
to contend with the nonorthogonality of the basis
states. This is the concern of the present work
regarding nonorthogonality.

In principle, a description of a direct reaction
should include effects of the many-body nature of
the system, and yet avoid calculating compound-
nucleus aspects of the dynamics. Therefore, we
shall assume that the system can be represented
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by a few-body model, with complex interactions
that allow for the loss of flux into neglected chan-
nels and the effects of energy averaging over com-
pound-nucleus fine structure. For example, a
four-body model permits a description of a pro-
cess in which two particles are transferred se-
quentially, as in the (p, d, f) contribution to the

(p, t) reaction. However, for simplicity we re-
strict the discussion to reactions such as (d, p)
and ("0,"C), in which only one particle (or clus
ter) is transferred, although it may be exchanged
several times. A three-body model suffices to de-
scribe these processes.

Within the three-body model, several different
approaches are still possible. One may attempt
to solve the model exactly by Faddeev techniques. "
However, the Faddeev approach is more appropri-
ate for mathematical proofs than for practical cal-
culations. Furthermore, if separable potentials
are used with the Faddeevtechnique, it is difficult
to maintain contact with the extensive phenomeno-
logy of optical potentials, which is based on local
potential forms.

Because the DWBA has been so successful, it
seems more natural to use a technique which gives
the DWBA result in first approximations. One
such technique, which is not subject to the in-
conveniences of the Faddeev method, is to ex-
pand the complete Green's function in powers of
the residual interaction appropriate to a selected
partition. Each term of the expansion may then be
truncated by retaining only a finite set of bound
states of each of the two fragments in the inter-
mediate partition. Kunz" has shown that it is
possible to devise such a procedure which is
equivalent to solving a certain set of coupled-re-
action-channel (CRC) equations, and that in this
approach no corrections for nonorthogonality of
the channel wave functions are required. This
approach will be referred to as the unsymmetric
interaction coupling (UIC) method. Other, more
formal, methods" "also exist which gave DWBA
in lowest order and do not require nonorthogonality
corrections.

The present work, which also gives the DWBA
result as a leading term, uses an alternative
method called the model-space (MS) method. We
adopt the same point of view as Austern, "phmura
et al. , ' and Udagawa, Wolter, and Joker. "
Instead of truncating the intermediate states in the
terms of a series, we truncate the three-body
Hilbert space 8 to a definite model space Z„, and
then exactly diagonalize the Hamiltonian within this
subspace. This procedure is perhaps as consistent
as it is possible to be, without exactly solving the
three-body problem. In the MS method, the non-
orthogonality of the basis requires inclusion in the

coupled equations of new terms, which are unlike
any terms in the familiar coupled equations for
inelastic scattering.

It is an open question whether the UIC method
or the MS method gives a better approximation to
the exact solution of the three-body model, or in-
deed to the direct-reaction amplitude for the
many-body system. This question cannot be de-
cided within the limited scope of the present in-
vestigation. However, we shall show by explicit
calculation that the nonorthogonality effects are
small, at least in certain cases. Where nonortho-
gonality effects are negligible, the differences
between the UIC method and the MS are inconse-
quential, and can be disregarded in practice.

In different (but strictly equivalent) formula-
tions of the MS, the nonorthogonality effects enter
in different ways. In the equations of Qhmura
et al. , nonorthogonality introduces off-diagonal
corrections to the energy and the kinetic energy,
as well as corrections to the optical-potential
terms. Pn the other hand, in the work of Udagawa
et al. , nonorthogonality appears only in the inter-
action terms. We have performed all our calcu-
lations in the Phmura et al. formulation. How-
ever, the nonorthogonality effects are easiest to
interpret in an extension of the Udagawa et al.
formulation. This formulation permits all non-
orthogonality effects to be related to a single
purely geometric quantity —the overlap kernel N

that describes the extent to which the basis is
nonorthogonal.

Sections II and III describe the mathematical
formulation of the MS method and the details of
the calculation for reactions involving only s-wave
bound states. Section IV describes numerical
studies of the effects of nonorthogonality and chan-
nel coupling on transfer reactions and elastic
scattering. The remainder of the paper describes
efforts to understand the magnitude of these ef-
fects and their dependence on parameters. We
regard this as the main new content of the paper.
Section V explains why the nonorthogonality effects
are small in the important partial waves, so that
the effects of channel coupling can meaningfully
be studied without including nonorthogonality cor-
rections. Section VI develops a surface approxi-
mation (SA),"by which the multistep amplitude
is reduced to ordinary DWBA amplitudes. This
simplification gives insight into the channel-cou-
pling effects. Finally, Sec. VII develops the con-
sequences of the SA for the (d, p) and ("0,"C) re-
actions, and the elastic scatterings in each chan-
nel. Rules for predicting the dependence of mul-
tistep effects on reaction parameters emerge from
this study.

The main conclusions are summarized in Sec.



14 CHANNEL COUPLING AND NONORTHOGONALITY IN. . 1741

VIII while a mathematical study of the overlap
kernel 1V is relegated to the Appendix.

II. FORMULATIONS OF THE MODEL-SPACE METHOD

In this section the coupled equations of the
Ohmura et al. 37 formulation of the model-space
(MS) method are derived. This formulation is then
shown to be equivalent to the two others which are
also derived: that of Udagawa et al. ,"and a new
formulation which is based on the Qhmura et at.
approach. The MS equations will be the basis of
actual numerical calculation, while the other two
formulations will be used for theoretical inter-
pretation of the results. The discussion is re-
stricted to coupling between two different mass
partitions, with one channel per partition. How-
ever, the results can be generalized to several
partitions, each having several channels.

We consider the rearrangement reaction A(a, b)B
in which a cluster x is transferred:

(b+ x)+ A —h+ (x+ A) .
We assume the process can be described in terms
of three distinct, inert particles b, x, and A. The
coordinate vectors for this three-body system are
defined in Fig. 1. Any two of the five vectors

r rb r~ r~„r~b

H=H + T + U + V (Prior)

=H~+ T~+ UB+ V„(Post)
(2.3)

(2.4}

corresponding to the post and prior representa-
tions. In Eqs. (2.3) and (2.4} the arbitrary dis-
torting potentials U, and U~ have been introduced
for convenience. The particular form of these
interactions is at our disposal since they are also
included in the residual interactions V and Vz..

V, = V»+ V„„-U (Prior),

Vg = V„~+ V~„—Ug (Post) .

(2.5)

(2.6)

The operators H, and H~ are the internal Hamil-
tonians of a=b+x and B=A+x:

He=» x+ Vb. y

HB= T„„+V~„.

(2.7)

(2.6)

We introduce the bound-state wave functions Q

and (t}~, normalized to unity, which are eigenfunc-
tions of these operators, corresponding to binding
energies c and &8, respectively:

and j. We are interested in two specific mass
partitions o and p which represent the incident,
a+A, and exit, b+B, arrangements, respectively.
In conformity with these partitions the Hamiltonian
can be written as

may be selected for use as independent coordi-
nates to describe the system. In the center-of-
mass frame, the three-body Hamiltonian is

H P (r„)=—e P (r„),
Hglg( r/ ) ~8 4]I( rA ) ~

(2.9}

(2.10)
H= Tb„+ Tgff+ Vbr+ Vgb+ Vg»

= T~, + T~b+ Vb„+ V„b+ Vxx ~

(2 1)

(2.2)

where T,.&
and V,, are, respectively, the relative

kinetic energy and potential energy of particles i

The essential idea of the MS method is to di-
agonalize H within a proper subspace Z~ of the
full three-body Hilbert space Z. The space Z

consists of all square-integrable functions of two
independent relative coordinate vectors of the
three-body model. The scalar product of two
functions f and g in Z is defined by

& f l
~) Jd &, f='z. .

d rzd r„„f*g. (2.11)

The model space „ is spanned by the set of vec-
tors (4 "„4&-,) defined by

e, ;=5(r —r )y (r,„),
C 8,- = 5( r —rq) Pa ( r„„),

(2.12)

'Ax

FIG. 1. Coordinates for the reaction A(a, b)B in which
a cluster x is transferred. Only two of the five coordin-
ate vectors are independent.

where the Q„(y= a, p) are the bound-state func-
tions defined by Eqs. (2.9) and (2.10). From Eqs.
(2.11) and (2.12) the scalar product of two basis
vectors belonging to different partitions a and p
is39
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xx(, ')=&d. ;(@,;.) = f d .d d( —.)d.(,.)d( ' —,)d, ( „)
= J dr drat r —r 5 r' —r& P r~„Q& r„„=JQ r„„tIt)z r„„, (2.13)

with
XXx(d, )Xx( x)= —IXX,.( .. .)X.( .)d ..

(2.21)

J=- a(A+x) ('

x(A+ a)
(2.15)

Although the . ectors (2.12) are not orthogonal, as
indicated by Eq. (2.13), they are nevertheless
linearly independent. The Appendix contains fur-
ther discussion of this point. Here we need only
remark that the overlap kerne/ N defined by (2.13)
vanishes for large x and x', because the bound
states are localized. Therefore the vectors (2.12}
are at least asymptotically orthogonal.

The MS approach assumes that the model space
Z„ includes the important parts of the full space

The exact three-body wave function 4' is ap-
proximated by the model wave function 4„which
is expanded in terms of the basis states 4,;:

d„=+)d x,( )d, , (2.16)
r=e, 8

The subscript r on 4,; should be regarded as a
continuous label and not as a variable. The un-
known functions lt„(r) are the coefficients of the
expansion and are not vectors in the model space
2~. By combining Eqs. (2.12) and (2.16) we obtain
the more familiar expression

xl(~=li (r )(t) (r,„}+y8(r&)(I)z(r„„}. (2.17)

To determine the functions X, we diagonalize H
within the model space by projecting on to the
basis vectors, as follows:

(2.14)

In these equations, J is the Jacobian of the trans-
formation from the coordinates r and r,„to the
coordinates r and r~. This quantity, which will
be of interest in the discussion of nonorthogonality
effects, depends only on the masses a, x, and A
of the three particles involved:

These equations represent the Ohmura et al.
formulation of the MS method. The differential
operators D„(E„)are defined by

D„(E ) = T„+U„—E„,
E,=E+ q„.

