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transverse electroexcitation of the first excited state of ' Ct
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We examine current and velocity fields of rotating deformed nuclei. Although the harmonic oscillator
cranking model gives rigid moments of inertia, the velocity field is not a rigid rotation in the examples
studied. Such fields are partially observable via electroexcitation, .and we compare "C to experiment. A slight

improvement in experimental precision would allow different models to be distinguished.

NUCLEAR REACTIONS Inelastic electron scattering, deformed nuclei; trans-
~verse electroexcitation probability, rotational model; ' C(e, e') C*(4.4 MeV) .

The nature of nuclear rotation has received
much attention and interest in nuclear physics.
Initial recognition of the phenomenon was hindered
by a preconception in favor of rigid-body rotation.
The fluid drop picture with irrotational flow' has
also been used extensively. The actual nature of
the flow need follow no assumption based on a
classical ideal, but is dynamically determined by
the interplay of collective and intrinsic degrees
of freedom, in a manner as yet not understood.

I shall present some dynamically calculated
velocity fields for rotation of idealized versions
of 'Be and "C, compare them with classical ex-
pectations, and show how they manifest their
nature in the transverse electroexcitation of the
rotational states. My model for carbon may al-
ready be marginally in conflict with experiments
on excitation of the 2' (4.44 MeV) state. Thus a
modest increase of experimental precision may
enable this and other models to be distinguished.

The cranking model will be used to generate
current density fields from which velocity fields
will be deduced. An axially symmetric potential
well is rotated -with constant angular velocity (d

about the z axis, the symmetry axis starting in
the z direction at time t=0. Time-dependent wave
functions for the motion of a particle are found,
through first order in u, in, e.g. , Ref. 2. The ex-
tension to many particles is straightforward. Cur-
rent density fields are arrived at by taking ex-
pectation values, using these wave functions, of a
local current operator. The time dependence of
the current field, and of other local fields such as
the density, consists of rotation to follow the po-
tential. It is thus sufficient to regard the fields
obtained at /=0 and to treat them as being related
to body-fixed axes.

For independent particles one thus obtains the
current'

j(x) =2Re
y, occupied vg ii,

x(e, —e„) '+0(ar'),

where j,~(x) is the local one-body current density
operator. The current at ur =0 vanishes for a
time- reversal invariant intrinsic structure such
as is appropriate to the ground-state band of even-
even nuclei. The density field p(x) is equal to
that for ~ =0, except in order v', under the same
conditions.

Equation (1) contains much more information
than just the moment of inertia, for which the
cranking model result has long been known. ' But
if the mass-convection current is used for j~,
and x x j(x) is integrated over space, one finds
l„=+8„~» where 8„~„is given by Inglis's re-
sult.

In a fluid drop picture, the current is a product
of density and velocity. It is natural to define a
velocity field by

v(x) = j(x)/p(x).

Rigid-body flow has v = v xx. Irrotational flow
has a v field with zero curl. In general, different
current and density operators (e.g. , electromag-
netic vs baryon number currents and densities)
produce different velocities. For definiteness,
let us take the electromagnetic convection current
and charge; for proton states

Then v(x) is the average velocity field of the pro-
tons. For the doubly even, self-conjugate nuclei
explicitly to be considered, the neutron velocity
field is the same. If the cranked Hamiltonian is
furthermore spin independent„ the magnetic mo-
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ment contribution to the current vanishes, and
the convection current is the whole electromag-
netic current (ignoring finite nucleon size and
meson exchange effects).

