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The rotational properties of 4 = 7, 9, 11, and 13 nuclei are studied in a self-consistent way using the effective
two-body interactions derived either from the Sussex relative harmonic-oscillator matrix elements or from
energy-level fitting. Special care is taken in choosing the appropriate solution among others corresponding to
oblate or prolate deformed orbitals. In particular, a pronounced band mixing in 4 = 9 and 4 = 11 nuclei is
investigated by diagonalizing the effective Hamiltonian within ‘the orthonormalized basis setup with the
Hartree-Fock projected states. Moments of inerita of A = 6, 8, 10, and 12 nuclei are also computed by means
of the cranking model. The energy levels and the magnetic dipole moments, as well as the M1 transition
rates, are in good agreement with shell-model calculations which use the same effective two-body interactions.

NUCLEAR STRUCTURE 'Li, °Be, !!B, ¥N; calculated levels, moments, and
transition rates. Calculated moments of inertia of A=6, 8, 10, and 12 nuclei.
Projected Hartree-Fock method, cranking model.

I. INTRODUCTION

Several authors® have attempted to interpret the
low-lying energy levels of 1p-shell nuclei within
the framework of the strong coupling rotational
model. The applicability of the unified model in
this region is based on the fact? that there exists
a strong overlap between the groups of low-lying
states obtained by intermediate coupling and the
generating procedure based on the Nilsson’s de-
formed potential. Thus collective models have had
some success in fitting experimental energy levels,
but they often fail when checked with other observ-
ables, such as ground state binding energies,
electromagnetic transition rates, and particle
scattering. In particular, application of the macro-
scopic rotational model to the 1p-shell nuclei
sometimes requires the introduction of some phe-
nomenological parameters without consideration of
their physical significance.

It is known that Hartree-Fock intrinsic states
generate rotational bands in deformed nuclei.?
Kelson and Levinson* performed single major-
shell Hartree-Fock (HF) calculations and studied
rotational band mixing of odd-A sd-shell nuclei in
a self-consistent but adiabatic way in the sense
that they diagonalized the rotation-particle coupling
interaction. The HF theory has since been extended
to multishell calculations and thus the projected
HF® calculations have become more frequent.
Bassichis, Giraud, and Ripka® have shown that the
HF theory together with the angular momentum
projection is a useful approximation to the config-
uration-mixing calculations. There exists a num-
ber of projected HF calculations for finite nuclei,’
mostly on the sd shell, but the problem of rota-

tional band mixing for 1p-shell nuclei has not yet
been investigated in a self-consistent way. It is
thus felt that too little attention has been given in
the past to the possibility of using a shell-model
Hamiltonian in calculation of collective properties
of very light odd-A nuclei, and in particular in
calculation of the rotational band mixing.

The aim of this work is therefore to fill a gap
in this field of inquiry by studying nuclear col-
lective properties of 1p-shell nuclei in a self-con-
sistent way. It was also considered useful to
compare the projected HF calculations with an ex-
act diagonalization in a few cases of very light
nuclei.

Because of their relative simplicity, the 1p-shell
nuclei have been studied in considerable detail by
means of exact shell-model calculations using dif-
ferent kinds of effective two-body potentials,’-°
mostly derived from realistic nucleon-nucleon
(NN) interactions. The validity of using such ef-
fective two-body forces in the HF theory has been
discussed by many authors.' However, for multi-
shell HF calculations the search for a suitable
potential applicable throughout all major shells
appears to be more difficult. For example, Gunye,
Law, and Bhaduri” have shown that the effective
forces derived from the NN Yale potentials and
from the NN phase shifts drastically underbind the
nuclei of mass A=7, 8, and 9. They were able
to reproduce the experimental binding energies
by arbitrarily increasing the 3S, matrix elements
in the both forces but failed to obtain reasonable
values of the rms radii.

Owing to the difficulty of choosing an appropriate
realistic two-body interaction for projected multi-
shell HF calculation and, in particular, in view of
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the fact that the object of the present study is to
investigate the collective features of the low-lying
normal parity states in connection with shell-model
calculations, we use effective two-nucleon inter-
actions taken from shell-model studies without
further discussing their validity. Because of this
choice of effective interaction, we restrict our-
selves to the single major-shell HF calculation
and the comparison between projected HF formal-
ism and shell-model calculation is thus relatively
easy to visualize. Although the HF wave functions
obtained in this manner are not stable against
particle-hole excitations, and such calculations at
best minimize the potential energy, it is highly
possible that the main features of the collective
properties of the low-lying normal parity states
of odd-A p-shell nuclei are governed by nucleons
in the p-shell orbits.