(2.22a}

(2.22b)

The potentials U, have been chosen to eliminate
all diagonal contributions from the residual in-
teractions vx i.e. , (4,",

i V„i C„;) vanishes for y
=n, p. This means that U and U~ are folded or,
more appropriately, averaged distorting potentials
given by

(2.23b)

K g(r, ra) = I„B(r,rq)+D (E )N(r, rs)

(2.24a)

= I8 ( r, rq)+ N( r, r8)D8(EB),

(2.24b)

K~(r, rz} = Iz (r, rz)+ D~(E~)N(r„r~)

(2.25a, )

= I 8(r, , r~)+N(r„r8)D (E,),
(2.25b)

U, (r )=(@; i&/, + &g„i@,„-)) (2 23a)

U,(r,) =(O,-„, i
V„,+ V,„ie,-„,).

This particular choice of U, is uniquely convenient
since it simplifies the form of the coupled equa-
tions (2.20) and (2.21). The folded potentials serve
to define the lowest-order theory and consequently
define what is meant by the higher-order correc-
tions. As shown in Ref. 38, use of folded poten-
tials tends to give smaller higher-order effects
than would be obtained with arbitrary optical po-
tentials. Each of the coupling kernels can be
written in two alternative forms:

&4.; iH Eiq„)=0,
(xf)8"„

i

H —E
i

xfd~) = 0 .
(2.18)

(2.19)
where N( r, rz) is the overlap kernel defined by
Eq. (2.13),

Here E is the total energy in the center-of-mass
frame. This procedure yields two coupled inte-
gro-differential equations

"( ")x'('") )xx"( .. .)x,(,)d, ,

(2.20)

N(r, r ) = Zg„(r,„)4),(r„„),
and I ~ and I~ are the ante&.action kernels

(2.26)

(2.27)

(2.28)
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The Jacobian d is defined by Eq. (2.15).
ln Eqs. (2.24) and (2.25) the terms involving

D„(E„)and N(r, rz) represent nonorthogonality
coupling. These complicated terms have no coun-
terparts in the coupled equations for inelastic
scattering. As indicated by Eqs. (2.24) and (2.25),
each of the kernels E ~ and K~ can be represented
in two alternative ways, corresponding to the two
ways of partitioning the full Hamiltonian [Eqs.
(2.3) and (2.4)]. From Eq. (2.24) and (2.25) we
have

I q= Iq +NDS(EB) —D (E )N

= I()~+ Dq(Eq)N —N D (L ), (2.29}

which is the post-prior transformation, discussed
in Ref, 25. This identity shows that the interac-
tion kernels I ~ and I~ differ by terms propor-
tional to the overlap kernel N. In the limit of or-
thogonal channel wave functions (i.e., small non-
orthogonality effects), N-0 and Eq. (2.29) yields

I.,= I,. (N=0). (2.30)

This result means that the calculation is greatly
simplified if all effects of the overlap kernel N
can be neglected. In particular, only the simpler
of the two kernels I z and I~ need be computed.
Consequently, it is useful to assess the magnitude
of the nonorthogonality effects.

The size of the nonorthogonality effects is de-
termined by comparing calculations using the full
MS equations, Eqs. (2.20) and (2.21}, with calcu-
lations in which the overlap kernel N is replaced
by zero. Equation (2.24) and (2.25) indicate that
for each kernel the form obtained by setting N=0
depends on which expression is used for that ker-
nel. From these alternate definitions, we select
Eqs. (2.24b) and (2.25a), which give K z

——Kz
——I~

The kernel I~ is often more convenient to calcu-
late and also allows for interpretation based on the
zero- range approximation. The full MS equations
now reduce to

D.(&.) X.(r.) =- I~(r, r8) X~(rs)dr~,

~A')ill('I)=- f &,.('. 's)il. (i.)&'.

(2.31)

(2.32)

Because nonorthogonality has been disregarded
in these equations, the functions X„differ from
the functions y; and give different S-matrix ele-
ments S„.. The effect of the nonorthogonality
terms is then represented by the difference be-
tween 8„„~and S . (or corresponding cross sec-
tions). We shall refer to Eqs. (2.31) and (2.32) as

the symmetric interaction-coupled (SIC) equations,
since they involve symmetric coupling kernels.

Kunz" has derived a similar, but unsymmetric,
set of interaction-coupled (UIC) equations from a
different point of view:

D„(E.)P."(r,) =- J' I,.(r., r,)X,""(r,)dr, ),

(2.33}

$„(r)-=(@„;~@,),
in place of the coefficient functions y„(r } that ap-
pear in Eq. (2.16). From Eqs. (2.16) and (2.35)
the ~, can be expressed in terms of the y„as fol-

(2.35)

a(z) x","(,)= —J (.,( ., ~)x."'"( .)&'. .

(2.34)

These equations differ from Eqs. (2.31) and (2.32)
only by terms involving N, as can be seen by Eq.
(2.29). Kunz shows that iterating equations (2.33)
and (2.34) generates a particular distorted-wave
(DW) series, in which only partitions o.'and P ap-
pear, and the intermediate-state sums in each
term are truncated to include only one bound state
in each partition. This is easily demonstrated by
using the Green's functions of D, (E„) and D~(E~) to
convert Eqs. (2.33) and (2.34) into integral equa-
tions, iterating and then inserting this result in
an integral expression for the transition ampli-
tude. The resulting DW series has intermediate
states with only one bound state in each arrange-
ment. Hence the UIC equations (2.33) and (2.34)
are equivalent to a truncation of the set of inter-
mediate states.

In contrast to the UIC equations, the MS method
is based on consistent application of quantum
mechanics within the definite model space spanned
by the set of vectors (2.12). However, both the
MS method and the UIC method involve severe
truncations of the problem. The two truncations
are not equivalent, and so the methods must be
regarded as distinct. They may be viewed as al-
ternative models of the reaction. Whether or not
their differences are quantitatively significant
would have to be decided by numerical calcula-
tion. Which method is superior might then be
investigated by comparing both with the results
of a more accurate method.

For later interpretation of nonorthogonality ef-
fects, we now present an extended version of the
formulation of the MS method that is due to Uda-
gawa et al. ,

"and establish its equivalence to the
Qhmura et al."formulation. The essential idea
of Ref. 24 is to represent C„by overlap functions
$„(r), defined by
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lows:

(.( .)=X.( .) ~ J E( .. .)Xg( s)E', , (2 &6)

(,(,)=X,(,) ~ JE( .. .)X.( .)d . (23))
where

ee e8

() —n)
'—() —n) E)'

—(1 —q) N (1 —q)
' (2.46)

Again N is the overlap kernel defined by Eq. (2.13).
Because the linear independence of the basis vec-
tor depends on properties of N, the overlap kernel
is studied in the Appendix. It also appears in the
discussion of nonorthogonality effects, Sec. V. We
have already noted that N is localized. From Eqs.
(2.36} and (2.37) it now follows that t'„and x„agree
asymptotically, although they differ at short dis-
tances.

Equations (2.36) and (2.37) can be compactly
written in terms of matrices whose elements are
kernels, as follows:

q=N N. (2.47)

Then

X =~ & +~ 8&8~

XB ~8e ~e+ 88~8 s

and Eqs. (2.43) and (2.44) become

D (E )$ = —I 8(1 N A ())kg+I~()N A

(2.48)

(2.49)

Dq(EB))g= —I~ (1 —NA()„)$~+ It(~NA()()$(). (2.50)

f=( 1+ 3fx},

where

and

We denote adjoints by daggers, e.g. ,

(2.38)

(2.39)

More briefly,

where

8
q

——I ~(1 N~A 8), 88 = It8 (1 —NAq, ).

(2.51)

(2.52)

(2.53)

(2.54)

N~( r, r')—:N*( r', r ) . (2.40)

Coupled differential equations for $ and $8 fol-
low directly from Eqs. (2.18), (2.19), and (2.35):

D, (E )( ( „)= J( ,( .)X,( ..)E „.. (2.4))

D (E8)( ('I) ——J & (' l)X ( )E'. (2 42)

Substituting Eqs. (2.36) and (2.37), we obtain

D (E~)$~ = —I~()$8+ I~BN y~,

D,(E,) ],= I'(,.(.+ IB.NX(„

(2.43)

(2.44)

where conventional operator notation has been used
to indicate multiplications of the various kernels.
These are the coupled equations of Udagawa
et al." The terms containing the N kernel are
due to the nonorthogonality of the basis.

The presence of both X and $„ in Eqs. (2.43)
and (2.44) is inconvenient. We therefore use Eq.
(2.38) to eliminate X and X~ in favor of $ and

This requires inversion of the matrix 1+X
which is discussed in more detail in the Appendix.
We have

D(E(ED))XI = —I~a XB —ND()(E())X() .

Then using Eq. (2.21) yields

D (E )x = —I~ x~+NK~~

(2.55)

(2.56}

or

ln Eqs. (2.51) and (2.52), the nonlocal kernels 'u

and ~8 modify the diagonal potentials, while the
kernels 8,8 and 88 represent renormalized inter-
action kernels.

It is important to stress thai the functions $,
and X, are different representations of the model
wave function 0„. These two functions give the
same S-matrix elements since, as Eqs. (2.36)
and (2.37) indicate, they are identical for large
~„where the S matrix is determined.