A simple example is the axisymmetric harmonic
oscillator with ~I =~2t~3. In this case the inter-
mediate state sum Eq. (1) can be closed by explicit
construction of an operator whose commutator
with the unperturbed Hamiltonian is j„:

im[—(to, '+ (u, ')ya —2V,V,/m']/(&o, ' —(o,').
One finds

j(x)/a) = [((o,'+ (o,') j,(x)+ 2(o, (u, j,(x)]/((o, ' —(u,'),

p»(x) =2(1+2m+, x'+ 2m&v, y')(m'&o, m, z, /a')'~'

x exp — n~. (d,x,2 (6)

v„(x}= ' ' (gvyz
603 + (02

p, (x}=2(1+2m&v, a')(m'~, &o, e,/v')'i'
3

2x exp -pm. &o,-x,
i=I

(d3 —402 ~ 4 (02 (03
v, (x) = ' ' (uVyz —,' ', (1+2m(o,z') '(o &&x.

3+ 2 3
—

2

The configuration of "C is (000)'(100)'(0 10)'
and

where

j,(x) = p(x) Vyz, (3a)

4e2~3+, ' ', (1+2m+,x'+2m&oy') '+xx, .
403 —(02

j,(x) =Re Q {[vg',( )][v„v,p„( )]

y'„(x)vv v,y, (x})/(m'(o, (o,),

(3b)

p(x) = g P (x)g (x), (4)

where |t)„are normalized harmonic oscillator
eigenfunctions and the sum over quantum numbers
p, includes all occupied proton states.

For a filled major shell, one finds j, = —j, and,
remarkably, the velocity field is irrotational. This
property has been surmized on the basis of 8„~
alone, ' but the present result is needed to verify
detailed irrotational flow. The physical relevance
is moot, however, since closed-shell nuclei are
spherical.

%hen the potential is self-consistently deformed
(the oscillator frequencies &o, being chosen inverse-
ly proportional to 3A/2 plus the total number of
quanta of excitation in that direction), 6„„takes
the rigid-body value. The same happens for ar-
bitrary fixed deformations in the ground-state con-
figuration as A -~. These results have been used
to argue for rigid-body motion as the consequence
of self- consistent independent-particle dynamics. "
Examination of the currents does not support this
interpretation. It is true that v in the A -~ limit
is rigid, if certain improprieties are permitted in
passing to the limit. ' However, self-consistent
deformation does not produce rigid v for finite A.

Straightforward models of 'Be and "C as rota-
tional nuclei can be constructed in this harmonic
oscillator cranking model. The configuration for
'Be is (000)'(00 1)' and, using Eqs. (2)-(4),

Neither Eqs. (5) nor Eqs. (6) become rigid at the
respective self- consistent deformations (c)I (472

=2+» +I =+2=0.6+3.
The fields of Eq. (6), for self-consistent defor-

mation ~I = ~2 =0.6e„are depicted in Figs. 1-3
saith the velocity ur xx subtracted for ease of com-
parison with rigid-body motion. There are three
vortices, one rotating faster than rigid in the
center and two counterrotating in the limbs. The
net angular momentum in this relative flow field
vanishes, since 8+za~j, 8ppgfd for self-consistent
deformation.

It may be that, in larger nuclei with occupied
states having more nodes, the vortices in the
relative velocity field grow in number and density,
yielding a flow which resembles rigid-body flow when

averaged over a distance fairly small compared to
nuclear dimensions. P reliminary calculations of
"Ne support such a supposition. The connection be-
tween self-consistent independent particle dynamics
and rigid flow may not have been entirely lost, but it is
surely not microscopic, and is clearly wrong
for light nuclei.

Models in which a spherical core does not par-
ticipate in the rotation are not supported by these
results. In both nuclei, the central region rotates
more raPidly than rigid.

The currents and velocities have been presented
in lowest order in ~, whence they are linear in
(d. A priori, this approximation need not be very
good for even the lowest states of light nuclei.
The exact solution of the harmonic oscillator
cranking may be carried out. ' For "C, the exact
(l„}is 1.9 when the linear approximation is 2.
The approximation may be good for the first ex-
cited state. It is certainly quite bad for the next
state, for which the corresponding figures are
3.0 and 4.