We therefore have performed calculations for
A=1, 9, 11, and 13 nuclei using alternatively the
effective two-body interaction of Hauge and
Maripuu,® derived from the Sussex relative har-
monic oscillator matrix elements, and that of
Cohen and Kurath,® designated as (6~16) two-body
matrix elements (2BME), derived from energy-
level fitting. In Sec. II we discuss briefly how the
HF intrinsic states generate rotational bands in
deformed nuclei and present the method used for
the band-mixing calculations. This section con-
tains also details of the actual HF computation con-
nected with the effective two-body interactions and
with the effect of the center of mass correction.
In Sec. III, spectra, magnetic moments, and M1
transitions, as well as moments of inertia obtained
by means of the cranking model, are described
and presented with the help of tables and figures.
These results are compared with those obtained
from the shell-model calculations of Cohen and
Kurath® (to be referred as SM-I) and of Hauge and
Maripuu® (to be referred as SM-II). The conclu-
sions are presented in Sec. IV.

II. METHOD OF CALCULATION

The HF method of solving for self-consistent
single-particle wave functions and energies is that
of Ripka® and Kelson.? Following Ripka, an inert
core of %0 is assumed and intrinsic deformed
orbitals in an axially symmetric field are built
for 1p-shell nucleons which occupy the 1p,,, and
1p, ;, hole subshells. It is also assumed that there
exist no dominant pairing effects which lead to a
breakdown of the validity of single determinant
wave functions.

The HF Hamiltonian matrix which takes account
of the center of mass correction has the form

¥p
(Gm|h|j'm' Y= (ho) + S (GmT,u |o'| j'm'T, u)

u=1
n
=3 Gmr, vl |imT, 0,
v=1
(1)

where N, and N, denote, respectively, the number
of particle and hole orbits. The (z,) represents
the HF Hamiltonian of the closed shell solution of
%0 and has the form

A-1, . o
(ho>=—A—(Jm|t|J'm>

+ E GmT, x|’ | fm T ). (2)

AEls,lp

The HF Hamiltonian (2) is actually replaced with
the single-particle energies of the '°O field. The
t is the kinetic energy operator and the »’ is com-
posed of two parts, the two-nucleon interaction
potential v,, and the correction term for the center
of mass motion

-t @
where P is the linear momentum and M is the
nucleon mass. It is now seen that the term P,° D,
does not contribute to the two-particle matrix
elements in Eq. (1) when N or N, is limited to a
single major shell. It is therefore hoped that use
of experimentally extracted values of single-par-
ticle energies for the HF Hamiltonian of the closed
shell solution counterbalances some of the missing
terms in the interaction as well as the effect of the
center of mass correction in (k,). The situation
is somewhat analogous to that in shell-model
studies using a harmonic oscillator basis. Indeed,
there are no spurious states arising from the cen-
ter of mass motion for the states of the shell mod-
el in which there is only one shell incompletely
filled and any number of other filled shells without
holes.

Actually, most of the effective two-body matrix
elements in the literature have been computed in
connection with some fixed values of the single-
particle energies or with variation of the single-
particle splitting between the p,,, and p, ,, nucle-
ons. Thus, use of the effective p-shell two-body
interaction does not allow us to take proper ac-
count of the effect of the center of mass correc-
tion. However, as shown in the Appendix, in which
this problem is briefly discussed within the frame-
work of multishell HF calculations, nuclear prop-
erties such as rms radii and mass-quadrupole
moments of 1p-shell nuclei are little changed by
this effect. In fact, only the HF energies are af-
fected by the center of mass correction.
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Because we use here the '°0 core as a reference
nucleus and most effective two-body interactions
are derived assuming the (1s)* core as a refer-
ence, it is necessary to compute the j-dependent
single-particle energies of the !°0 field from the
corresponding single-particle energies referred
to the *He core. This can be done by relating the
HF Hamiltonian matrix of hole orbits to that of
the particle orbits through

(Gmt|h|j'm'T)