We conclude this section by deriving a third
formulation of the MS method. This form of the
coupled equations provides new insight since in
this formulation the nonorthogonality corrections
are completely isolated in nonlocal diagonal po-
tentials and do not renormalize the coupling ker-
nels. Starting with Eq. (2.20) we use Eq. (2.24b)
to obtain

x=(1+&) 't -=A (,
where the inverse matrix A is given by

(2.45) (2.57)

where ~ is a nonlocal interaction defined by
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[D,(z[)) —U(]] x() = —I' []x (2.59)

(2.60)

(2.58)

Similarly, for channel p we have from Eqs. (2.21},
(2.25b), and (2.20) L.(E.)x.(..)=S (.),

D~(&g)Xg(rg)=Sg (rg)

where the diffexential operator for channel
y(=o( or p) is

{3.1)

(3.2)

coupled radial integro-differential equations of
the form

In Eqs. (2.57) and (2.59) the nonorthogonality cor
rections are now completely separated from the
coupling terms and are represented by the nonlocal
diagonal potentials U„which produce only elastic
scattering. Because the corrections do not di-
rectly couple the channels, their effect on rear-
rangement can only be indirect, i.e., of higher
order. We comment further on this point in Sec.
V.

a' - d' Z, (Z, +1)-
2p,„dr„'

The source terms in channels o. and p are

S~'(r ) = —K~8(r, r~)X~(r~)dr~,
0

S~~"(r,) = — E~~ (r, r, )X~(r )dr
a

(3.3)

(3.4)

(3.5)

III. DETAILS OF THE CALCULATION

We direct our attention to quantitative assess-
ment of both nonorthogonality (K kernel) and chan-
nel-coupling (I kernel} effects. For this purpose
accurate numerical solution of Eqs. (2.20), (2.21),
(2.31), and (2.32) is necessary. For simplicity
we consider applications in which the two bound
states f and Q~ are s wave. Using standard par-
tial-wave techniques, i.e., expanding y and X~ in
partial waves, Eqs. (2.20) and (2.21) reduce to

&z(r r(]) = g(r r() y)Pr( y)dy (3.6a)

(M B~ (M r']) (3.6b}

Here P~( y) is the Legendre polynomial of order
Ly and

In Ref. 3V it is shown that K~8=K~~. Consequently,
the same coupling kernel, Kz(r, r~), appears in
both source terms S~~ and S~~ . This kernel is
given by

(( r„r(„)=2)z „,([t:+('„,~ d(('„,+);,)]4,( „)(,( „,)+ r,„r„„dy.(r,„) dy, (r„„) (3.7)

QAe= —J & + —
&~ -EzaB

—5A
x(a+A) '

(3 6)

(3.9}

The constants c, d, and e of Eq. (3.7) are defined
by

nel and the folded distorting potentials U and U&,

the angular momentum L is the same in both
channels. Applications requiring non-s-wave
bound states introduce the additional complica-
tions entailed by coupling of different L values.

The folded distorting potentials U and U~ are
given by

(3.10)

and e and &z are the binding energies for the
b+ x and A+ x systems. The chosen independent
variables are ~ and r~, in terms of which

+r,' ——r r,y, (3.11)

&0

with

1

V.(r. , r,„)=2& [V„,(r„,}+V„„{r„,}]dz.
-l

(3.14)

(3.15}

b 2br„„=Z'~' r '+ —r~ —r, r~y, (3.12) The following relations apply in the integrand:

1
~[(ur )'+ (Br~}'+2aBr r~y]'~'.

(3.13)

Because of the rotational invariance of the ker-

2 VX/2
2

+Ah +a +bx +a +br ~
0 0

b 4 2b X/2
2 + —Xb„+—X Xb Z

g 0

(3.16)

{3.17)
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For the p channel

(( (&s)- I ('s(&s & *]I(' (" .] I
~ .'&

with

(3.18)

v~(r„r„,)=2 J [('„,(r„,)+ v„( „)]d

x ' x
Ab 8 g Ax g +8+Ax ~

A ' A
bx 8 ~ Ax ~ +/+Ax

(3.19)

(3.20)

(3.21)

These interactions, Eqs. (3.14) and (3.18), do not
appear explicitly in the equation for the full ker-
nel, Eq. (3.7). They do, however, affect the in-
teraction kernel, since (in the post form) we have

P,"(r., r, ) = ' b(r. , r„y)f,(y)dy, (3.22)

X,(r.) =Z;(r.)+ r; B",(r.),
x'(r]]) = ~z, &g(r]]),

(3.24)

(3.25)

where If'z(r„) is a purely outgoing wave in channel

ff",(r„)= G',(r„)+z F,(r„), (3.28)

and F ~ and G~ are the regular and irregular
Coulomb functions, respectively. The quantities
T~ and T~~ are the partial-wave transition am-
plitudes for the elastic (n- n) and rearrangement
(n —P) processes. Equations (3.24) and (3.25) are
the appropriate boundary conditions for the two
specific processes A(a, a)A and A(a, b)B. When P
is the incident channel, corresponding to the time
reversed reactions B(b, b)B and B(b, a)A, we have
different boundary conditions:

X,(r, ) = T r,'If g(r. ) (3.27)

X',(r,) = Z', (r,)+ T", a', (r,) . (3.28)

An interative procedure was used to solve the
coupled equations (3.1) and (3.2). For definite-
ness, assume paxticle a is incident on target A.
The first step of the iterative procedure is to ob-
tain the homogeneous solution of Eq. (3.1), sub-

b(r. , r„y)= 2 ~&r.r,[&„,(r„,)+ &„(r.„) &,(r—,)]
x y. (r,„)y,(r„„). (3.23)

When we perform the calculations without the
overlap kernel N, we replace IP~~ in Eqs. (3.4)
and (3.5) by P~ defined by Eqs. (3.22) and (3.23).

Statement of the boundary conditions completes
the specification of the desired solution. When n
is the incident channel, we require asymptotically

ject to the boundary condition Eq. (3.24). This
zeroth-order solution is inserted in Eq. (3.5) and
the approximate source term 8~~ is then used in
Eq. (3.2). This equation is now uncoupled but is
inhomogeneous, so the general solution consists
of a constant times the homogeneous solution plus
the particular solution of the full equation. The
constant in this general solution must be chosen
to satisfy the outgoing boundary condition, Eq.
(3.25), from which the lowest-order transfer am-
plitude is obtained. This same procedure is now

repeated for the elastic channel, but now Eq. (3.4)
and boundary condition (3.24) are used and the
entix'e cycle is continued. The process is termi-
nated when the difference between amplitudes
from successive iterations is less than 1/o. In all
our numerical calculations this degree of conver-
gence required five iterations or less. It is pos-
sible that convergence may be less rapid in cases
with more channels.

Finally, we point out that our calculations use
finite-range interactions throughout and correctly
include target recoil. The results of the ealeula-
tions are presented and discussed in the n~ sec-
tion.

IV. FMPIRICAL STUDY OF NONORTHOGONALITY

AND CHANNEL-COUPLING EFFECTS

We have applied the MS method to several light-
ion- and heavy-ion-induced reactions at various
energies with different targets and projec-
tiles. The calculations were performed for the
reactions (d, d), (d, p), and (p, p) on "0 and "Zr
targets, and for the reactions "8i('60, "0)"8i
and "Si("0,"C) "8 (treated as a four-particle-
cluster transfer). We have also eondueted an
empirical. study of the sensitivity of nonortho-
gonality and channel-coupling effects to variations
in model parameters, in an effort to understand
the nature of these effects.

The results for the reactions "0(d, d)"0,
"0(d, p)"0, and "0(p, p)"0 at lab energies E,
=10.49 MeV and &p =10.98 MeV are presented
in Figs. 2-5. A preliminary report of these cal-
culations has previously been published. '9 The
parameters specifying the interactions are given
in Table I. Figure 2 displays the behavior of the
radial kernel. KL, for several partial. waves in the
"0(d, d)"0, "0(d, P)'"0, and "0(P,P)"0 reac-
tions with and without nonorthogonality contribu-
tions. The angular distributions for these pro-
cesses are shown in Figs. 3-5. In these figures
the solid and dashed curves represent the eoupled-
channels results using the full kernel K~ and in-
teraction kernel I~, respectively. The difference
between these two curves constitutes the effect
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FIG. 3. Ratio of elastic scattering to Rutherford for
~ O(d, d) 60 with contributions from an intermediate
proton channel. Coupled-channels (CC) calculations
were performed with Ez(lab) = 10.49 MeV. The calcula-
tions treat finite range, target recoil, and channel
nonorthogonality exactly, and use folded distorting po-
tentials.

r (fm)

FIG. 2. Comparison of the full (solid curve) and inter-
action (dashed curve) partial-wave kernels for

0(d, P) 70 at Ez(lab) =10.49 MeV.

of channel nonorthogonality. To assess the chan-
nel-coupling effect (i.e., that produced by the
interaction kernel alone), the dashed curve should
be compared with the dotted curve which repre-
sents the cross section without coupling.

The key results of the calculations are as fol-
lows: (i) though the contribution of nonortho-
gonality to the kernel. is large, it results in much
smaller effects in the cross sections; (ii) the
interaction kernel produces a much larger chan-
nel-coupbng effect in (P, P) than in either (d, d)
or (d, P); (iii) the nonorthogonality corrections
are larger in (d, d) and (d, P) than in (P, P); (iv)
for (d, d) and (d, p) there is destructive interfer-
ence between nonorthogonality effects and channel
coupling effects, but for (P, P) the interference
is constructive.