The nuclear current fields determine the trans-
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FIG. 1. Velocity field for self-consistently deformed
C with rigid-body velocity ~ x x subtracted, is shown

in the midplane of rotation x = 0. The figure uses units
&=- m = cu3 ——1; for ~3 =22.4 MeV the unit distance is
1.36 fm. The angular velocity is co&„with ~ =0.1; v is
linear in u to the approximation considered. The arrows
represent v(x) for x at the origin of the arrow; v has no
x component. The other quadrants are symmetrically
related to the displayed first quadrant. The isodensity
contours are drawn at 0.9, 0.5, and 0.1 of the overall
maximum charge density.

verse amplitudes for inelastic electron scattering
between members of a rotational band, just as do
the charge distributions the longitudinal amplitudes.
In the free rotation of a classical fluid drop with
time-symmetric intrinsic state, the current dis-
tribution is, to lowest order, linear in ~ and
follows the rotation of the drop. There is there-
fore an &o-independent local tensor field T(x)
which defines the current through

1(x, f) =ft.,„[T(R.,„- x)] (l/8), ( f

where 8 z„ is the 3 && 3 transformation matrix
which actively maps the orthonormal triad of a,

fixed frame of reference onto the orthonormal
triad of the body-fixed frame, through the Euler
rotations by angles n, P, and y. The angular mo-

x [A(A+1)] ' '(8l +1)'~'

x $(/0 f.Q
I
f 0)M (q)

M„(q) = fq-'[X(X+l)]-'"

(8a)

d'x Vx xxVj~qx P»Q jx (d.

(8b)

The multipole notation is that of de Forest and
Walecka. ' An exactly similar result holds for
magnetic multipoles T~~. However, only the even
electric amplitudes (I'I IT (q) I

I0') are observable
by inelastic electron scattering on even-even
nuclei.

Equations (8) are |luite general. lt is not nec-
essary to use the cranking model for j(x)/&o. For
example, a rigid-body model j(x)/&o = e„xxp(x)
can be used.

Either Coriolis renormalization of the current
operator' or Coriolis band mixing of the states"'"
yields Eg. (Ba) when carried out to first order for
the even-even ground state band, if M, (q) is chosen
appropriately. If, furthermore, the cranking re-
sult for j(x)/&o is used in Eq. (8b) to define M~(q),
the result is formally identical to that of calculat-
ing the renormalization or band-mixing parame-
ters in terms of intrinsic states, if these last can

mentum I is referred to body-fixed axes. In the
terms previously used

j(x)/v = T(x) e„,

which relation, by axial symmetry, defines T
completely. Equation (7) defines a current oper-
ator suitable for placement between S function
wave functions of the axisymmetrj. c top. '

This procedure allows definition of all the intra-
band transition multipoles in terms of the intrin-
sic moments of j(x)/&o:

&&;I I& (q) I
II';) =([~,(ff l) —1,(f, +l)]/88&(-l)"

l2C RELATIVE VELOCITY FIELD. X= 0.75 fdic
= 0.6(ug C RE ATIVE VELOCITY FIELD. X= I.50 (u~ = 0.6~3

QL n lh A
,0.1

FIG. 2. Same as Fig. 1, for @=0.75.
Y

for x = 1.50.
this plane,

FIG. 3. Same as Fig. 1,
surface does not intersect

The 0.9 density
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where

+'(~(~+ ())" f&*«),(q*l)'„(())q* ((tx)/td],

(9)

M, ,„(e)=-l(& ~ ()q'J d «),(q*)&, (())utx.)

(10)
LD stands for "liquid drop". Substitution of M„LD
for M„ in Eq. (f) gives results equivalent to the
liquid drop vibrational model for allowed single
surfon transitions, '
&I'

I I
T s'(e)

I I
0')»

I+1 ~~2

I

when the first factor in Eq. (8a) i»ecog»zed as
the transition energy. The remaining terms in
Eq. (9) are of relative order (qR)' at small q. The
ratio of transverse to Coulomb electroexcitation
is always correctly given by the liquid drop model
in the long-wavelength limit.