¥
= €50,y = 3 (GT,Y [v,,]3'm' T, v)

v=1

M,

=€j0;; 0t E (gmT, p lvxz Ij'm’T, uy, (4)
p=1

where M, stands for the number of 1p-shell parti-

cle orbits referred to the *He core. Here s‘} refers
to the single-particle energy of the %O field and

€ to that of the “He field. This formula is used
as a method of extrapolation for obtaining €§ from
€ and vice versa. Special care is taken in com-
putation of the HF solutions, since various minima
may be obtained. The HF energy minima also de-
pend on how the occupied orbits are filled. In
particular, most of the 1p-shell nuclei have at
least two different solutions corresponding to
oblate or prolate deformations. It is thus impor-
tant to select the solution corresponding to the
lowest minimum. The ambiguity in choosing an
appropriate orbital can, in principle, be removed
by noting that the orbital corresponding to the
lowest minimum should generate the low-lying
states.

The method of angular momentum projection used
is the one developed by Levinson and Unna.!? The
projected many-hole wave function of » neutrons
and m protons can be expressed in terms of the
product of deformed single-hole orbitals as

¢,K=P{,[ak1(1)' . 'Otk"(n)akml(n+ Deeca, 0 +m)]|*°0)

= Z (4, K\J K, 'JK><J1M1J2M2 iJM) P;;i[akl(l). ' ‘Oﬂhn(n)]Pg[akm_l(n+l)' : 'ak"m(n*'m)] Imo), (5)

Ty My oM,
where
n n+m
MRS "%
i=1 i=n+1l

and the o, are the intrinsic deformed hole crea-
tion operators related to the operators of a
spherical field by

to t
A= E : XitQjk=m (6)
i

with
Xy = (= 1) 2 (1)

The notation Pj stands for the many-particle pro-
jection operator defined in Ref. 12.

Finally, the projected states of a particular HF
orbit are identified with the levels of a rotational
band. In the case of a band-mixing calculation an
orthonormal basis of projected states is set up and
the nuclear Hamiltonian is then diagonalized within
this basis. In the case of two-band mixing, the
mixed state ¥,,, having energy E ,, can be ex~
pressed in terms of two orthonormal bases @,M,ﬁ
and @, as

You=r ke Prun, * i, rux, » (8)
with
H® e =By, i=1,2.

r

Using overlap integrals between the projected
states N, = (z,l)”i l by ,> and the nuclear Hamiltonian
matrix H;;= (0, , |HT¢,KI), the E ; and the coef-
ficients a,x, can be written as

X+Y
E,=074757m7—7F——, 9
’ 2(N11N22_N122) ( )
1 H
aJKzz :i/'—(Nusz - lez)(EJ -N:lz > s (10)
with

X=NppH, +N Hyp— 2N, Hy,
Y= [(szHu - N, Hy)?+4(Np Hy =Ny Hy,)
X (Nyp Hyp = Npp Hyp) /2.

The energy E, can also be expressed in the more
familiar form

2E,;=E,+E,+[(E, - E,)*+4E *]'/2. (11)

The term E,?, which corresponds to the so-called
rotation-particle coupling'® term, has the form

E.= ‘N12H11+N11H12
12

= . 12
Nu(Nusz"lez)l/2 ( )

In the case of the usual rotation-particle coupling
one can treat the mixing problem as a perturba-
tion, provided that the energy of two configura-
tions (K, and K, =K, +1) are very different from
each other so that the energy difference is larger
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than the interaction energy of these configurations.
In the same spirit, one may argue that the condi-
tion E ,?/(E, - E,) <1 makes it possible to expand
the square root term so as to estimate the mixing
effect on the original unperturbed rotational ener-
gies.

III. RESULTS
A. Energy levels

When use is made of Eq. (4) introducing the ef-
fective matrix elements of Cohen and Kurath,®
their single-particle energies €, ,,=2.27 MeV and
€53/2=1.63 MeV, referred to the ‘He core, yield
€,,2=—16.13 MeV and €$,,,=- 23.1675 MeV,
referred to the !*0. The resulting splitting is
7.04 MeV, which is comparable with the experi-
mental value 6.16 MeV. Other examples of extra-
polation of the single-particle energies related
to the Sussex realistic effective two-body interac-
tions® are shown in Table I. In contrast to the
constant energy splitting in the first example, the
fluctuation of the splitting in Table I is rather
important. It is noted that the approximately con-
stant value of splitting at around 7 MeV for A =10
nuclei corresponds to about 9 MeV with respect
to the ®0 field.