We have varied several parameters of the model
in an effort to understand the nature of these ef-
fects. First, the dependence of the results on

target mass was explored by replacing "0by a
heavier target, 'oZr. This change greatly re-
duced both coupling and nonorthogonality effects,
as indicated in Figs. 6 and 7, but the qualitative

results i-iv were unaltered.
Second, we investigated the dependence of the

nonorthogonality corrections on the total energy,
which could be produced by the explicit E~ de-
pendence in Eqs. (3.'7) and (3.8). Calculations for
the "'0(d, d)"0 and '60(d, P)"0 reactions, with

1 I I I

0 (d, p) 0 ( ~&, E„=0.87l Mev )

I 00

C)

I0E

b

d
= I0.49 MeV

CC KL KFRNFL

CC Ig KFRNEL

OWBA IL KFRNEL

30
I

60
l

90 I 20 I 50 I 80

FIG. 4. Comparison of CC with DKBA calculation us-
ing folded distorting potentials for 6Q(d, p) VO.
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values of E„corresponding to laboratory ener-
gies &, = 14.8 and 20 MeV, are displayed in Figs.
8, 9, and 10. The dependence on the total energy
is evidently rather weak. The energies E„and
&8 of the bound states are actually fixed by the
choice of the projectile (here a deuteron) and the
final. nuclear state. However, we can vary these
energies by altering the depths of the potentials
V~„and V~, and still maintain energy conserva-
tion. The results are strongly sensitive to the
deuteron binding energy &„. Increasing & from
2.225 to 6.68 MeV enhances the channel-coupling
effect produced by the interaction kernel by ap-

FIG. 5. Ratio of elastic scattering to Rutherford for
'O(p, p) 70, showing contribution from an intermediate

deuteron channel. The total energy is the same as in
the Q(d, d) 6Q and Q(d, p) "Q reactions of Figs. 24.

proximately 20% for '"0(P, P)"0 and 12% for
"0(d,P)"0. This increase in the multistep am-
plitude with increasing E is due to the associated
increase in potential strength of V~, . The same
parameter variation also enhanced the nonortho-
gonality effect by 10% for "0(P,P)"0 and by 6%
for "0(d, P)"0. Changing the neutron binding

energy, however, from e ~ = 3.27 to 9.81 Me V
reduced the size of both N-kernel and I-kernel
effects. This reduction was small, typically of
the order of 5%.

Increasing the absorption strength W» from
9.24 to 13.86 MeV reduced both the I-kernel and
N-kernel higher-order effects by about 5%. Final-
ly, a slight enhancement in effects was obtained
when 8'» was decreased to 4.62 MeV.

A detailed examination of all parameter vari-
ations has indicated two general. trends. First,
the nonorthogonality (N-kernel) effect is important
only when the channel-coupling (I-kernel) effect
is important. Secondly, there is a strong cor-
relation between the size of the higher-order ef-
fects and the size of the transfer amplitude, i.e.,
parameter changes that increase Ti~ also en-
hance the higher-order corrections, and vice
versa. In Secs. V and VII theoretical explanations
are given for these empirical results.

Of special interest are heavy-ion reactions,
which involve strong absorption and many partial.
waves. Application was made to the reactions
"Si("0,"0) Si and "Si("0,"C)"S (ground state)
at E~= 42 MeV (lab). In our simple three-body
model the four transferred nucleons are treated
as an inert cluster, an n particle. Now, in con-
trast to the (d, P) calculations it is no longer real-
istic to assume unit spectroscopic factor, since
in four-particle transfer the cluster parentages
are not as large. Accordingly, the coupling kernel

TABLE I. Pair potentials V;& for light-ion-induced reaction calculation. For the p+n system
the interaction is Gaussian, -&e &, X~=r/+&. For the remaining pairs the real interactions-X

are of Woods-Saxon form, -V(1+e &), X~=(r- r~A~ )/+z, and the imaginary interactions
(where appropriate) are Woods-Saxon derivatives, -4~'e &(1+e I), XI——(r-riA; ~)/gi. The
parameters are taken from Ref. 45. Distorting potentials U~ and U8 are obtained by folding.

Pair Relative energy
(MeV)

V
(Me V) (fm)

a~
(fm)

W Qg

(Me V) (fm) (fm)
rc

(fm)

p+n

n+ Q

n+~zr

p+ Q
n+ 16Q

P+ Zr
n+~zr

—2.225

3027

—6.00

2 Ed 4.66

yEg =5.87

72.71

54 54

67.46

45.56

45.34

1.25

1.25

1.31

1.28

1.48

0.65

0.65

0.66

0.66

9.24

9.20

1.26 0.48

1.25 0.48

1.31

1.28
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FIG. 6. Ratio of elastic scattering to Rutherford for
Zr(d, d) Zr, at E„(lab) =12 MeV.

must be multiplied by a factor S„s'~' defined by

$ '/e—:[$ (bx)$s(/x)] ~/~ (4.1)

10—

Zr (d, p) Zr ('~,', E„=1.2Mev)

Ed =12 MeV

KERNEL

KERNEL

IL KERNEL

Cl
E

0.1—

I

30
I

60 90 120 150 180

8 (deg)

FIG. 7. Comparison of CC and DWBA calculations for
9 Zr(d, p) Zr, at &z(lab) =12 MeV.

where S„(bx) and Se(Ax) are the spectroscopic
factors for the 6+@ and A +x systems, respective-
ly. The spectroscopic factors now influence the
dynamics instead of entering simply as normal-
ization constants, as in DWBA. The heavy-ion
calculations were performed with the parameters
listed in Table II. The computed angular distri-
butions reveal. ed extremel. y smal. l., less than 5'fp,

= 2.8 fm

I I

2
I I I

6

rp ( fm)
10

FIG. 8. Comparison of the full (solid curve) and inter-
action (dashed curve) partial-wave kernels for O(d,
P) 70 at Eg (lab) =14.8 MeV.

higher-order effects. Because the effects were
so small we have not plotted these cross sections.

To explore possible explanations for this small
effect, we have made a number of other heavy-
ion calculations. Increasing S ~'~' from 0.5 to
2.0 still. does not generate appreciable higher-
order effects. Variation of model parameters,
as in (d, P), indicated again a correlation between
the magnitude of higher-order effects and re-
arrangement amplitudes. Both the existence of
this relation and the size of higher-order effects
are consistent with the fact that the ("0,"C) par-
tial wave amplitude is much smaller than the
(d, P) amplitude. We again postpone full theoretical
explanation until Sec. V.

Our calculations indicate that higher-order ef-
fects are small for ("0,"0) and ("0,"C). How-
ever, from our analysis of these reactions, a
new type of effect, which occurs primarily in

lowest order, is seen to be important. This in-
volves the optical remnant term (V~e —Ue) of the
residual interaction V8, Eq. (2.6), which appears
in the interaction kernel. This term is neglected
in most DWBA cal.culations. Figure 11 compares
calculations with (solid curve) and without (dashed
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FIG. 9. Ratio of elastic scattering to Rutherford for
Q(d, p, d) 0 at Eg(lab} =14.8 MeV.

FIG 10 Comparison of CC calculation w'Ith and with-
out nonorthogonality corrections for 0(d, p) 70 at
&g(lab} =20 MeV.

curve) the optical remnant term. The remnant
corrections produce a 50/g increase in the dif-
ferential cross section at forward angles and ap-
proximately a 30/g decrease at back angles. This
correction does not improve agreement with ex-
periment" (the dotted curve), perhaps because
the optical potential used was determined in part
b$ fitting ( 0, C) data tn this mass region, and
in those calculations the kernel did not include
the optical remnant.

The optical. remnant is important for ("0,"C)
because Coulomb effects are important and two
units of charge are transferred, so that Z„Z~
and ZBZ~ are appreciably different.

DeVries, Satchler, and Kramer" have pre-
viously discussed the optical remnant and reported
sizable effects for single-charge transfer; they

indicate that caution should be exercised in neg-
lecting the optical remnant. This is in sharp con-
trast to (d, p) stripping, where these terms cancei
very effectively.

We conclude this section by summarizing the
results of our numerical investigations. The
effects of channel nonorthogonality are in general.
small, but can be important when the effects of
channel coupling via the I kernel. are large. The
channel-coupling effects are small for heavy-ion-
induced reactions, but for processes involving
light projectiles the effects are much larger.
These corrections are more important for elastic
scattering than for rearrangement. The reaction
"0(P,P)"0 showed the largest channel-coupling
effects. Parameter variations showed that both
higher-order effects are correlated with the be-

TABLE II. Pair potentials V;& for heavy-ion-induced reaction calculations. All interactions
are of Woods-Saxon form. For the o.'+ core systems the radius parameter is given by &OX, ~8.

For the remaining pairs the radius parameter is given by ro(A. 3+A~ ~3}. Here r() is either
&&, xI, or r~. The parameters are taken from Ref. 46. Folded potentials are not used in. the
heavy- ion- induced reaction calculations.

PR il
i+j

Relative energy
(Me V}

V
(Me V} (fm} (fm} (MeV} (fm} (fm}

~+ 12C

~+ 28S

I2C+ 28Si

I2C+ 32S

f80+ 28S ~

7,16

-6.95

20,04

26.52

72.98 1.25 0.65

105.S2 1.25 0.65

37.00 1.35 0.40 78.00

37.00 1.35 0.40 78.00

37.00 1.35 0.40 78.00

1.29 0.17

1.29 0.17

1.29 0.17

1+25

l.35
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I.O =

b O. l =

O. OI
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= 42 MeV
0
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Now the radial. coupled equation for channel n,
for example, is

ss, (x„lxZ( .&
—I ss;t ., '.&x, ( ')s '

0

f,"(r., rs)X&(r()«8, (5 4)e
~ t

e
t ~

0

where the nonorthogonality-induced potential
'lt~(r„, r' ) has the form

FIG. 11. Comparison of DWBA calculations, with and
without the optical remnant term, and experiment for the
reaction Si( 60, C) S at EI b =42 MeV. Experimental
data points provided by Peng and Maher, University of
Pit tsburgh.