Transverse electroexcitation may be the only
measurement sensitive to the spatial details of
the currents of nuclear rotation. Separation of
this from longitudinal excitation, especially for
heavy nuclei, is extremely difficult but worth con-

be identified with unperturbed states of the crank-
ing Hamiltonian.

Current conservation, & .
1 (x) = (() x x &p, and

integration by parts of Eq. (8), guarantees

M (e) M.. (e)+l» J~'*q '), (e*.)&, (()).vt )

siderable effort. As far as direct observation of
the even-even rotational core is concerned, only
the electric multipoles are available. Any purely
magnetic current, such as that of rigidly rotating
structures with symmetry about the rotation axis,
has no effect in Born approximation on excitation
of the ground-state band of doubly even nuclei.

Experimental data"'" exist for the transverse
excitation of the 2' (4.44 MeV) state of "C. We
need to fix the parameters &o,(= ~,), &(),. 1 have
worked out two choices in detail. Choice A, v,
=-,'+, =22.4 MeV, has self-consistent deformation,
an rms radius (neglecting finite proton size) in
agreement with experiment (x')') =2.46 fm,"and
a B(C2,0'-2') in agreement with that measured
in the low-q electroexcitation of Ref. 13, as re-
ported in Ref. 14. But the moment of inertia is
too large and gives E„=2.97 MeV. Choice 8, v,
=14.V MeV, (d, =29.8 MeV, has been chosen to fit
the C2 transition radius of the low-q longitudinal
excitation, and has F",/(E„)' = 10.9 meV/(4. 439
MeV)', R„' =9.35 fm', (r')' ' =2.32 fm, and E„
=4.33 MeV. Experimentally"'" 1",=11.0+0.6 meV,
and R„,' =9.35 fm'. Figures (1-3) are not altered
much by choice B. The centx'al, super-rotating
vortex shrinks slightly, to the benefit of the limb
vortices.

The fractional difference between (T")/(Mc'"')
and the liquid drop model value thereof is, by Eq.
(7), [M,(q)/M, »(q) —1]. Equations (6), (9), and
(10) determine this quantity, which has been nu-
merically calculated by a power series expansion
in q'. Because of cancellation between numerator
and denominator the lowest-order result remains
valid to about 10/o through 1 fm ' for the range of
~, considered here:

-f [7(-.(d3 +-.&. (02 —14&, )+», '~, '((0, - ~,)/(~, +(d,)]

The numerical results at 0.6 fm ' are -9.5/0 for
choice A and -8.1/o for choice B. Other reasonable
choices for co,- are between these extremes. If a
rigid velocity is used for v», the result (11) is
modified by striking the term proportional to ((0,
—(d, )/(((), + &o, ) and gives -16/0 to -18% at 0.6 fm '.
Thus our cranking model predicts a cross-section
ratio for transverse/longitudinal excitation which
is 16-20% below the liquid drop model at q =0.6
fm-i while the rigid body model predicts 35%
less than LD.

According to Ref. 14, Ref. 13 finds no variation
out to q = 0.6 fm ' from the liquid-drop ratio with-

in expeximental accuracy of about 20/0. Refer-
ence (12) finds (M2/M, „n)~ =1.2 +0.2 at 0.2V fm '
where we find 0.9V. Values of (M/M~n)' extracted
from a Rosenbluth plot from Ref. (13) reproduced
in Ref. (14) range from -1.2 to -1.5. Since our
ratios are less than unity, the rigid-body model
is in conflict with experiment and the cranking
model may be marginally so. Thus, some infor-
mation on the flows of nuclear rotation is already
implicit in these five-year old experimental re-
sults. Perhaps more importantly, modest increase
in experimental precision will really allow reason-
able models to be distinguished.
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