As was discussed in the previous section, im-
properly chosen orbitals having an inappropriate
deformation often lead to binding energies far from
the expected values. Thus the oblate solutions are
generated for the nuclei of mass 11 and 13, where-
as the prolate solutions are taken for the nuclei
of mass 7 and 9. Table II shows the resulting
binding energies of the ground states, compared
with the shell-model calculation of SM-I. Experi-
mental nuclear binding energies are also indi-
cated. The agreement between the two calcula-
tions is fairly good. Figures 1 through 4 show the
resulting spectra of “Li, °Be, B, and '3N calcu-
lated with both of the effective two-body interac-
tions we have discussed. These spectra are com-
pared with the shell model calculations of SM-I
and SM-II. The over-all comparison indicates

TABLE L. Single-particle energy splittings A€ =€,/
— €p3/2, required for use of the realistic Sussex interac-
tions. Row 1 lists the calculated splittings which are
referenced to the 160 core, and row 2 shows the corre-
sponding splitting in the field of ‘He.

Single-particle

energy splitting "Be Be g 3¢
A€(t80) (MeV) 7.2 5.4 9.3 9.8
Ac(“He) (MeV) 3.4 2.8 6.7 7.2

TABLE II. Nuclear binding energies for the ground
states. To facilitate comparison all values are expressed
with respect to the ground state of ‘He. Column 3 lists
the results obtained by Cohen and Kurath. The bracketed
value is obtained from the Sussex interaction with €, /,
=5.03 MeV and €,,/,=1.63 MeV.

Binding energy (MeV)

Nucleus Present CK Expt.

Li 13.57 13.67 11.95
(12.13)

'Be 31.91 31.98 32.50

g 52.23 52.42 52.52

B¢ 74.72 75.24 76.05

that the agreement between the resulting spectra
of the present work and those of SM-I and SM-II
is good as far as the low-lying normal parity
states are concerned. This is confirmed in a
number of cases by computing other observables,
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FIG. 1. The level scheme of "Li with levels identified
by J7. All levels have T=%. Column 1 is experimental
and column 2 (a) results from the projected Hartree-Fock
method (PHF) using the (6—16) 2BME interaction of Ref.
8. Column 3 (b) results from the PHF using the Sussex
realistic interaction, and column 4 (c) is the shell-model
spectra of SM-I.
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FIG. 2. The level scheme of °Be. See caption of Fig.
1 for columns 1 and 2. The intrinsic bands before mix-
ing are shown in column 3 (a’), and column 4 (b) results
from the PHF mixing using the Sussex realistic interac-
tion. Column 5 (c) is the shell-model spectrum of SM-I
obtained from the (6—16) 2BME interaction of Ref. 8, ex-
cept the levels with dashed lines which result from the
(8—16) 2BME interaction of the same reference.

as will be seen in the following sections. It is
worthwhile to stress the band-mixing character
in the present calculation. Thus, the spectra of
°Be and !'B are not generated directly from a
unique projection, as is done generally in other
projected HF formalisms, but from mixed of two
intrinsic HF orbitals after projection.

1. 7Li

The intrinsic orbitals set up for "Li are of the
form

alal ol |*He), (13)

where n and p refer to neutrons and protons and
k is equal to 3 or 3. In fact, we have used the
corresponding conjugate orbital referenced to the
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FIG. 3. The level scheme of !!B. See caption of Fig.
2 for details.

160 core. As is seen in Fig. 1, the resulting
spectra have a strong resemblance to the shell-
model calculation of SM-I. In particular, the
shell-model binding energy of the ground state of
"Li in the field of ‘*He differs by 1.72 MeV from the
experimental value in SM-I and this feature is
also observed in the present calculation. The
shell-model calculation of SM-II removes this
shortcoming and the difficulty of making the first
3~ state as low as at 0.48 MeV. The spectra in
column (b) of Fig. 1, obtained by using the Sussex
effective interaction in the present method, are
also quite similar to those of the shell-model
prediction of SM-II using the same force. The
second # state at 11.07 MeV, predicted both by
SM-II and the present work, may correspond to the
energy level at 9.61 MeV. The Sussex effective
interaction has a tendency towards raising the
states, except for the first two excited states, as
is seen in column (b) of Fig. 1. This feature can
also be observed in the spectra of SM-II which
uses the same interaction.
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FIG. 4. The level scheme of *N. See caption of Fig.
1 for details.