1

'ttf(r„, r') =2wr„r', %. (r, r', y)P~(y)dy,
-1

(5 5)

with

havior of the transfer ampl. itude, a quantity which
is quite familiar and well understood. Finally,
our calculations have shown that for heavy-ion
processes large effects occur, mainly in first
order, if the optical remnant term is omitted
from the kernel.

V. INTERPRETATION OF NONORTHOGONALITY EFFECTS

'U, (r, r', , y) = N(r, rs)Ks (r', rs)d rs.

(5.6}

If we also make Legendre expansions for Ke and

N,

~ (2L+1) K~(r~, r )()

a=&E e ny

~ e
——N K~e.t

(5.1)

(5.2)

Clearly if N is negligible then 4& = 0 and non-
orthogonality does not contribute. To understand
what happens when N is not zero, we work in a
partial-wave representation and expand & in
Legendre polynomials:

In this section we present a theoretical analysis
of effects due to the overlap kernel N in Eqs.
(2.24), (2.25), (2.53), (2.54), (2.58), and (2.60).
Theoretical discussion of the channel-coupling
effect produced by the interaction kernel is con-
ducted separately in Sec. VII.

As pointed out in Sec. II, the overlap kernel N

contains all geometric information regarding
channel nonorthogonality. Hence, an understanding
of the nonorthogonality effects can be obtained by
studying this kernel in detail. In particular, we
wish to use the properties of N to explain why
these effects are small for the (d, p) and ("0,"C)
reactions, as the results of Sec. IV indicate.
Another aim is to predict where nonorthogonality
effects might be important.

We begin with Eqs. (2.57}-(2.60) in which the
overlap kernel enters only through the nonortho-
gonality-induced diagonal terms „and%, e, de-
fined in Eqs. (2.58) and (2.60):

(5.7)

~ (2L+1) N~(r, rs)
N~r~, rs =~ „' P~ r rs,

&a&e

(5.8)

Eq. (5.5) reduces to

ss'(, '&=) (r„, s&sx (r', , rs)xrs. (S.S)
0

To investigate the strength and range of non-
locality of %,~~ as a function of L, we study the
eigenfunction expansion of 'lt~~. For this purpose
we need the eigenvalues and eigenfunctions u~&„

and h~~„of the operator 'ag (y= a, p), i.e.,

'It~& h$„= Jt 'n)(rr, rr)hr, „(rr)drr =uz„h~r„.
0

(5.10)

We have obtained u$„and h$„ for a =d+ "0 at
E~ = 10.49 MeV by diagonal. izing the interactions
'h~ and L, . We have neglected the imaginary parts
of these two nonlocal potentials which are small
compared with their real parts. The first few
eigenvalues of L, and%. 1, are given in Table III.
The eigenfunctions are slowly varying and sur-
face peaked. The range of the nonlocality is about
the size of the target nucleus, "0. The decrease



I 752 S. R. COTANCH AND C. M. VINCENT 14

TABLE III. The four largest eigenvalues &~~„and u"„„ofthe nonlocal potentials 'Q.„and 'lpga

for each L.

l4Ln
P d

Ln

10.52
~ 2 7

l.99
0.52

-0.31
-0.29
—0.23
—0.17
—0.12
—0.08

3.57
l.38
0.44

—0.33
—0.12
—0.10
—0.07
-0.04
—0.02
—0.01

0.72
0.33

—0.34
—0.10

0.10
—0.04
-0.03
-0.03
-0.01
—0.00

—0.31
0.21

—0.GH

0 ~ 09
-0.05
-0.02
-0.01
—0.01
—0.00
—0.00

10,39
5.08
1.85
0.45

—0.22
—0.20
—0.
—0.11
—G.GS
—0.05

3.76
1.50
0.45

—0.16
0.09

—0.08
—0 ~ 05
—0.03
—0.02
—0.01

0.78
0.24
0 ~ 11
0.07

—0.07
—0.05
—0.04
—0.01
—0.00
—0,00

—0.34
-0.07
—0.03
—0.04
-0.01
-0.02
—0.01
—0.00
—0.00
—0.00

of u~~„with n suggests that for each L, 'h~ and

~~ could be well. approximated by separable po-
tentials of rank three or four.

We measure the strength of the nonlocal po-
tentials '4~~ by the maximum eigenvalue u~~o, for
each L. Table III indicates that the strength de-
creases rapidly with increasing L. The rapid
fall with L explains why only the low partial waves
(f.=0, 1, 2) are appreciably influenced by the non-
orthogonality correction in our calculations for
"O(d, d)"0, "O(d, P)"0, and "O(P, P)"O. How-
ever, these partial waves are strongly absorbed
and contribute very little. For Ed = 10.49 MeV
most of the cross section comes from the surface
partial waves, L=3, 4, and 5. Consequently the
cross section is almost unaffected by the non-
orthogonality term.

The nonorthogonality-induced potentials 'h~ and
'ill may also be represented by equivalent local
potentials 'h~ and 'lt~. The size of the equivalent
local potential provides a more familiar measure
of the strength of nonorthogonality effects. We
define equivalent l.ocal potentials &L~ by

'll'L(rz )If~~ (rz ) =— %&~(r, r' )lf~&' (r'„)dr'„, (5.11)

where g~ is the radial distorted partia. l wave in
channel y. Unfortunately, 'll~& has a pole when

g~~ has a zero. Since one could smooth out such
singularities, we simply disregard them. We have
calculated the real parts of the nonorthogonality-
induced equivalent local potentials. These po-
tentials are weak, long-ranged, predominantly
attractive, and (as mentioned above) decrease
rapidly with increasing L value. For example,
the depth of the deuteron potential is only 0.65
MeV (real) and 0.26 MeV (imaginary) for the sur-
face partial wave L=4; it is not surprising that
nonorthogonality corrections have little effect on
the cross section for the (d, d) reaction. The same

analysis for the proton channel yields quite similar
results.

The problem of understanding channel nonortho-
gonal. ity effects has now been reduced to explaining
why the nonorthogonality-induced potentials '4L~

fal. l. off rapidly with L. As shown in Sec. IV, the
full kernel K~ decreases only slowly with L. Hence
it must be the overlap kernel N~ which is mainly
responsible for the rapid decrease of ~~. We
therefore concentrate on this quantity.

A useful measure of the magnitude of N~ is the
uniform norm ~~N~~~~, which is defined as the
square root of the maximum eigenvalue of the
operator N~N~. Several. properties of this norm
are discussed in the Appendix. We have obtained
the eigenvalues of N~N ~ by numerical diagonal-
ization. They can fairly accurately be represented
by the empirical formula

x~„=st~p",

where the three constants are

(5.12)

s =0.37, t =0.59, p = 0.45. (5.13)

This exponential. behavior gives a very rapid fall-
off of strength with L In fact, ~~ N~(~ =. 0.61(0.77)~
which gives, for example, ()Nz ,[( =0.21. This-
explains why the nonorthogonality-induced poten-
tials are appreciable only for the low partial waves
L=0, 1, 2.

It is now appropriate to try to understand why
the norm of N~ has the particular behavior de-
scribed. A first step in this direction is to com-
pute the trace of NN, which gives a sum rule
satisfied by the eigenvalues of XNt:

tr(NN ) =g tr(N~N~~) = g (2L+ l)A~„. (5.14)
Ln

The factor 2L+1 is due to the degeneracy im-
p lied by rotational invarianc e. Because the eigen-
values are nonnegative, the partial trace for fixed
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4 gives an upper bound on the norm of NJ:

(5.15)

Since ~L,„decreases rapidly with n, this bound is
close enough to II Ntll to give quite a useful esti-
mate. These partial traces unfortunately do not
seem easy to compute in the general case. How-
ever, for the complete trace, we easily find a
general result:

dys d

FPf yl' g~

Ag~ b g~= —J~ r rgQ Qg
— +-
B rq„a r~, '

(5.18)

where 2& is the logarithmic derivative

=~'
JI JI I 4(„(r((,)l'I (p8(r~)l'd r d rs,

The relative rapidity of y dependence is

(5.19)

(5.16)

By Eqs. (5.14), (5.15), and (5.16), the Jacobian
determines an overall scale for the magnitude
of the nonorthogonal. ity terms. We might there-
fore expect nonorthogonality effects to be more
important for reactions having large Jacobians,
i.e. , reactions in which a small mass is trans-
ferred from a heavy-ion projectile incident to a
heavy target. However, even for these reactions
large nonorthogonality effects might be possible
only if the decrease of ~~„with L is sufficiently
slow, so that the surface partial waves can be
affected. We therefore investigate the L depen-
dence to understand when large effects are pos-
sible.

The L dependence of the radial overlap kernel
arises from the Legendre expansion, Eq. (5.8):

N~(r, rs) =2vr„r8 N(r„, r8, y)P~(y)dy.

(5.17)

Equation (5.17) indicates that a rapid decrease
with L will occur if the overlap kernel is a slowly
varying function of the angle between the channel
radii r„and r8. In fact, if N(r, rz, y) is inde-
pendent of y =r ra, only s waves are affected
by nonorthogonality corrections. Conversely, if
N is not a smooth function of y we expect many
partial waves to contribute, though each contri-
bution may be smail, because of the constraint
implied by Eqs. (5.14) and (5.15).