2. °Be

The low-lying normal parity states can be gen-
erated from the prolate deformed HF solutions.
The corresponding intrinsic orbitals are

16,
anklan-qanlap-klapkgap-kzan-bz\ 0) , (14)

with %, and &, equal to 3 or 3. These two intrinsic
orbitals are mixed after angular momentum pro-
jection, and the calculated spectra are similar to
the shell-model calculations of SM-I and SM-II.
The spectra of this nucleus and those of A =11
nuclei are the only instances known which can be
treated within the framework of the rotational
band mixing. The columns (a’) and (a) of Fig. 2
show respectively the spectra before and after
mixing. We see three sets of inversions due to the
mixing; between the 3~ and first 3~ states, the
second %~ and first % states, and finally the second
I and first £ states. The third 3" state, predicted
at 9.78 MeV by SM-1I, is absent in the present study
because of the limited configuration space in which

we solve the problem. The £ state of 10.91 MeV
of the present calculation corresponds to the same
spin state at 11.026 MeV of SM-I, shown in col-
umn (c) of Fig. 2, which results from the (8-16)
two-body matrix elements (2BME) interaction of
SM-I. Similarly, our second I state may be com-
pared with the third §° state of SM-I, also shown
in column (c) of Fig. 2.

When the Sussex effective interaction is applied
with the energy-splitting €,, ,,— €,,,,=5.4 MeV,
which corresponds to the energy splitting of 2.8
MeV with respect to the *He core, the resulting
spectrum shown in column (b) of Fig. 2 is very
similar to the shell-model calculation of SM-II.
Thus the first two excited states, which are very
near each other, are in reverse order in compari-
son with the spectrum obtained from the two-body
interaction of SM-I. It is noted that the shell-
model calculation of Halbert, Kim, and Kuo'® using
the Hamada-Johnston potential was not able to re-
produce correctly the first 3~ state. According to
the projected HF calculation of Bouten et al.,’
based on the LS coupling, using one-body spin-
orbit forces in addition to the two-body interaction
of Brink, the spin-orbit strength has to be raised
up to the order of 3 MeV or more in order to re-
produce the 3~ state higher than the 3" state. How-
ever, in this calculation, the " state is always
higher than the second 3~ state whatever the varia-
tion of the spin-orbit strength may be.

3. UB

Contrary to the A =7 and 9 mass nuclei discussed
in the previous sections, this nucleus is charac-
terized by the oblate deformed solutions of the
Hartree-Fock equation. The intrinsic orbitals are
written as

16
an1/2an-1/2apl/Zap-llzap-kl 0), (15)

with £ having $ or 3. The columns (a’) and (a) of
Fig. 3 show respectively the resulting spectra be-
fore and after mixing of the two projected states.
As in the case of °Be, the right level sequence is
possible only after mixing. Thus, the order of
the second %‘ and first 3~ states is reversed and
the positions of the other states are much changed
after diagonalization of the nuclear Hamiltonian
within the orthonormalized basis. The correction
made in the structure of the ground state wave
function by mixing of two bands also influences
the binding energy, the static moment, and the
electromagnetic transition rates. An interesting
feature is the change of the second 3~ state from
9.27 MeV before mixing to 10.81 MeV after di-
agonalization. The shell-model calculation of
SM-II predicts the second 3~ state at about the
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same energy as in the present work, and the re-
sults of SM-II in this energy region are much dif-
ferent from those obtained by SM-I. Again, use
of the Sussex effective interaction in the projected
HF method yields the spectra, shown in column
(b) of Fig. 3, which are very similar to the shell-
model calculation using the same interaction force.
It is interesting to note that the strong rotation-
particle coupling (RPC) model applied by Cavaig-
nac, Jang, and Worledge,' yields a remarkable
fit up to the first I~ state, showing in some sense
a validity of the RPC model for this nucleus. How-
ever, the rotational parameters used by these
authors, such as the RPC strength, the moment
of inertia, the decoupling factor, and the initial
energy separation of two J =3 states before mix-
ing, were obtained by fitting the energies of the
lowest five levels. The lack of physical support
for these parameters has a consequence for the
magnetic moment, as well as for the M1 transi-
tion rates, which are in disagreement with the
observed values.! The recently confirmed 5"
state at 8.57 MeV has not been reproduced by any
shell-model calculation and this still remains as
an unsolved question. The position of the £ state
at 12.62 MeV can be compared with that predicted
by SM-I at 12,73 MeV resulting from the (8-16)
2BME interaction of Ref. 8.

4 15N

From the point of rotational model, the first
four low-lying levels are those belonging to the
ground state band which terminates at the " state.
The intrinsic orbital for this band is written as

ankan-kap-k [160>’ (16)

with £=%. It is known that the ground state of *N
is well represented by a relatively pure (90%)
1p, ;. single-particle state. This is confirmed by
the HF solution for the orbital under considera-
tion.

As is seen in Fig. 4, the three negative parity
states just above the f* state cannot be obtained
from the model presented, due to the limited con-
figuration space assumed. It is expected that the
assumption of pure 1p configurations is less valid
near the %0 nucleus.

It is interesting to note the large energy differ-
ence between the 1° state at 11.51 MeV in column
(a) of Fig. 4 and the same spin state at 14.35 MeV
in column (b) of the same figure. Such an energy
difference is also observed between the two shell-
model calculations previously cited. Thus SM-I
predicts the I~ state at about 12 MeV, whereas
SM-II with the Sussex interaction obtains the state
at 15.2 MeV.

B. Magnetic moments and M1 transitions

The resulting wave functions are tested by calcu-
lating magnetic dipole moments and M1 transition
rates. For 1p-shell nuclei, there is some con-
crete information'® concerning the usefulness of
the unperturbed M1 operator. Magnetic moments
and B(M1) strengths calculated for a variety of
(1s)%*(1p)4~* shell model have been shown to be in
fairly good agreement with measured quantities.
Therefore, the configuration-excitation correc-
tions to the M1 operator, which are estimated in
second-order perturbation, are expected to be
very small. Accordingly, the evaluation of mag-
netic dipole moments and M1 transition has been
carried out assigning the free-nucleon magnetic
moments to all the nucleons.

The calculated magnetic dipole moments for the
ground states of A=T7, 9, 11, and 13 mass nuclei
are shown in Table III and are compared with
those'® obtained from the shell-model calculation
of SM-I. The agreement between two results is
fairly good. As in the case of binding energies,
inadequate choice of the intrinsic HF orbitals leads
to inconsistent magnetic dipole moments. For
example, the oblate deformed solution yields
0.22p, for the magnetic dipole moment of the °Be
ground state, whereas the prolate deformed solu-
tion is able to reproduce the correct sign and gives
—-1.298 uy. The value calculated in the present
work is quite similar to that of SM-I, -1.297p,,.
In the case of "Li, however, two intrinsic orbitals,
one with % =3 particles and other filled with k=3
particles out of the *He core, yield almost the
same magnetic dipole moments 3.199u, and
3.032p,, respectively, for the J=3 states.

Table IV shows the theoretical M1 transition
strengths which are compared with the strengths
determined from the results of SM-I. There is a
good overall agreement between the present ap-
proach and the shell-model calculation.

We should comment on the transition between
the %‘ and ground states of "Li. All shell-model

TABLE IIL Magnetic dipole moments (nuclear magne-
tons) for the ground states identified in columns 1 and 2.
Column 4 lists the results obtained by Cohen and Kurath.

Magnetic moment (uy)

Nucleus JT Present CK Expt.
Li 3 3.199 3.170 3.256
’Be 3 -1.298 -1.297 -1.177
¢} 3 2.617 2.505 2.688

B¢ 4 0.708 0.701 0.702
BN 3 0.332 0.322
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TABLE IV. Magnetic dipole transition rates between normal parity states in odd-A nuclei.

The states are identified by the quantum numbers 2J, 2T, and their excitation energies, ex-
cept those followed by the letters Th, which have not yet been observed. Column 5 lists the

B(M1) values obtained by Cohen and Kurath.

Initial state Final state B(M1)(1y?)
Nucleus 2J,27 [Ex (MeV)]  2J,2T [Ex (MeV)] Present CK Expt.