To gauge the rapidity of the angle dependence,
we differentiate N with respect to y holding r
and r(( constant. From Eqs. (2.26), (3.11), and
(3.12) we obtain

The right-hand side of this equation depends upon
mass ratios [J, A((A+x), and 5/(b+x)] and the
logarithmic derivatives which are closely related
to the local momenta of the bound states, and are
of the order of the Fermi momentum on the aver-
age. We therefore expect a strong dependence
of the overlap kernel on the angle between r and
r& for reactions in which J is large and the bound-
state wave functions have many nodes. ' Such
reactions correspond to heavy-ion-induced pro-
cesses on massive targets with small mass trans-
fer. However, for reactions in which appreciable
mass is transferred and the bound-state functions
are smooth, we expect smooth angle dependence
and consequently rapid falloff with L, so that
only the low partial waves will be influenced by
nonorthogonality corrections. If many partial
waves contribute and if the low partial waves
are unimportant (because of strong absorption),
then nonorthogonality will have little effect on the
cross section. For"0(d, p)"0 the bound-state
functions are rather slowly varying and the square
root of the Jacobian, which roughly determines
the overall. strength, is only J'~'=2. 60. For the
"Si("0,"C)"S reaction the bound states have a
few more nodes than in "0(d, p)"0; however,
J'~' is still only 4.S6.

A much larger Jacobian is obtained if only one
nucleon is transferred in a heavy-ion process,
for example "Zr("0, "0)'OZr, where J'(' =54.97.
It is of interest to estimate the maximum possible
effect of nonorthogonality for this reaction and
compare with the (d, P) case. For this purpose
we assume that the eigenvalues are again given
by the empirical formula, Eq. (5.12):

(5.20)

except that s and p take different values because
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for "Zr("0, '"0)' Zr the rate of decrease with
I. is slower than for "60(d, p)"0. Using Eqs.
(5.14) and (5.16) we can eliminate s and then use
Eq. (5.15) to obtain an approximate formula for
the norm of N&.

(5.21)

The value of f (between 0 and 1) that maximizes
this norm for the important surface partial wave

I, is approximately

(5.22)

For these important partial waves the maximum
norm is

(&—,)
(5.23)

where in Eq. (5.21) we have assumed P= —,„ the
same value as the "0(d, P)"0 case. For the re-
action "Zr("0, "0)"Zr with I.,=30, Eq. (5.23)
gives

llN, ll=0. 59, (5.24)

which is about 5 times larger than the norm for
'60(d, p)'~0 with I =6 (using Eq. 5.12). Since
the nonorthogonality effect in the (d, P) case was
about 10-15 /g it is quite possible that large effects
could occur in the 'Zr("0, "0) Zr process.
Equation (5.23) indicates that the largest effects
would be at low incident lab energies, which give
lower values of X; =kR. We intend to perform
this calculation and shall report the results in a
later communication.

We are now in a position to explain the con-
clusions of See. III. The limited strength and
rapid decrease with increasing L of the overlap
kernel is responsible for the small nonortho-
gonality effects obtained in the "0(d, d)"0,
"0(d P)"0 "0(P P)"0 "Si("0 "0)"Si and

Si("0, ' C) S reactions. The destructive in-
terference between nonorthogonality and channel
coupling effects for "0(d, d)"0 and "0(d, P)'"0
can be understood from Eqs. (2.49) and (2.50)
which show that the coup}ing term is proportional
to 1-+ A„8, which is mell. approximated by 1
-N N because N is small. Since N & is positive,
we obtain destructive interference. For
"0(p,p)"0 the nonorthogonality contribution was
very small, but constructive. As pointed out in
Ref. 36 for "0(p,p)"0 the nonorthogonality ef-
fects, as we have defined them, do not contribute
until. third order in K~8. This can be seen by ex-

amining Eqs. (2.20), (2.21), and (2.24b), and

noticing that ND„ f„=0, where f~ is the zero-
order solution. Hence the overlap kernel & first
enters in, the third-order ampl. itude which, as
will be shown in Sec. VII, is smaller than the
second-order amplitude. Finally, the conclusion
that nonorthogonality effects become larger when

channel-coupling effects are more important fol.-
lows trivially from Eqs. (2.56) and (2.60) or from
Eq. (2.53). These equations show that the non-
orthogonality potentials are also proportional to
the interaction kernel I which must necessarily be
larger if channel. -coupling effects are to be im-
portant.

VI. SURFACE APPROXIMATION FOR MULTISTEP
AMPLITUDES

In preparation for the analysis of the higher-
order effects of the I kernel, we now develop a
useful approximate expression for the multistep
transition amplitude. Because this approximation
exploits the surface dominance that is typical of
reactions which involve strong absorption, it is
called the surface approximation (SA). The present
derivation complements that given in our pre-
vious note" on the SA,

We begin by writing Eqs. (3.1) and (3.2) as in-
tegral equations (neglecting nonorthogonality)

Xg =f~ + Gr, I r, Xi~

8 8 8 n
X~ —-Q~IL, Xf. y

(6.1)

(6.2)

where fz", is a regular homogeneous solution of

Eq. (3.1). The partial-wave Green's functions
G~ (y = o, P) of the differentia, l operators in Eqs.
(3.1) and (3.2) can be written in the exphcit form

G~~(rr, rq) =f~(r, ) h~~(r, )/Wr~, (6.3a)

h ' dh~ df"
W~~ = f"(r) (r) —h" (r) (r), (6.3b)

O'Y

the Wronskians W$ being independent of radius.
In Eq. (6.3a) h~& is a homogeneous solution of Eq.
(3.1) or Eq. (3.2) that is purely outgoing asymp-
totically, and the standard conventions &&

—= min(r&, rz), r, —= max(rz, r&) apply. Integral
expressions for the rearrangement and elastic
amplitudes follow from Eqs. (3.24), (3.25), (6.1),
(6.2), and (6.3):

=~L, +(Wx, ) '(fg*l 4 I xg), (6.4)

=(W') '(f'
I
I'"I x;). (6.5)

Here t~ is the elastic scattering amplitude that
would be produced by the diagonal potential U

in channel o.'. Iterative application of Eqs. (6.1)
and (6.2) to Eqs. (6.4) and (6.5) generates the
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~ 4 ~

In Eq. (6.7), TI, "(DW) is the DWBA transition
amplitude:

T (DW) =(Ws) '(f *[I s~l f ~&

(6 7)

(6.6)

To simplify the higher-order terms in Eqs.
(6.6) and (6.7), we now make separable approxi-
mations to the Green's functions. In our approxi-
mation we assume all processes are dominated
by strong absorption and surface localization. For
such reactions it is sufficient, in obtaining the
multistep amplitude, to describe the propagation
of the intermediate state only in the region near
the nuclear surface. Since the Green's function
governs this propagation we need only compute
G)(r~, rr ) accurately for rz ——r& ——It to obtain good,
approximate transition amplitudes. Here 8 is the
effective nuclear radius. Because the partial-
wave Green's function is symmetric and continuous
we have from Eq. (6.3a)

f'(r„)hk(rI )=fj(r,') h5(r&)

for r& = r&. For strongly absorbing processes
the mean free path of intermediate propagation,
measured by l rz —rrl, is small. Hence the tran-
sition amplitudes should be fairly accurately re-
produced, especially for the important surface
partial waves, if one of the two approximate ex-
pressions

(Wrs) 'f)(rr)hz(ry) or (Wsj) 'fear(r'y)her(rq)

following two series:
T""=t "(W ) '&f-.""If."G.'f.'"lf:&

(6.6)

T' =T' (DW)+(W')-'& fs*lf "G"I"Gsfs"lf.
&

we find

cs" =(t~ —ts&) '.
This gives

(6.15)

Tan tm. DasTsn(DW)(I DnsDsn)-a (6 12)

Ts tv. Ts tI (DW)(I Ds cfD Ixs) I (6.14)

It is interesting that Eq. (6.14) has the form of a
renormalized DNBA amplitude. These results
differ from those given in Ref. 38, because in
that work a different method if iteration was used
in place of Eqs. (6.6) and (6.7}.

Our separable approximation for the Green's func-
tionfs(r„) h~~(r~) orfs(r„') hg (r„), isnotthebestpos-
sible approximation because of the presence of
the function h~~, which becomes infinite at the
origin. This would force the result of our sep-
arable approximation acting on any function also
to be infinite at the origin. %e know, however,
that the Green's function terms in Eqs. (6.1) and
(6.2}are regular at the origin, though they are
asymptotically outgoing. The difference between
two regular scattering solutions corresponding
to two different potentials is guaranteed to have
both of these desirable properties. %e there-
fore replace h~~ by the function h~~ given by

hk(r„) =c."(f."(r„)-f".(r„)),

where the regular function f s" is a scattering
solution corresponding to a different distorting
potential. The constant c~& is to be chosen so that
hz~, -h~~ for large rz. Since, asymptotically,

fs'- I'~~+ t~sH'L,
~Wf ~~ —F~~+ t ~~IV~,

is used in place of Gz", in Eqs. (6.6) and (6.7).
Fortunately, there is no need to decide whi. ch ex-
pression to choose, since both lead to exactly
the same approximate D% series when inserted
in Eqs. (6.6) and (6.7):

4" =(t rs-tl} '(fE-fk} (6.16)

Ds" =-(Ws) '&f s*l Is" lh~&

D,"'= (W,")-'(f,"*lf,s"
l

h-,'&.

(6.11)

(6.12)

Each of the two series can now be summed to give
the closed-form resul. ts

Ts = ts+DI, Ts" (DW)+DsSDs TsS" (DW}+ ' ' ',
(6.9)

TI,
"= Ti (DW)+DL, "Dg Ts" (DW)+ ' '

(6.10)

where

which has the correct behavior for large r&. Here
I L, is the elastic scattering amplitude ealeulated
for an optical potential obtained by adding an
auxiliary potential to the diagonal interaction U&.