"Li 1,1 [0.48] 3,1 [0.00] 4.46 4.44 4,75 +0.24
5,1 [6.68] 0.0026 0.000 64 0.42
5,1 [7.47] 0.078 0.039 0.184 £ 0.082

Be 5,1 [2.42] 3,1 [0.00] 0.39 0.40 0.745+ 0.096
1,1 [2.78] 2.53 2.35
3,1 [5.17]1 Th 0.31 0.33
7,1 [6.76] 5,1 [2.43] 0.28 0.39
3,1 [5.17] Th 1.88 1.84

g 1,1 [2.12] 3,1 [0.00] 1.69 1.80 1.198+ 0.067
5,1 [4.44] 0.52 0.52 0.56 +0.25
3,1 [5.02] 1.42 1.35 1.16 +0.23
5,1 [8.93] 0.026 0.38 0.525%0.070
3,1 [5.02] 1,1 [2.12] 1.04 0.99 0.56 £0.11
3,1 [5.02] 5,1 [4.44] 3.05 2.79
7,1 [6.74] 0.013 0.012

3¢ 3,1 [3.68] 1,1 [0.00] 0.94 1.19 0.763+0.070
5,1 [7.55] 3,1 [3.68] 0.013 0.0047

183N 3,1 [3.51] 1,1 [0.00] 1.31 1.62 1.32
5,1 [7.39] 3,1 [3.51] 0.0084 0.0038
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probabilities are quite small when comparison is
made with the old empirical data'® determined
from the peak cross sections of the inverse radia-
tive capture reaction of *H on “He. The present
calculation has also a strong resemblance to the
shell-model calculations. However, a marked
exception to the overall agreement occurs for the
second 3~ state of "'B. The M1 transition strength
between this state and the ground state is much
smaller than the predicted strength of SM-I. As

a consequence, the state in question at 10.81 MeV
may correspond to the level predicted at 10.69
MeV by the shell-model calculation.

In contrast to the M1 operator, the E2 operator
is very sensitive to admixtures of other configura-
tions. Therefore, calculation of electric quadru-
pole moments and E2 transition rates in the pres-
ent model may not be of much significance.

C. Moments of inertia

A method for computing microscopically the
moment of inertia is the Inglis cranking for-
mula'”? given by

g )

Oy 1t

where o refers to an unoccupied orbital and u to
an occupied orbital. The energies in the denomi-
nator are the eigenvalues of the HF Hamiltonian.
Inasmuch as the gap between the filled and empty

orbits has little effect on spectra obtained from
HF projection, the cranking formula can be used.
The resulting moment of inertia parameters
n%/(29) of A=6, 8, 10, and 12 nuclei are shown in
Fig. 5, where the values for both the oblate and
prolate deformed solutions are given. The reason
for computing the moments of inertia only for the
even mass nuclei resides in the fact that the in-
trinsic orbitals corresponding to the ground state
are pure and are completely filled or half filled.
This is not the case for the odd-mass nuclei, as
was seen in the preceding discussion. It should
be noted that the energy gap between the filled and
empty orbits of A =8 is 1.2 MeV in the oblate de-
formed HF solution, whereas the gap in the prolate
deformed solution extends to about 11.7 MeV.
Kurath and Pi&man® have estimated that the mo-
ment of inertia of 'B may be near 1 MeV, de-
duced from the argument that the ratio of the spin-
orbit coupling strength to the inverse moment of
inertia lies between 8 and 1, and is something like
4. Cavaignac et al.! have used the value of 0.892
MeV in the RPC model calculation for *B. This
value is very close to the estimated moment of
inertia parameter from Fig. 5. The rotational
band structure studies based on the simple Nilsson
model predict 0.486 and 0.54 MeV, respectively,
for the moment of inertia parameters of °Be and
“Li. These values are somewhat smaller than
those corresponding to the prolate deformed orbital
in Fig. 5. It is interesting to compare the two



1646 F. BRUT AND S. JANG 14

~~ T T T T
r 3.0
® .0
s 2.Z89
A
& 2.5 1
-
(YY)
b3
< 2.0+ b
o
g
o
< 1.5 1
[
-
Z 4104 0.934 .
- 0.807 0.812 (746 ©®
e A A A
o]
s 0.5 0.332 A
™
w 0.158 0.143
g [) °
o-o T L L] L)
b 3 6 8 10 12