Combining Eqs. (6.11), (6.12), and (6.16}gives
the final result for the surface approximation (SA}:

y 8a y8aDsa (ws)-i&fs*lfs )ha&
Tx (DW) —T~ (DW)

g
C gal

(6.17)

r ' Dm —r ' DmDes (w a)-i&f ~~l f snl hs& i (DW} —Ti (DW}
t ~ —t~~

(6.16)

The transition amplitudes Ts (DW) and Ts (DW)
are D%'BA amplitudes using the auxiliary distorted
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waves f g and f ~8, respectively, in the right-hand
side of the matrix element. The SA ampl. itudes
defined by Eqs. (6.13), (6.14), (6.17), and (6.18)
can al. l be calculated by using standard DWBA
codes. As shown in Ref. 38, a surface-peaked
form should be used for the auxiliary potential
that is added to U& to generate the quantities
T~ (DW), T~ (DW), t ~, and t ~. The motiva-
tion for this choice, and the importance of using
a realistic diffuseness for the auxiliary potential,
are discussed in that work.

Although our approximate representation of the
Green's function is not symmetric under inter-
change of r& and rz, our final results, Eqs. (6.13),
(6.14), (6.17), and (6.18), possess the symmetry
implied by time-reversal invariance. A different
separable approximation to the Green's function,
symmetric in x& and r&, is the well-known on-
shell approximation (OS)3""'4"

The quantity SL~ is the elastic S matrix for channel

y. The OS gives the same closed-form expres-
sions for the transition amplitudes, Eqs. (6.13)
and (6.14), but now Eqs. (6.17) and (6.18) become
(for OS)

Ds~,. (fr', If' If1.) 'Tl. "(DW)
~.aSa Sn

L L I
Des,. &fr", *If'. IfI.), &g'(DW)

grSS8 S8

(6.19)

(6.20)

The OS also preserves time-reversal invariance;
however, it does not have as clear a physical
interpretation as the SA, and gives less accurate
results for strong-absoprtion processes. In the
numerical applications of the OS, presented in
the next section, we find that for the important
surface partial waves the multistep contributions
are overestimated. This is because strong ab-
sorption is still present in the elastic channel
for these partial waves and the magnitude of SL&,

which is in the denominator of Eqs. (6.19) and

(6.20), is about 0.2. This conciusion, that the
OS tends to overestimate the multistep amplitudes,
was also reached by Robson" from a different
point of view.

100
17 17 ~ ~

10

1
I

b

but not for heavy-ion processes'P We would also
like to understand why these effects are larger
for elastic scattering than for rearrangement,
and why the "O(p, p)"0 reaction shows a larger
percentage effect than the "O(d, d)"O reaction.
Finally, we wish to explain why the behavior of
the channel-coupling effects is so systematically
similar to the behavior of the rearrangement
amplitude, when the model. parameters are varied.

To answer these questions we apply the SA and,
for comparison, the OS to the elastic reactions
17O( P P)17O 16O(d d)18O 28S. (16O 16O}28S.

"S("C,"C)"Sfor which exact coupled-channels
calculations were reported in Sec. IV. Using Eqs.
(6.13), (6.14), (6.17), (6.18), (6.19), and (6.20)
along with the same model parameters given in

Sec. IV, we have obtained approximate amplitudes
and cross sections. The results are displayed
in Figs. 12-16, where comparison is made be-
tween exact higher-order calculations and the
predictions of the SA and OS. Because the higher-
order effects were so small for the two heavy-
ion cases, the calculations were carried out only
through second order in the I kernel. Further-
more, to make the effects more readily visible,
we have artificially enhanced them tenfold by in-
creasing the product of spectroscopic amplitudes,
Eq. (4.1), which enters exact, SA, and OS cal-
culations. Figure 14 is a comparison between
lowest-order and second-order calculations for
"S("C,"C)"Selastic scattering and indicates
the (unreaiistic) size of the higher-order effect
which the SA and OS are trying to approximate.
The predictions of the SA and OS are shown in

Figs. 15 and 16.
It is apparent from Figs. 13, 15, and 16 that

the SA is a very good approximation for the multi-
step amplitude when strong absorption is present.

VII. INTERPRETATION OF CHANNEL-COUPLING EFFECTS 0. 1

In this section we complete our discussion of
higher-order phenomena by analyzing the channel-
coupling effects produced by the I kernel alone.
The results that are summarized in Sec. IV lead
us to ask first: why are the channel-coupling
effects important for light-ion-induced reactions

0.01
0

I

30
I

60
I I

90 120

8 (d g)

150 IB0

FIG. j2. Comparison of exact SIC with the SA and

OS for O(P, d,P) O.
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FIG. 13. Comparison of exact SIC with the SA and OS
for O{d P d) O. 0.01

10.0 =

s("c"c)»s
= 41.71 MeV

C

Exact (Second Order )

Even for "O(p, p)"0, which does not involve
strongly absorbed particles in the initial and final
states, the SA predictions are quite reasonable.
The on-shell approximation does not do well,
especially for the heavy-ion reactions, and tends
to overestimate the multistep contribution. It
appears that the OS may only be useful in a qual. —

itative fashion in contrast to the quantitative suc-
cess of the SA.

1

30
I

60
I I

90 120

e (deg)

150 180

FIG. 15. Comparison of exact second-order SIC cal-
culation with the SA and OS for S( C, 6O„C)3 S.

Because the OS overestimates the multistep
amplitudes, we use this approximation to explain,
in a qualitative fashion, the relative size of the
channel-coupling effects for light-ion and heavy-
ion reactions. For simplicity consider second
order, in which the multistep amplitudes is pro-
portiona1. to one D~ ampl. itude for elastic scatter-
ing,

b

I 0 =-~
———— No Coupling Tc "=D~ T~ "(DW) (2nd order),

and two for rearrangement,

Tz
"

D~ DI", Tz (D——W) (2nd order).

(7.1)

(7 2)

b O. l =

0.01 =

I

30
I

60
I

90 120
I

150 180

ec. rn. (d e g)

FIG. 14. Comparison of the exact second-order SIC
calculation with the lowest-order no-coupling result for

S( C, C) S. The size of the effect has been enhanced
by an unrealistic increase in the coupling strength.

Since Dc =iT~ (DW)/Sz" in the on-shell approxi-
mation, the relative size of the effect is character-
ized by the ratio of a rearrangement amplitude
to an elastic S matrix. For the important (i.e. ,

surface) partia, l waves the magnitude of S~ varies
from 0.2 to 0.5 for both light-ion and heavy-ion
scattering, while the magnitude of the rearrange-
ment amplitude is much smaller, typically 0.1
for light ions and 0.01 for heavy ions. Consequent-
ly channel-coupling effects are expected to be
much more important for light-ion-induced re-
actions (where I D~I =-', to —,) than for heavy-ion-
induced processes (where I D~I = —„to —„). This
agrees with our detailed calculations and explains
why only small effects are obtained in the heavy-
ion calculations. Physically, the effects are small
because elastic scattering is much more probable
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Exact {Second Order )

———— Surface Approximation
1

cause the proton elastic amplitude is not as large
as the deuteron amplitude, I

T~~~I &
I

T~'I.
The last phenomenon to be explained is the

strong correlation between channel-coupling ef-
fects and the rearrangement amplitude. This
result follows trivial. ly from both the SA and the
QS since in both approximations the hi. gher-order
amplitudes are approximately quadratic or cubic
functions of the DWBA rearrangement amplitudes.
Another consequence is that the L dependence
of the multistep amplitude can be inferred from
the L dependence of the DWBA rearrangement
amplitude. Because the DWBA rearrangement
amplitude is localized in L space around the sur-
face partial waves, the higher-order amplitude
is also localized, and the important contributions
from multistep proc ess es occur predominantly
at the nuclear surface. Moreover, since the re-
arrangement amplitude tends to fall off more
slowly with L than the elastic amplitude does, the
multistep contributions to elastic scatterings are
of longer range than the folded distorting poten-
tial. s.

FIG. 16. Comparison of exact second-order SIC cal-
culation with (he SA and OS for Si( O ' C, "O) Si VIII. SUMMARY AND CONCLUSIONS

than rearrangement for heavy-ion processes.
Since the magnitude of DL is less than unity we
see that third-order effects are smaller than
second-order and that, for our applications, multi-
step contributions are more important for elastic
than for rearrangement scattering.

To explain why the "0(P,P)"0 reaction showed
a larger percentage channel-coupling effect than
the "0(d, d)"0 reaction we compare, in second
order, the relative effect ~ predicted by the OS.
For "0(P,P)"0we have

ID II T (Dw)l
uc—

I Ti'(Dw)I I T,"(Dw)I
I

T Ils', I

while for "0(d, d)"0

(7.3)

I T,"(DW ) I I
&"(Dw) I

I
T«i

I
s~

I

(7.4)

Equations (7.3) and (7.4) make clear why the per-
centage effect is larger for proton elastic scatter-
ing. The numerators in these two equations are
identical. , but the denominator for proton elastic
scattering, Eq. (7.3), is somewhat smaller. This
is because the deuteron is more strongly absorbed,
I S~~l &

I
S~~l for surface partial waves, and be-

One of the major results of this work is that
channel. nonorthogonality effects can be understood
in terms of a single geometric object, the over-
lap kernel. Ã. By studying this quantity we have
been able to explain why the nonorthogonality ef-
fects were found to be smal. l. both for the l.ight-
ion- and heavy-ion-induced reactions considered
in this paper. As shown in Sec. V, the effect
is small because -V~ decreases rapidly with L.
Consequently the important (surface) partial waves
are influenced very little. Our theoreticaL analysis
of the overlap kernel leads us to suggest that
nonorthogonality effects may be more important
for processes in which a small mass is trans-
ferred from a low-momentum, heavy projectile
to a heavy target. The r eaction "Zr("0, "0}"Zr
at low lab energies would be a good candidate.
Because our applications only included two ar-
rangements, it is not clear if nonorthogonal. ity
effects will be large for the general case involving
many arrangements. It is possible, however,
that increasing the size of the model space may
enhance the importance of the nonorthogonality
corrections. Further study appears necessary
on this point.

The channel-coupling effects from the inter-
action kernel I are found to be larger than non-
orthogonality effects, especially for the light-
ion-induced reactions. Using the surface and on-
shell. approximations we are able to understand
the size and mechanism of the multistep processes.
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Although the OS systematically overestimates
the important partial-wave transition amplitudes,
it provides qualitative insight into the higher-order
effects. The SA is much more successful in quan-
titatively reproducing the channel-coupling ef-
fects. Both the SA and QS expressions depend
explicitly on the DWHA rearrangement amplitudes.
From this we conclude that the multistep pro-
cesses are predominantly surface localized (when-
ever this is true of DWBA) and that channel-
coupling effects are long ranged. Furthermore,
the fact that the S-matrix element for rearrange-
ment is much smaller than that for elastic scatter-
ing in the heavy-ion applications allows us to ex-
plain why the higher-order coupling effects are
small for these reactions. The effects of a single
intermediate channel are very small for the heavy-
ion processes. Probably the most important way
of improving the higher-order treatment of these
reactions would be to include a large number of
different arrangements and channels.

Finally, the small. ness of nonorthogonality ef-
fects suggests that there is often no practical
difference between the MS method and the method
based on the UIC equations, proposed by Kunz,
or the more convenient SIC equations of Sec. II.
We therefore conclude that reactions for which
nonorthogonality is not important may be analyzed
using any of the three approaches, since the three
formulations differ only by terms proportional
to N.

r
d r g f& (r)4)&-, = 0.

y= a, B

Consequently, g&(r) would be indeterminate up
to an arbitrary multiple of Py.

Forming the scalar product of Eq. (A2) with
4

y f & gives the result

(A2)

', dr Q ( 4)y, [ 4)~, }gy(r) =0.
y= n, B

(AS)

(A4)

Analogously regarding p„(r) and $8(r) as a column
matrix g, we can write Eq. (AS) in the form

w)=Q. (A5)

If B is linearly dependent, Eq. (A5) has a non-
zero solution (, so that w has zero as an eigen-
value. Equivalently, if zero is not an eigenvalue
of w, then B is linearly independent. This sug-
gests our strategy for proving linear independence:
we simily compute eigenvalues of u.

The eigenvalue problem for the matrix w can
be reduced to an eigenvalue problem for a single
symmetric kernel. We write

We now introduce the ovexlaP k'erne&& defined by

z(r', r) —= ( Cz, ~
4&-, ),

which can conveniently be grouped to form a matrix
of kernels:
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APPENDIX: LINEAR INDEPENDENCE AND PROPERTIES
OF THE OVERLAP KERNEL

using a notation introduced in Sec. II,

N(r', r)=(4'n) I @8 r) nBw( rr),

and the easily derived relations

(r'. r) = was(r', r) = &(r' —r),

w*a(r', r) =we (r, r').

(A6)

(A7)

(A8)

(A 9)

First, we investigate the linear independence
of the set of vectors

If the trivia, l unit-diagonal part of w in Eq. (A6) is
removed, the remaining matrix

B=—I 4&-, , y =o, )3, a.ll rj, (A1)

which spans the model space 2„ that was intro-
duced in Sec. II. Though it is usually disregarded,
this question is of direct practical significance.
Linear dependence of the set B would imply that
the corresponding coefficients, namely py(r)
(y =o), P} in Eq. (2.16), are not uniquely deter-
mined, even when the wave function 0'„eZ„is
known. More specifically, linear dependence of
B would imply existence of nonzero functions

g& (y=o. , P) such that

(A10)

still contains complete information about the
kinematic effects of nonorthogonality. Consider
the square of this matrix, explicitly given by

(A11')

From Eqs. (A6) and (All), the eigenvalues of



M Rre el.early related to those of

0 =NN

a(A +x)
x(A, +a)

(A14)

By a well-known theorem, the finiteness of
(A13) implies that % is a compact operator, so
that its spectrum is bounded and discrete, with
zero as the only possible point of accumulation.
The same must be true of X' and therefore, by
Eq. (All), also of q. Let the eigenvalues of rt

(in order of decreasing magnitude) be

)~g). g ~ ac&~0
0 1 2

These eigenvalues are nonnegative because every
expectation of q is nonnegative. Corresponding
to each eigenvalue ~ of 7), the overlap matrix
N has a pair of eigenvRlues

n"=1+() )'t' (A16

Therefore, provided that none of the ~ is unity,
i.e. , provided that

(A12b)

Note that q and 7t have the same eigenvalues.
Because X is Hermitiml, its Hilbert-Schmidt

(HS) norm is

[) X[[„=[tr(5f')]'t'.= (2 trt))' '

by Eqs. (All) and (A12). By calculation that is
mentioned in Sec. V, this trace is equal. to a. Ja-
cobian [Eq. (2.15)], which is determined solely
by mass ratios:

s =0.37, t =-0.59, p = 0.45. (A18b)

No explanation has been found for this surprisingly
pure exponential dependence. We note that the
sum rule (A14) provides a check on the formula
(A18). We find

are bounded, as we assume. Consequently, their
solution is unique. Also, Coester" has described
a method of rewriting such equations in a form
such that the kernel has a finite HS norm even
in the physical limit & - 0+ . Thus the solution
of the coupled equations (subject to the appropri-
Rte boUndRI'y conditions) ls Unique.

For the particular case of the coupled & and

p channels with an "0 core, we have numerically
investigated the spectrum of m. Because the bound

states are s wave, u and q do not connect diff erent
relative angular momenta L. Therefore, the
eigenvalues ~ and eigenvectors f may be char-
acterized by two labels I., n in place of the single
index m . This symmetry property is easily ex-
ploited by expressing 7t in terms of partial-wave
kernels t)L, . The compactness of rt (and hence

7)z) ensures that q~ can be uniformly approximated
by simply replacing the implied integrations by
finite summations. As a result, numerical di-
agonal. ization of fairly small finite matrices gives
good approximations to the largest few eigen-
values of q. These eigenvalues are found to be
quite accurately summarized by the simple form-
U1R

gf Lpn

with parameters

w 1 (m =0, 1, 2. . . ), (A17) Z=g g ),„=g P (2L..1)st'p"
n=0 I.=0 n=0 L=0

m does not have a zero eigenva, lue, and the Set
8 is linearly independent.

Together with the spectral. properties of q, Eq.
(A16) shows that ~o has only discrete eigenvaiues
of' finite degeneracy, and that their only point of
accumulation ls k. If by Rccldent, some eigen-
value of se were exactly zero, the Set B would be
linearly dependent, but a small adjustment of the
bound-state parameters would restore linear
independence. Thus, for practical pu rpos es
linear independence is assured.

Once the set of vectors B is known to be linearly
independent, it is reasonable to Rsk if the solution
of the coupled integro-differential equations (Sec.
II) is unique. The equations can be written as
integral equations of I ippmann-Schwinger type
by applying the Green s fUnctlons of the differ-
ential operators Dy If the energy has a positive
imaginary part ie, the r esulting equations Rre
of Fredholm form provided that the interactions

s(1+ t)
(1 —P)(1 —t )'

in quite good agreement with the value implied

by Eq. (A14):

2.17 3

J = =6.74.

From the fact that the largest eigenvalue of q
is A.00 = 0.37, we can use Eq. (A16) to conclude
that the smallest eigenvalue of m is 0.39. Con-
sequently, for this ease there is no danger of
linear dependence.

Those eigenfunctions of q that correspond to
the maximum eigenva, luce (Az, o) all. show broad
surface peaks without oscillations. Those that
correspond to the smaller eigenvalues X~„(n& 0)
have more nodes as n increases. Therefore the
smaller eigenvalues may have some importance
for reactions in which high momenta play a role.
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(1-t}) ' =1+q+t}2+

converges rapidly, and may provide a useful
algorithm. Since different partial. waves are in-
dependent, one may consider ql„ the q operator
for a given L, . Then rapid convergence of the
series for (1 —7}~}

' requires only the (generally
less restrictive) condition Al, ,«1.

Generally, the size of any operator A is con-
veniently measured by its uniform norm ~[A(~,
defined as the square root of the largest eigen-
value of A~A. In. particular,

Il(1-t) ) 'll =max III-& .I
'k.

Consequently, if ql has an eigenvalue near 1,
(1 —t}~) ' is a large operator. This remark is
relevant to the discussion of the coupled equations

(A20)

%e conclude by briefly remarking on some other
mathematical consequences of the smallness of

First, the inverse of m finds application in
some of the formulations of the MS method dis-
cussed in Sec. II. Its evaluation can be reduced
to inversion of (1 —q}. If A»«1, the expansion

(Sec. V). The following mathematical result is
tacitly assumed and repeatedly applied: the norm
of the product ABis . bounded by [[A)( [[ B)(, i.e.,

Hence if lit}~II is small, Il(I -qi) 'll will be nearly
1 and so operators involving products of g~ and

(1 —t}~) ' will be small.
Finally, we note that the operator m '~' can be

expanded in the form

w '~'=1 ——,'2+ 8 (X)'—

which also converges rapidly if ~Do«1, This
operator can. be used to construct an orthonor-
malized basis

(y =a, P), (A22)

which spans the same model space Z„as the
Set B.
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