MASS NUMBER

FIG. 5. The moment of inertia parameters for the
ground states of A=6, 8, 10, and 12 nuclei, obtained
by using the cranking formula. The triangles are from
the prolate solutions and the darkened circles are from
the oblate solutions.

moments of inertia of **C, corresponding to two
different kinds of deformation. The value of 2.79
MeV obtained from the prolate deformation is
larger than the physically expected moment of
inertia. This is because the energy gap in the
prolate solution is 5.7 MeV as against 12.3 MeV
obtained in the oblate solution, and this gap has a
considerable effect on the spectra of *C. There-
fore, the applicability of the cranking model to the
prolate HF solution of '2C is less evident and the
oblate deformation is favored. Kelson and Levin-
son®* have shown in their study of the sd-shell
nuclei that the cranking model agrees well with the
Skyrme forraula,'® the accuracy of which is ex-
pected to be good because it is based on a varia-
tional principle. We have not attempted to apply
this alternative method for computing the moment
of inertia.

IV. CONCLUSIONS

In this work, we have attempted to see how good
an approximation to the complete diagonalization
one gets for the odd-even mass nuclei with the
mixing of a few Hartree- Fock projected orbitals.
In particular, we have investigated in a self-con-
sistent way the nuclear collective properties of
odd-mass nuclei of the 1p shell. The overall
agreement between the present calculations and
shell-model calculations for the spectra and the

results for the magnetic moments, as well as on
M1 transitions, have been shown to be a good test
of the wave functions resulting from the self-con-
sistent axially deformed orbitals. Although the
spectra of the present study resemble those ob-
tained from the strong coupling rotational model
based on the simple Nilsson’s deformed potential,
the very large energy gap between occupied and
empty orbits in the HF solutions makes an essential
difference from the macroscopic approach. More-
over, in contrast to the phenomenological band-
mixing calculation, the present method does not
employ the rotation-particle coupling interaction.

As was mentioned in the introduction, there is
clearly a limit as to how far one can proceed using
the present approach. The assumption of pure
1p-shell configurations obliges us to compute the
single-particle levels in a restricted self-con-
sistent way. Also, because of the limited config-
uration space, the resulting spectra sometimes
suffer a loss of certain high-lying states, especial-
ly in the case of ®N. Nevertheless, it is concluded
that the much smaller basis used in the present
work allows us to describe adequately the main
collective features of the low-lying state of odd-A
1p-shell nuclei.

The authors wish to thank Dr. A. J. Cole and
Dr. R. Piepenbring for helpful discussions and for
carefully reading the manuscript.

APPENDIX: EFFECT OF THE CENTER OF MASS
CORRECTION

The effect of the center of mass (c.m.) correc-
tionon the HF calculations can be investigated by
computing the HF energy E,, the mass quadrupole
moment @,, and the mean square radius 7,? from
the HF solutions obtained with and without sub-
traction of the energy of the c.m. motion of the
whole system from the total Hamiltonian. We take
an axially symmetric ground state configuration
of A=9 mass nucleus as an example. The single-
particle HF wave functions are expanded in terms
of the oscillator states of the N=0, 1, and 2 major
shells using the effective force No. 1 of Volkov.”
The resulting HF energy, rms radius, and mass
quadrupole moment are Ey,=-44.11 (- 29.89)
MeV, »,=2.30 (2.29) fm, and @,=33./1 (34.11)
fm?, where the bracketed values are obtained with-
out correction of the c.m. motion. Thus, only the
HF energy changes appreciably and such a change
would certainly be observed in the HF calculation
of other 1p-shell nuclei.'® For the ground state
HF problem, the c.m. motion can be assumed to
be in the 1s-shell state and thus the kinetic energy
of the c.m. motion amounts to 3/4%w. This quantity
is significant when compared with the total kinetic



14 APPLICATION OF THE PROJECTED HARTREE-FOCK METHOD... 1647

energy of the system in 1p-shell nuclei, 100-200
MeV, from which the kinetic energy of the c.m.
motion is subtracted. However, the effect of the
c.m. correction on the HF wave functions is in-
significant, as is seen from the values of the rms

radius and mass quadrupole moment. Therefore,
inasmuch as the spectroscopic calculations using
the projected states from the HF wave functions
are concerned, we can safely use the HF wave
functions obtained without the c.m. correction.
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